
Compressive Features in Offline Reinforcement
Learning for Recommender Systems

1st Minh Pham *

Computer Science and Engineering
University of South Florida

Tampa, USA
minhpham@usf.edu

1st Hung Nguyen *

Electrical Engineering
University of South Florida

Tampa, USA
nsh@usf.edu

2nd Long Dang
Computer Science and Engineering

University of South Florida
Tampa, USA

longdang@usf.edu

3rd Jennifer Adorno Nieves
Computer Science and Engineering

University of South Florida
Tampa, USA

jorgea1@usf.edu

Abstract—In this paper, we develop a recommender system
for a game that suggests potential items to players based on
their interactive behaviors to maximize revenue for the game
provider. Most of today’s recommender systems in e-commerce
and retail businesses are built based on supervised learning
models and collaborative filtering, while our approach is built
on a reinforcement-learning-based technique and is trained on
an offline data set that is publicly available on an IEEE Big
Data Cup challenge. The limitation of the offline data set and the
curse of high dimensionality pose significant obstacles to solving
this problem. Our proposed method focuses on improving the
total rewards and performance by tackling these main difficulties.
More specifically, we utilized sparse PCA to extract important
features of user behaviors. Our Q-learning-based system is then
trained from the processed offline data set. To exploit all possible
information from the provided data set, we cluster user features
to different groups and build an independent Q-table for each
group. Furthermore, to tackle the challenge of unknown formula
for evaluation metrics, we design a metric to self-evaluate our
system’s performance based on the potential value the game
provider might achieve and a small collection of actual evaluation
metrics that we obtain from the live scoring environment. Our
experiments show that our proposed metric is consistent with
the results published by the challenge organizers. We have
implemented the proposed training pipeline, and the results show
that our method outperforms current state-of-the-art methods in
terms of both total rewards and training speed. By addressing the
main challenges and leveraging the state-of-the-art techniques, we
have achieved the best public leaderboard result in the challenge.
Furthermore, our proposed method achieved an estimated score
of approximately 20% better and can be trained faster by 30
times than the best of the current state-of-the-art methods.

Index Terms—Recommender System, Reinforcement Learning,
Big Data

I. INTRODUCTION

In the last decades, recommender systems have been de-
ployed in many industrial applications in many different fields.

* Hung Nguyen and Minh Pham are co-first authors.

They aim to suggest items that would maximize user satisfac-
tion and the provider’s revenue. They can be seen in various
online services such as music and video services, gaming,
online retail, restaurants, and online dating. They become
more and more critical, especially when retail e-commerce
is growing rapidly. In 2020, global retail e-commerce sales
were 5.23 trillion USD, and they are expected to reach 6.54
trillion USD in 2022. Such growth poses many challenges
for recommender systems, such as the volume and velocity
of data, item-wise interactions, sparse data, dynamic user
preference, and scalability [1]. The majority of today’s e-
commerce and retail businesses build their suggesting systems
by conducting supervised learning-based models and aim at
optimizing clients’ satisfaction in a greedy manner. Never-
theless, the item-by-item greedy recommendation approach is
not well-suited to many real-world applications. In sequential
recommendation situations, for example, traditional supervised
learning methods frequently assume different stages in a
session to be independent and therefore miss the oportunity
to find the optimal strategy. Furthermore, the conversion rate
of an item does not just depend on the item itself among
the recommended items. For example, when similar but more
expensive items surround an item, the likelihood of purchasing
it increases, which is known as the decoy effect [2]. However,
the number of possible combinations of all items can be in the
billions, which is an NP-hard problem that is understudied in
traditional supervised learning [3]. Recent research has been
adopting reinforcement learning to tackle this challenge in
suggesting systems. As recent research displays, the recom-
mendation can be described as a series of interactions between
the user (environment) and the recommender system. Since
reinforcement learning algorithms are naturally designed to
maximize long-term rewards, explore the combinatorial space,
and solve multi-step decision-making challenges, utilizing
reinforcement learning to design recommender systems is an
interesting contribution.978-1-6654-3902-2/21$31.00 ©2021 IEEE

ar
X

iv
:2

11
1.

08
81

7v
1

 [
cs

.A
I]

 1
6

N
ov

 2
02

1

In this paper, we tackle the challenge of designing a
recommender system for the trading system in an online game.
The recommender system would suggest items to players that
are suitable for their playstyle and stage in the game and
maximize the revenues for the game provider. This problem
was proposed by the FUXI AI Lab, Netease, and was orga-
nized in the frame of the IEEE Big Data 2021 Cup. In this
challenge, participants are given an offline data set with more
than 250,000 playing sessions, 381 items, and approximately
40,000 users [4]. There are three stages in each episode of
the game, and in each stage, a user is recommended three
items. The goal of the recommender system in this game is
to maximize revenues earned from the nine recommended
items. The features in the data set include user portraits,
clicking history, their stages in the game, item features, and
which items were purchased by each user. To tackle this
problem, we proposed a design of a recommender system
where roughly 400 features are examined and extracted by
an unsupervised algorithm. This information is then used to
cluster the state of the environment, and parallel groups of
reinforcement models are trained on the clustered information.
By implementing this strategy, we helped the reinforcement
learning models learn the most important features from the
environment, thus providing better-suited recommendations
based on user portraits and their stages in the game. After that,
by utilizing the Bellman equation as a simple value iteration
update [5], our parallel reinforcement learning models can find
sets of items to generate maximum revenues.

Our contributions in this work can be described as follows.
• We designed a flexible and high-performance reinforce-

ment learning system based on feature extraction, clus-
tering, and parallel training of Q-learning models

• We implemented the proposed system with an optimized
performance by using parallelism on CPU and GPU.

• We compared the results of our system with other
state-of-the-art Reinforcement Learning approaches and
showed that our method could generate higher revenues
than other methods. Furthermore, our system can be
trained faster than the other methods by up to 24 times.

The remainder of this paper is organized as follows. In
Section II, we describe the problem in detail. Section III briefly
summarizes existing state-of-the-art solutions. Our solution is
introduced in SectionIV. Section V describes the implementa-
tion details of our proposed solution. Section VI presents our
results and the comparisons to other techniques.

II. PROBLEM DESCRIPTION

In each user session, the goal is to recommend nine items
such that the total revenue from purchased items is maximized.
As shown in Figure 1, the recommender system needs to
respond to each client request with three-item lists (3 items per
list), and the next item lists cannot be purchased until all three
items on the current list are purchased. The users’ purchasing
behavior is influenced by the items on the next lists as well
as the current item list. This challenge can be framed as a
multi-stage decision-making problem in two ways. In the first

way, there are 9 stages with one item recommended in each
stage. In the second way, there are 3 stages with three items
recommended in each stage.

Fig. 1. Item recommendation system.

A live interactive training environment was not provided
to the participants. Instead, an offline training data set was
provided. The training data set is gathered over a three-
month period and includes a few sales initiatives. Essentially,
the environment is a test system on clients’ purchase data
and is built using data 10 times the size of the data being
generated. The test environment is the same as it was when
the recommendation was evaluated, and it is not available to
participants of the competition. The training data set includes
information about user sessions and items. In each user
session, the provided information includes a timestamp, the
user’s click history on all items, ten user portraits features,
the nine items recommended by a recommender system, and
a list of nine binary labels indicating whether the items were
purchased. For each item, information about the item’s content
features, price, and location are provided. An item can only
be recommended on a list whose location matches the item’s
location. For example, an item with location 1 can only be
recommended on the first item list, i.e., only position 1, 2,
or 3 of the nine recommended items. In other words, an item
with location 1 can only be placed on the first row of Figure
1.

Lacking a live environment is a common situation in real-
life applications of recommender systems due to various rea-
sons such as security, user privacy, high cost for maintaining a
live environment [6]. However, the lack of a live environment
for training and testing a recommender system creates many
difficult challenges for designing a reinforcement learning-
based approach, such as issues with bootstrapping from out-of-
distribution actions and overfitting. These problems are caused
by erroneously optimistic value estimates for sample states that
fall outside of the scope of the offline training data set [7]. In
Section IV, we will describe our approach for overcoming the
difficulties of training from an offline data set.

III. RELATED WORK

In this section, we describe the current state-of-the-art de-
velopment in the literature. We use the notations from Hasselt
et al. [8] and Fujimoto et al. [9].In reinforcement learning, an
agent interacts with its environment, typically assumed to be
a Markov decision process (MDP).

In [9], the MDP process is formally defined by a tuple
(S,A, pM , r, γ), where each component of the tuple is listed
below:
• S are state spaces,
• A denotes action spaces,
• pM (s′|s, a) is a transition dynamic,
• r(s, a, s′) ∈ R represent a reward which an agent receives

when performing action a in state s and ending at the
state s′,

• γ ∈ (0, 1) is a discount factor.
At each discrete time step, the objective of the agent is

to maximize the expected sum of discounted rewards when
taking action ai in state si which is defined as follows.

Rt =

∞∑
i=t+1

γir(si, ai, si+1) (1)

The agent selects actions with respect to a policy π : S → A
which exhibits a distribution µπ(s) over the states s ∈ S
visited by the policy. Under the given policy π, the true
value of an action a in a state s is Qπ(s, a) = Eπ[Rt|s, a].
The corresponding action value can be computed through the
Bellman operator Tπ: TπQ(s, a) = ES′ [r + γQ∗(s′, π(s′)]
where Q∗(s′, a′) = maxπ Q

π(s′, a′). The Bellman operator
states that the estimated long-term reward for a given action
can be determined by the immediate reward from the given
action plus the expected reward from the best future action
taken at the next state. By picking the highest valued action in
each state, an optimal policy is easily found from the optimal
values.

A. Q-learning algorithm

Since most interesting problems such as playing modern
video games have nearly infinitely large number of possible
states, it is extremly difficult to compute all action values in
all states separately using the Bellman operator. Q-Learning
proposed by Watkins [10] attempts to learn estimates of the
optimal action (reward) values called Q-values when taking
an action a in a particular state s via a parameterized value
function. Watkins et al. [10] proposed that we can learn the Q-
values of all actions in any number of possible states using the
parameterized value function Q(s, a; θt), in which we would
like to find the weights θ that updates the value of the function
Q(s, a; θt) towards a target value Y Qt . The weights can be
found using stochastic gradient descent algorithm. Therefore,
the standard Q-learning update for the parameters after taking
action At in state St and observing the immediate reward Rt+1

and resulting state St+1 is then:

θt+1 = θt + α(Y Qt −Q(St, At; θ))OθtQ(St, At; θ) (2)

where α is a scalar step size and the target Y Qt is determined
as follows.

Y Qt ≈ Rt+1 + γmax
a

Q(St+1, a; θt) (3)

B. Deep Q-Network (DQN)

To make Reinforcement Learning more applicable to real-
world problems, Mnih et al. [11] proposed using a deep
convolutional neural network (CNN) in combination with Q-
learning.

A DQN is a multi-layered convolutional neural network that
maps a given state s to a vector of action values Q(s, ., θ),
where θ are the parameters of the network. The Q-network
can be written as a function f : {0, 1}n → Rm that maps an
input state s ∈ {0, 1}n to an output y ∈ Rm where n is the
number of states, m is number of actions, and R is a set of real
numbers. Two important ingredients of the DQN algorithm are
the use of a second target network and the use of experience
replay [8]. We utilize the target network’s parameter θ−t to
calculate the target action values Y DQNt . The target network
with parameters θ−t has the same architecture as the Q-network
but with parameters being copied every τ steps from the Q-
network, so that θ−t = θt, and kept fixed on all other steps.
The target used by DQN is defined as follows.

Y DQNt ≈ Rt+1 + γmax
a

Q(St+1, a; θ−t) (4)

The second addition to considerably increase the DQN
algorithm’s performance is experience replay [12]. The main
idea of the experience replay is that we can store agents’
observed transitions and uniformly sample batches of them
to train the CNN.

C. Double Deep Q-Network (Double DQN)

The main motivation behind Double DQN proposed by
Hasselt et al. [8] is that the Q-network often overestimates
the action values. In order to reduce overestimations, instead
of including a maximization step when computing the target
Q-values in the target network, the authors propose using
the Q-network in the DQN architecture to choose an action
and utilize the target network to generate the target Q-values
for that action. By decomposing the max operation in the
target into the action selection and action evaluation, the
overestimation is substantially reduced. Below is the new
Double DQN equation for updating the target value:

Y DoubleDQNt ≈ Rt+1 + γQ(St+1, argmax
a

Q(St+1, a; θt), θ
−
t)

(5)

D. Batch Constrained deep Q-learning (BCQ)

In 2019, Fujimoto et al. [9] proposed an offline (or ”batch”)
RL method which aims to train an agent to learn from large
offline data sets, but without any interaction with the envi-
ronment. In real-world problems, an environment interaction
may be expensive, unsafe and time consuming [13]. In this

work, the main idea is to run normal Q-learning. Instead
of evaluating the max action value over all potential actions
shown in Equation (3), we only want to examine actions a′

that (s′, a′) really existed in the batch of data by removing
actions that are unlikely to be chosen by the behavior policy
in each batch πb [14]. Firstly, BCQ utilizes a state-conditioned
generative model Gω(s) which given the state as input, pro-
duces actions that are likely to be selected from the batch.
Secondly, BCQ contains a perturbation model ξφ(s, a), which
further modifies the actions within a set range [−Φ,Φ] and
trains the perturbation model using the deterministic policy
gradient [15]. Finally, the authors use a weighted version of
Clipped Double Q-learning At test time, the authors sample
N actions via the generator, perturb each, and pick the action
with the highest estimated Q-value. Therefore, the policy is
defined as below:

π(s) = max
ai+ξφ(s,ai)

Q(s, ai + ξφ(s, ai); θ) (6)

where [ai ∼ Gω(s)]
N
i=1.

E. Conservative Q-learning (CQL)
Existing offline RL methods suffer from a major challenge

related to the distribution shift between the behaviour policy
dataset and the learned policy [16]. This limitation results
in an overestimating Q-values for out-of-distribution states
and actions. Therefore, poor actions are selected [17]. The
CQL [16] algorithm addresses this overestimation by ensuring
conservative approximation of the Q-values via penalizing Q-
values for out-of-distribution states and actions [17]. As a
result, the learned policy will be trained to keep closer to the
known behaviors in the behaviour data rather than incorrectly
favoring inflated values. To achieve such a lower-bound on the
true Q-values, CQL uses an objective function JCQL(θ) which
depends on the choice of action distribution and is defined as
follows.

JCQL(θ) = min
Q

Es∼D

[
log

∑
a

expQ(s, a)− Ea∼π̂β(a|s)Q(s, a)

]
+

1

2
Es,a,s′∼D

[
r(s, a) + γEπ[Q̂(s′, a′)]−Q(s, a)2

]
(7)

where (s, a, s′) represents state, action, next state tuples;
r(s, a) is the reward; π̂β(a|s) defines the behaviour policy
which generates the dataset D, and Q̂(s′, a′) is the Q-function
approximator [17].

IV. METHODOLOGY

We propose a training pipeline as presented in Figure 2.
In this pipeline, we first perform feature extraction on the
high-dimensional state space to reduce the problem of high
dimensionality and retain features that are important to our
reinforcement learning models. Next, we use the extracted
features to cluster users. Finally, samples from grouped users
are given to the parallel Q-Learning models according to their
group membership. The Q-Learning models are updated by
following the Bellman equation [18].

A. Data Preprocessing

Preprocessing data involved parsing two text files: one
that contains the user sessions and one that contains item
information, as subsequently described. In the text file that
contains the user sessions, each line contains a user ID, the
user’s click history (i.e., the items which have been previously
clicked by the user), ten user portrait features, the nine items
proposed to the user by a recommender system, nine binary
labels indicating whether the user purchased each item, and a
timestamp for the session. In the text file that contains item
information, each line contains item ID (which can be matched
to the first file), five-item content features, the item’s price, and
the item’s location. An item can only be recommended on a
list whose location matches the item’s location. For example,
an item with location 1 can only be recommended on the first
item list, i.e., only position 1, 2, or 3 of the nine recommended
items. In other words, an item with location 1 can only be
placed on the first row of Figure 1.

As mentioned in Section III, each training record for all
reinforcement learning methods is a tuple of (S,A, pM , r, γ),
where S defines state spaces, A denotes action spaces,
pM (s′|s, a) denotes the next state given the current state and
the taken action, r(s, a) represents the reward, and γ ∈ (0, 1)
represents the discount factor. In this problem, we use a
combination of user portrait features and user click history
to represent states. There are 10 user portrait features and
381 one-hot-encoded user click history features, but we use
a feature extraction method to reduce the number of features
representing states (details in sub-section IV-B). There are
three ways to construct the action space: a nine-step decision-
making problem with each action being an item ID, a three-
step decision-making problem with each action being a set
of three-item IDs, and a one-step decision-making problem
with each action being a set of nine-item IDs. The nine-step
setup has a significant disadvantage of not being able to hold
multi-item interaction information. The one-step set up has a
huge action space with

(
381
9

)
= 4.24 ∗ 1017 possible actions.

Therefore, we chose the three-item setup because it allows us
to maintain multi-item interaction while having a reasonable
action space with

(
381
9

)
= 4.24 ∗ 1017 ≈ 9 million possible

actions. The next stage pM (s′|s, a) can be determined as being
terminated if the user does not purchase all three recommended
items or being the next incremented step with the same user
features. Reward r is defined as the total price of the purchased
items among the three recommended items.

B. Feature Extraction

As described in the previous section, the state space contains
10 user portrait features and 381 one-hot-encoded user click
history features. Such a sparse state space may pose significant
problems for deep learning algorithms [19]. For example, our
training data set may not have enough coverage on the entire
feature space and is, therefore, more likely to have missed
many maxima and minima of the loss function. Therefore,
it is ideal to extract only the important features to reduce
the dimensionality of the state space. Principal Component

Fig. 2. ComFOR’s learning framework inlcuding preprocessing data, clustering and Q-learning.

Analysis (PCA) [20] and AutoEncoder (AE) [21] are two
common and standard methods for feature extraction and
didimensionsssreduction. However, one drawback of these two
techniques in dealing with sparse data is that they use all of
the original features to compute the output features, which
may introduce unnecessary noise from unimportant and rare
features [22]. To tackle this problem, Sparse PCA [23] and
Sparse AutoEncoder [24] were introduced. It has been shown
that the classical PCA can retain consistency when the number
of features is much larger than the number of data points,
a situation where the classical PCA generates large variance
[22]. We utilize these two methodologies to generate a state
space with smaller dimensions from the training data set. The
number of dimensions is selected through a cross-validation
process by using our proposed scoring system as described in
Section IV-E.

C. Clustering

One of the major drawbacks of the classical Q-Learning
approach is that its memory requirement grows linearly with
a product of the size of the state space and the size of the
action space. Therefore, when the state space or the action
space gets large, it is preferable to use Neural-Network-based
approaches to approximate the quality value given a tuple of
(state, action). In this problem, we have a large state space
with high dimensionality. Even after dimension reduction, the
state space is still infinitely large. To tackle this problem, we
use clustering techniques to divide the state space into regions.
Within each region of the state space, we construct sub-state
space that only depends on the step of the item list. This means
that all users who fall into a region of the state space would
share the same Q-table and would be given the same action
policy. The intuition behind this design is that we can divide
users into groups based on their user portraits and click history
and that users within a group are likely to react similarly to the
same action policy. This kind of approach has been popular
in human resources management and investment [25], [26].

We utilized K-Means clustering and DBSCAN, the two
standard approaches that have decent performance. The pa-
rameters on each approach are tuned, and the best approach
is chosen based on our proposed scoring system as described
in Section IV-E.

D. Q-Learning

Q-learning is a model-free reinforcement learning algorithm
that may be used to memorize the value of an action in a
certain state [18]. It does not require a model of the envi-
ronment and can handle stochastic interactions and rewards
without modifications. Starting from any state, Q-Learning
discovers an optimal solution for any finite Markov Decision
Process in the sense of maximizing the expected total reward
throughout any and all progressive stages. Given an infinite
training time and a partly-random policy, Q-Learning may
identify an optimal action-selection policy for every given
Markov Decision Process. Q-Learning relies on storing in
memory a Q-Table with size (Number of states) × (Number
of actions). At initialization, all values in the Q-Table are
initialized to 0. For each tuple of (S,A, pM , r, γ) in the training
data set, the Q-Table is updated according to the Bellman
equation [18]:

Qnew(S,A) =Q(S,A) + α(r + γmax(Q(pM , a)−Q(S,A))
(8)

where α is the learning rate. For all final states Sf , Q(Sf , a)
is never updated but is set to the reward value r observed for
the final state Sf .

E. Evaluation metric

One key challenge in training offline reinforcement learning
models is that the models often overestimate the reward values
when calculating samples that are under-represented in the
training data set [6]. There are two approaches to tackle this
problem. The first approach is to restrict the recommended
actions to the ones that are close to the training data set,

such as the BCQ model proposed by Fujimoto et al. [9]. The
second approach is to collect the training data set by running
an online reinforcement learning model that has good coverage
for all scenarios [27]. Our proposed method inherently follows
the first approach. By ensuring that each user cluster has a
sufficient amount of samples, we can guarantee to restrict
the recommended actions in each cluster to the ones that are
well represented because they are the ones with the highest
Q values in the Q-Tables. Since the scoring metric is not
disclosed to participants in this competition, we propose the
following evaluation metric to evaluate the quality of a model
quickly. By splitting the training data set into a train set and
a validation set, we can train any model on the train set and
use the model to make recommendations on the validation set.
To evaluate our method performance, we design a metric that
reflects potential rewards based on the price of recommended
items and the user’s actual purchased items. Our method is
then evaluated on the testing set, which consists of 20% of the
entire data set. The output of our metric is a weighted score
that evaluates the total expense of a user for buying items in
the game at different steps. Each 3-items list is a step, and
the score in the higher steps should be put higher weights.
This is an appropriate strategy since the game provider will
benefit the most if the player survives through the end of the
game. As the game rules restrict certain items on each step, if
the items are not allowed to suggest on a particular step, their
values will be zero. All recommended items in each step that
are eventually purchased by the players will be counted in our
final score. Our metric can be described in the algorithm as
follows.

Algorithm 1 Algorithm to Calculate metric
Input: Recommended Items R, Purchased Items P, Items’
Prices , Restricted Items.
Parameter: Wst is step weights
N : number of testing samples
Output: Score

for st in steps do
Items ← i in R ∪ P
for it in purchased Items and item in restricted items do
V aluest + = it ∗ Priceit

end for
end for
Score = 1

N

∑
st wst ∗ valuest

return

The proposed evaluation metric can be used to compare the
models and to tune parameters. As shown in Section VI, our
evaluation metric are a fair representation of the real metric
used by the competition organizer.

V. IMPLEMENTATION DETAILS

We have implemented our proposed method in Python.
For the feature extraction part, we utilized the library Scikit-
Learn’s SparsePCA method and the Sparse AutoEncoder im-

plementation by Makhzani and Frey [24]. For the cluster-
ing part, we utilized Scikit-Learn’s KMeans and DBSCAN
methods. Parameters for these methods are selected through
cross-validation by using the proposed metric in Section
IV-E. We have implemented the Q-Learning models for high-
performance scaling on GPU. First, we initialized all the
Q-Tables on the GPU’s global memory. For each cell on
the tables, we created an exclusive lock to prevent multiple
threads from updating a cell at the same time. Since all tuples
(S,A, pM , r, γ) from the train set can be processed and used
to update the Q-Tables independently, processing an entire
batch is an embarrassingly parallel problem where we let one
thread process the computation for a tuple and then atomically
update the cells with the use of the exclusive locks. A parallel
implementation on CPUs was also programmed in a similar
manner.

VI. RESULTS

First, we show that our proposed metric is a good represen-
tation of the private metric used by the competition organizers.
First, we split the training data set into an 80% set for training
and a 20% set for validation. Then, the metric proposed in
Section IV-E is calculated on the validation set. Finally, we
use the trained model to make recommendations on the testing
data set provided by the organizers and obtain the score from
the organizers’ scoring system. We repeat this process with the
four deep reinforcement learning described in Section III and
our proposed method with different sets of parameters (number
of extracted features, clustering parameters, and learning rate
for Q-learning). The resulted scores on the testing set and our
calculated metric are plotted in Figure 3. Since the organizers
allow only one query per day to the scoring system for
calculating scores on the testing set, we could only obtain
a few data points.

Fig. 3. Our proposed metric versus leaderboard results.

Figure 3 shows that our proposed metric is consistent in
representing the organizer’s calculated metric on the testing
set.

Next, we show that our proposed method outperforms the
four deep reinforcement learning methods described in Section
III by using both our proposed metric and the organizers’
scoring system. The four deep reinforcement learning methods

are Deep Q-Network (DQN), Double Deep Q-Network (Dou-
ble DQN), Batch Constrainted Deep Q-Learning (BCQ), and
Conservative Q-Learning (CQL). We used the Python package
d3rlpy for the implementation of these methods. In addition,
we reproduced the classical Q-Learning method and applied it
to this problem. Parameters are tuned by using cross-validation
with our proposed metric, and only the best parameters for
each method are reported. The results of DQN, Double DQN,
BCQ, CQL, Classical Q-Learning, and ComFOR are presented
in Figure 4.

Fig. 4. Results from different methods evaluated by our metric and the
organizers’ metric.

In addition, the organizers released the official baseline
scores as follows. By using logged offline actions, the optimal
score achievable is 770,378,225. By using a Long-Short-Term-
Memory environment simulator in combination with Deep
Deterministic Policy Gradient, the optimal score achievable
is 1,033,481,948.

Finally, to compare performance and scalability, we present
the training time for each method in Figure 5. All methods are
executed on an AMD Ryzen Threadripper with 32 threads.

Fig. 5. Training time on different methods.

Results from Figure 4 show that our method ComFor
outperforms other methods in both our proposed metric and
the organizers’ metric. Specifically, our method achieved a
score that is 16% higher than that of the state-of-the-art BCQ
and 110% higher than that of the baseline method provided
by the organizers. Figure 5 shows that ComFOR can train
significantly faster than other methods, roughly 10 times faster

than the classic Q-Learning method and 30 times faster than
the state-of-the-art BCQ.

VII. CONCLUSION AND FUTURE WORK

In this study, we tackle the challenge of building a recom-
mender system for a game that can be viewed as a multi-
step decision-making problem. This problem also presents
a difficulty for building recommender systems in the real
world, which is the unavailability of a live training envi-
ronment. The majority of today’s recommender systems in
e-commerce and retail businesses are based on supervised
learning are built based on supervised learning models and
collaborative filtering. In recent years, more researchers have
proposed that deep reinforcement learning should be utilized
for building recommender systems because they are well suited
for addressing multi-item interactions, maximizing long-term
rewards, and solving multi-step decision-making challenges.
However, they suffer from the aforementioned problem of
training on an offline data set. To tackle these challenges,
we propose a novel reinforcement learning pipeline based on
compressive features and clustering for assisting parallel Q-
learning models. The results from our experiments show that
our proposed method can train significantly faster than the
other deep reinforcement learning methods and produce action
policies that generate higher rewards.

REFERENCES

[1] F. Ricci, L. Rokach, and B. Shapira, “Recommender systems: introduc-
tion and challenges,” in Recommender systems handbook. Springer,
2015, pp. 1–34.

[2] T. Zhang and D. Zhang, “Agent-based simulation of consumer purchase
decision-making and the decoy effect,” Journal of business research,
vol. 60, no. 8, pp. 912–922, 2007.

[3] T. Zhu, P. Harrington, J. Li, and L. Tang, “Bundle recommendation
in ecommerce,” in Proceedings of the 37th international ACM SIGIR
conference on Research & development in information retrieval, 2014,
pp. 657–666.

[4] K. Wang, Z. Zou, Q. Deng, Y. Shang, M. Zhao, R. Wu, X. Shen, T. Lyu,
and C. Fan, “Rl4rs: A real-world benchmark for reinforcement learning
based recommender system,” ArXiv, vol. abs/2110.11073, 2021.

[5] B. Richard, “The theory of dynamic programming,” Bulletin of the
American Mathematical Society, vol. 60, no. 6, pp. 503–516, 1954.

[6] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” arXiv
preprint arXiv:2005.01643, 2020.

[7] Y. J. Ma, D. Jayaraman, and O. Bastani, “Conservative offline distribu-
tional reinforcement learning,” arXiv preprint arXiv:2107.06106, 2021.

[8] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 30, no. 1, 2016.

[9] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in International Conference on Machine
Learning. PMLR, 2019, pp. 2052–2062.

[10] C. J. C. H. Watkins, “Learning from delayed rewards,” 1989.
[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[12] L.-J. Lin, “Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching,” Machine learning, vol. 8, no. 3-4, pp. 293–
321, 1992.

[13] H. Wei, D. Ye, Z. Liu, H. Wu, B. Yuan, Q. Fu, W. Yang et al., “Boosting
offline reinforcement learning with residual generative modeling,” arXiv
preprint arXiv:2106.10411, 2021.

[14] S. Fujimoto, E. Conti, M. Ghavamzadeh, and J. Pineau, “Bench-
marking batch deep reinforcement learning algorithms,” arXiv preprint
arXiv:1910.01708, 2019.

[15] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International conference
on machine learning. PMLR, 2014, pp. 387–395.

[16] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning
for offline reinforcement learning,” arXiv preprint arXiv:2006.04779,
2020.

[17] O. Day, “Learning autonomous robot grasping.”
[18] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.

MIT press, 2018.
[19] R. Krishnan, D. Liang, and M. Hoffman, “On the challenges of learning

with inference networks on sparse, high-dimensional data,” in Interna-
tional Conference on Artificial Intelligence and Statistics. PMLR, 2018,
pp. 143–151.

[20] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp.
37–52, 1987.

[21] M. A. Kramer, “Nonlinear principal component analysis using autoas-

sociative neural networks,” AIChE journal, vol. 37, no. 2, pp. 233–243,
1991.

[22] I. M. Johnstone and A. Y. Lu, “On consistency and sparsity for principal
components analysis in high dimensions,” Journal of the American
Statistical Association, vol. 104, no. 486, pp. 682–693, 2009.

[23] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component
analysis,” Journal of computational and graphical statistics, vol. 15,
no. 2, pp. 265–286, 2006.

[24] A. Makhzani and B. Frey, “K-sparse autoencoders,” arXiv preprint
arXiv:1312.5663, 2013.

[25] C. Bauckhage, A. Drachen, and R. Sifa, “Clustering game behavior
data,” IEEE Transactions on Computational Intelligence and AI in
Games, vol. 7, no. 3, pp. 266–278, 2014.

[26] E. C. Hui and C. Liang, “The spatial clustering investment behavior in
housing markets,” Land Use Policy, vol. 42, pp. 7–16, 2015.

[27] Y. Jin, Z. Yang, and Z. Wang, “Is pessimism provably efficient for offline
rl?” in International Conference on Machine Learning. PMLR, 2021,
pp. 5084–5096.

	I Introduction
	II Problem Description
	III Related Work
	III-A Q-learning algorithm
	III-B Deep Q-Network (DQN)
	III-C Double Deep Q-Network (Double DQN)
	III-D Batch Constrained deep Q-learning (BCQ)
	III-E Conservative Q-learning (CQL)

	IV Methodology
	IV-A Data Preprocessing
	IV-B Feature Extraction
	IV-C Clustering
	IV-D Q-Learning
	IV-E Evaluation metric

	V Implementation Details
	VI Results
	VII Conclusion and Future Work
	References

