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Abstract—We propose a novel framework to classify large-
scale time series data with long duration. Long time series
classification (L-TSC) is a challenging problem because the data
often contains a large amount of irrelevant information to the
classification target. The irrelevant period degrades the classifica-
tion performance while the relevance is unknown to the system.
This paper proposes an uncertainty-aware multiple instance
learning (MIL) framework to identify the most relevant period
automatically. The predictive uncertainty enables designing an
attention mechanism that forces the MIL model to learn from the
possibly discriminant period. Moreover, the predicted uncertainty
yields a principled estimator to identify whether a prediction is
trustworthy or not. We further incorporate another modality to
accommodate unreliable predictions by training a separate model
based on its availability and conduct uncertainty aware fusion to
produce the final prediction. Systematic evaluation is conducted
on the Automatic Identification System (AIS) data, which is col-
lected to identify and track real-world vessels. Empirical results
demonstrate that the proposed method can effectively detect the
types of vessels based on the trajectory and the uncertainty-aware
fusion with other available data modality (Synthetic-Aperture
Radar or SAR imagery is used in our experiments) can further
improve the detection accuracy.

Index Terms—Time series classification, Automatic Identifica-
tion System, trajectory classification, Multiple instance learning.

I. INTRODUCTION

Time series classification (TSC) is a central component
for a myriad of classification tasks, ranging from health care
[14], power system [16] to trajectory classification [18]. Deep
Neural Network (DNN) is a popular choice for TSC problems
due to its I) robust performance and II) appropriateness for big
data [4]. However, longer time series poses novel challenges
as it may contain many irrelevant parts (e.g.,, in a fishing
vessel trajectory, only “engaged in fishing” parts are relevant
and unique to this specific ship type). As a result, using the
entire long time series to train a DNNs model may eventually
lead to overfitting the noises (i.e., parts of the trajectory
irrelevant to the classification target), degrading the model’s
generalization performance [5]. Additionally, predictions made
without identifying the discriminant sub-sequence are less
valuable because domain knowledge cannot properly justify
the results. Unfortunately, the irrelevant parts are universal
and redundant in long time series data and hard to eliminate
directly (i.e.,, relevance are unknown to the system). Lack
of interpretability hinders the application of TSC methods in
broader domains.

The problem of data noise in TSC is traditionally addressed
by “split and search” order. These methods first split the
time series into multiple sub-sequences and then exhaustively
search the most discriminant sub-sequences. These discrim-
inant sub-sequences are commonly referred to as shapelets,
and measurement of shapelets can be based on information
gain [13], [19], F-Stat [7], or Kruskall-Wallis [11]. Although
some works (e.g., [17]) have been proposed to reduce the
computational cost of the exhaustive search process, these
shapelets-based methods become much less effective with the
increase of the volume of the time series data.

Our work is novel in that we uniquely train the DNNs
models while adapting the idea of “identifying shapelets while
classifying the sequence”. More specifically, we formalize
shapelets identification as a multiple instance learning (MIL)
problem [12], where the whole sequence is referred to as a bag,
while each instance is a sub-sequence. The bag label is the en-
tire sequence’s label, while the instance label indicates whether
a sub-sequence is shapelets or not. The MIL’s bag assumption
fits squarely into our problem, and its instance level prediction
further adds interpretability to explain why certain bag-level
prediction is made. More importantly, as powerful weakly
supervised learning paradigm, MIL avoids significant pre-
processing work, which is expensive and tedious for big data.
Instance-level predictions can be conveniently aggregated into
the bag-level prediction, which largely simplifies the training
procedure compared to traditional shapelets based methods.
Our novel contribution lies in how to identify the shapelets to
make the instance-level classifier robust to the label noise.

This work also provides a novel uncertainty-guided loss
function, adjusting the weight of each instance in a bag to
make the DNNs focus upon the instance that is more likely
to align with the bag label (e.g., being shapelets). We use
the Bayesian Neural Network (BNN) to obtain the predictive
uncertainty and then use uncertainty to design the attention
mechanism. This uncertainty knowledge benefits the training
process and the inference phase. We further augment the MIL
model with uncertainty-aware multimodal data fusion to effec-
tively address data noise. We also introduce a second modality,
image data, to improve our overall prediction confidence. Two
models are individually trained, and the prediction confidence
is used as the weight during prediction fusion, adaptively
adjusting the weights of two models’ prediction.

We demonstrate the ability of our work through several real-
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(a) SAR Image of a fishing vessel.
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(b) Trajectory of a Fishing vessel
based on AIS data (visualized with
QGIS).

Figure 1: Example SAR and AIS data modalities.

world aquatic vessel classification tasks, using trajectory infor-
mation from the Automatic Identification System (AIS) vessel
tracking system. This is accomplished through a comparative
analysis against existing state-of-the-art techniques. We found
our process to be more effective than previous state-of-the-art
methods. We summarize our contributions as follows:
1) Overall framework: We develop a novel general frame-

work for large-scale sequential data classification from
the MIL perspective. Our uncertainty-aware MIL based
framework is interpretable, accurate, and computationally
efficient.

2) Uncertainty quantification: We perform uncertainty
quantification to yield a more accurate estimator of
shapelets while providing a more principled way for
multimodal prediction fusion. The predictive uncertainty
can also benefit the decision-making process to make the
human experts aware of the machine’s confidence in its
prediction. In that case, human experts can take further
actions to verify the low confident prediction.

3) Real-world applications: We validate our framework
through real-world ship type classification problems using
large-scale AIS trajectory data. While one modality may
be sub-optimal, we leverage the SAR imagery to boost
the classification accuracy. This application can be used to
identify Illegal, Unregulated & Unreported (IUU) Fishing
behaviour, contributing to protecting the ocean environ-
ment, maintaining resource sustainability, and preventing
economic loss.

The rest of the paper is organized as follows. Section II
introduces the definition of TSC task and how we cast it to
a MIL problem. Section III describes the proposed method
in details. Section IV gives an overview of related works.
Section V presents the evaluation setting and results, and
Section VI concludes the paper.

II. TIME SERIES DATA CLASSIFICATION VIA MIL

This section presents the proposed MIL model for general
long time series data classification with our use case with the
AIS trajectory data.

A. MIL for Time series Data Classification

Time series dataset. We use D = {X,Y } to denote a dataset
containing |D| multivariate time-series samples. Each sample

data X contains M time variables, and each variable contains
T values that are arranged in the temporal order. Formally, X
is a M by T matrix: X ∈ RM×T , where each row denotes a
time variable over all T timestamps, and each column denotes
all time variables at one timestamp. For example, 4 variables
[Latitude, Longitude, Speed Over Ground (SOG), Course Over
Ground (COG)], can represent the information of a point in
a vessel’s trajectory. Correspondingly, the trajectory of one
vessel over 100 timestamps can be represented by a matrix
of size 4 × 100. The series length T may vary from sample
to sample in real-world cases. Our method can handle varied
series lengths, but we use a uniform T to avoid notation clutter.

Multiple instance learning. Unlike typical classification sce-
narios, where training samples are independent, training sam-
ples under MIL formulation exhibit temporal and/or spatial
dependencies and subsequently are arranged into bags. For
TSC problems, we treat each full sequence X as a bag and
use a sliding window to split a bag into multiple instances
(sub-sequences), denoted by x. The bag label Y is the entire
time sequence label, and the instance label y indicates whether
an instance corresponds to a shapelet or not. The relationship
between bag label and instance label can be formatted as

Y =

{
0, if

∑
n yn = 0,

1, otherwise. (1)

Eq. (1) implies that a positive bag ({X;Y = 1}) contains
at least one positive instance ({x;∃n ∈ [1, N ], s.t. yn = 1}),
and all instances are negative (yn = 0, n = 0, . . . , N ) if the
corresponding bag is negative (Y = 0).

We propose to first learn a classifier that projects the
instance feature to an instance prediction f : x −→ [0, 1].
Afterwards, we aggregate the instance-level prediction for bag-
level prediction, as Ŷ = Aggregate{ŷn}Nn=1. We assign each
instance a pseudo instance label ỹ for each instances, which
is inherited from their corresponding bag label, such that
we can build a objective function to optimize the instance
level classifier. Note that this MIL assumption reflects that
only a portion of sub-sequences is discriminate, which are the
positive instances. As indicated by eq. (1), this pseudo instance
label ỹ is not consistent with the true instance label when
positive, e.g., ỹ = 1 can be either a true positive (y = 1|ỹ = 1)
or a false positive (y = 0|ỹ = 1). To address this noisy label
issue, we proposed uncertainty-aware MIL framework.

III. UNCERTAINTY-AWARE SHAPELETS IDENTIFICATION
AND DATA FUSION

Our key idea is to train an AIS model with instances whose
pseudo labels ỹ are most likely to be true. Section III-A gives
an overview of our framework, and Section III-B and Sec-
tion III-C present two key building blocks of the framework.
When the DNN makes uncertain predictions (e.g., the AIS data
quality is low for some samples), we leverage another modality
(SAR). Section III-D demonstrates how we adaptively fuse the
two modalities and improve the classification performance.
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Figure 2: Overview of the framework. The feature encoder takes the time series data and outputs the feature for each instance.
Then, the BNN outputs the mean prediction and variance. The variance is used for computing the predictive confidence, which
yields an indicator for possibly positive instance.

A. Framework Overview

Figure 2 shows the overview of our AIS model. The
framework is composed of a feature encoder and a BNN
classification head. We first use a sliding window to segment
the entire time series into multiple non-overlap instances
during every iteration. Then, we use an encoder to extract
the temporal information of individual channels and the inter-
channel relationships for each instance. We use the architecture
from Tapnet [20] to build the encoder, which is composed of
a long short-term memory network (LSTM) and d a multi-
layer convolutional network (CNN). The encoder learns a
low-dimension feature for each instance. Next, the instance
features are fed to a BNN head, which outputs predictions
and predictive confidence for every instance. Finally, through
an attention mechanism, we compute the attention for each
instance and acquire the loss. The encoder and BNN are
trained in an end-to-end fashion.

B. Uncertainty Quantification

In this work, we employ BNNs [1] as they can be easily
extended to our classifier network, only double the number
of parameters to learn and provide accurate uncertainty esti-
mates without sacrificing the predictive performance. More
specifically, instead of treating the parameters of the final
classification head (w) as the point estimates, we consider
a distribution p(w|D) for the classification head parameters.
We then leverage variational inference to learn an optimal
variational distribution of the weight parameters that best ap-
proximates the true posterior. To this end, we want to train the
model such that the variational posterior distribution qθ(w|D)
is as close as possible to the true posterior p(w|D). This
objective is equivalent to solving the following optimization
problem:

θ∗ = arg min
θ
KL[qθ(w|D)||p(w|D)] (2)

= arg min
θ
KL[qθ(w|D)||p(w)]− Eq(w|θ)[log p(D|w)]

(3)

where KL(·||·) is the KL-divergence between the two distri-
butions. The optimization problem is analytically intractable.
To address the intractability, we approximate the loss function
using Monte-Carlo sampling as

F (D, θ) =

J∑
j=1

log q(wi|θ)− logP (wi)− logP (D|wi) (4)

Here, we draw J Monte-Carlo samples wj ∼ qθ(w|D)
from the variational posterior to approximate the loss. We
optimize this approximated loss and train the model to learn
the classifier head parameters. During the test phase, we
take multiple weight samples (say J samples) and make
a prediction for the same input using each weight sample.
We take the average of the J predictions to make a final
prediction, and a large variance of the predictions indicates
a high uncertainty prediction.

Formally, for a ith instance, xi, we have J predictions by
running multiple forward passes. The assembled prediction ȳi

and predictive confidence ĉ are given by

ȳi =
1

J

J∑
j=1

ŷi, ĉi =
(
1− Var({ŷij}Jj=1)

)k
, (5)

where k is the hyper-parameter controlling the gap between
the confident instances and less confident ones.

After acquiring the instance level prediction and confidence,
we can attain the bag-level prediction by aggregate the bag
level prediction and confidence by taking the mean of top
instances, i.e., instances with largest ȳ.

C. Uncertainty-Driven Objective Function

Confidence-based Attention. We segregate the instances into
three groups and assign them different attention values. As
ỹ = 0 always indicates a true negative instance, their attention
is assigned 1. For instances from the positive bag, part of their
pseudo labels is clean. We filter out the most noisy ones by



forcing their attention to 0. For the remaining instances, their
attention depends on both the prediction and confidence:

âi =

 ci × ŷi, if ci × ŷi ≥ β and ỹ = 1,
0, if ci × ŷi < β and ỹ = 1,
1 if ỹ = 0,

(6)

where β is the threshold that determines how many pseudo
positive samples should be included in the loss function, and
we set it as the median of a batch. As indicated by the attention
expression, for a pseudo positive instance, we want to focus
on those whose prediction that is confidently positive.

Total loss. Given a batch of training samples Dbatch, we train
our framework to minimize the following objective function,
which is weighted supervised loss over the instance level
prediction and its noisy label ỹ.

min
θ

1

|Dbatch|
∑

(x,ỹ)∈Dbatch

a((x, ỹ), θ)× Ls (fθ(x), ỹ)) , (7)

where a is the attention of each instance, Ls is the loss
function based on eq(4).

D. Uncertainty-Aware Multimodal Fusion

We incorporate uncertainty awareness in our MIL model
that can more accurately detect shapelets (i.e., true positive
instances), that eventually makes the interpretable ship type
prediction (i.e., bag level prediction). The MIL model may
make less confident predictions if a trajectory is difficult
to differentiate. To address this, we propose to fuse the
results with other available data modalities. SAR imagery
is considered in our work to demonstrate the effectiveness
of data fusion. The key assumption is that when multiple
data modalities are available, each modality may provide
complementary information that may not be available from
a single modality alone.

Feature-level fusion can automatically learn the weights
of two modalities but requires the matched training data.
However, some data modalities may be limited in their avail-
abilities. We train two independent models from AIS data
and SAR images to fully leverage all training instances from
two modalities. This is first done separately and is followed
by prediction-level fusion. We use a ResNet-18 model for
image feature extraction, stacked with a BNN head. The SAR
classification network is also uncertainty-aware as the AIS
side. For a vessel defined by two modalities, XAIS, XSAR,
after acquiring the two models’ prediction, the classical way
of integrating the predictions is through weighted sum:

Ŷi = λ× Ŷ AIS
i + (1− λ)× Ŷ SAR

i , (8)

where Ŷ AIS is the bag level prediction from the AIS model,
Ŷ SAR is the prediction of SAR model, λ is a hyper-parameter
to balance these two predictions. Ideally, λ should be set
to favour the model that has overall better performance.
However, this requires high-quality validation set to fine-tune
the parameter. Another limitation is that the same λ is applied

to different vessels that lack the flexibility to handle prediction
variance over different samples.

Since both the models are Bayesian and uncertainty-aware,
we propose to conduct uncertainty-aware fusion to address
the limitations outlined above. In particular, λ is adjusted
automatically to the prediction confidence of each model:

λ(XSAR
i , XAIS

i ) =
C(XAIS

i )

C(XSAR
i ) + C(XSAR

i )
, (9)

where CAIS, CSAR denotes the prediction confidence from the
AIS model and SAR model, respectively.

IV. RELATED WORKS

Time series classification problem has been studied for a
long time, and the algorithms have developed from traditional
shapelets-based [6], [10], [15], [17], [19] to recently DNNs
based. Ye and Keogh [19] first proposed the concept of
shapelet. They also developed an efficient algorithm to find
the shapelets, which is achieved by employing three novel
components: sub-sequence distance early abandon, admissible
entropy pruning, and instance reordering. Karlsson et al. [10]
introduced the generalized random shapelet forest algorithm,
which uses shapelets and tree-based ensembling for univari-
ate and multivariate time series classification. The algorithm
uses random instances and shapelets to generate a set of
shapelet-based decision trees. Wistuba et al. [17] accelerate
the algorithm efficiently by selecting representative patterns
from multivariate time series for class discrimination. Schäfer
et al. [15] extract and filter multivariate features from MTS by
encoding context information into each feature, resulting in a
small yet very discriminative and useful feature set for MTS
classification.

Recently, some works [2], [4], [9], [20], [20] have started
using DNNs because of their high generalization and capa-
bility of dealing with the large volume of data. Tapnet [20]
learns the prototype of each class and makes predictions
based on the distance between the sample features and the
prototype. This approach learns the weights of each training
sample, resulting in a representative prototype. Multivariate
LSTM-FCNs [9] uses an LSTM to encode the temporal
relation in time series data and stacks full connected layers
for classification. MiniROCKET [3] is an extended version
of ROCKET [2], which uses random convolutional kernels to
transform a time series into a feature vector. We point more
DNNs based methods to the review paper [4].

In this work, we propose to adapt the shapelets idea but
identify them from MIL perspective. Moreover, we use pow-
erful DNNs to learn better features from a large volume of
data, achieving a superior classification performance.

V. EVALUATION AND RESULTS

We conduct experiments on the real-world AIS and SAR
images to validate our proposed framework with respect to
the following four research questions:
• Q1: Is our TSC model better than the previous methods

in terms of ship type classification using the trajectory?



This is corresponding to the bag level classification
performance.

• Q2: Is the model confidence an effective indicator of
correct prediction?

• Q3: Can the proposed model accurately identify the
shapelets?

• Q4: Is our uncertainty fusion better than the classical pre-
diction fusion method. We do both quantitative analysis
and qualitative analysis to answer these questions.

A. Experimental Design
Datasets. We consider two types of data in our experiments,
including AIS and SAR images, where AIS data is used as
the primary data modality given its availability.
• AIS Data: AIS is an automated tracking system de-

signed to provide information regarding the ship and its
movements to tracking authorities and other vessels. The
selected AIS data is provided by the U.S. Coast Guard
and is a recompilation of millions of AIS contacts off the
coast of North America from 01/01/2020 to 01/31/2020
(approximately 8.1 GB). We use the Maritime Mobile
Service Identity (MMSI) to identify the vessel and extract
every vessel’s trajectory. The data contains ship type
values, which allow us to perform a set of ship type
classification tasks. After removing some vessels (i.e.,
those with many missing values or trajectories less than
100 timestamps.), there are a total of 11, 054 vessels that
contain 2, 220 cargo, 1, 089 tanker, 542 fishing, and other
type vessels. We use 7, 737 vessels for training and the
rest for testing.

• SAR Imagery: We use the OpenSARShip dataset [8],
which consists of Synthetic Aperture Radar (SAR) im-
ages of marine vessels collected from Sentinel-1 Satellite
and the corresponding AIS information. There is a total
of 5, 673 SAR image instances. This work considers the
coarse ship category and trains the model for cargo vs
non-cargo classification. We select all the SAR instances
with matching MMSI values to make the test set.

Table I: The bag-level classification performance comparison
on three tasks (%).

F-Score AUC-ROC AP
Fishing vs Non-fishing

Uncertainty-Aware MIL(Ours) 40.00 84.99 51.29
Tapnet 23.49 80.57 20.28
LSTM-FCNs 40.82 90.18 45.59
MiniRocket 13.95 68.70 63.40

Cargo vs Non-cargo
Uncertainty-Aware MIL(Ours) 50.29 87.08 60.67
Tapnet 32.53 74.56 22.82
LSTM-FCNs 34.05 80.81 64.33
MiniRocket 67.73 84.00 71.10

Tanker vs Non-tanker
Uncertainty-Aware MIL(Ours) 27.26 82.52 25.08
Tapnet 19.05 58.33 14.08
LSTM-FCNs 13.81 75.19 24.76
MiniRocket 54.67 87.30 63.40

Evaluation Metrics. The AIS data is highly imbalanced as
the positive instances/bags only occupy a small fraction of

Figure 3: Distinguishing between correctly predicted and
wrongly predicted labels based on predictive confidence on
three vessel type classification tasks.

the whole dataset. Moreover, in many cases, positive samples
are of most interest in the classification task. Consequently,
we the F-score, Average Precision (AP) and Area Under the
Curve Receiver Operating Characteristic (AUC-ROC) as the
evaluation metrics. The results are reported in Table I.

Experiment setup. The trajectory of each vessel is described
by four attributes: latitude, longitude, SOG, and COG. We
convert the SOG and COG to vertical speed and horizontal
speed. We set the length of the sliding window as 100,
which allows DNNs to recognize each instance as it contains
sufficient time step, as not exceed the length of a single
shiplet. We use the ship type as the bag label. For example, in
Fishing vs Non-Fishing, a fishing vessel trajectory is regarded
as a positive bag, and all other trajectories are negative bags.
Similar treatments are applied to other types of classification
tasks. We sample 200 negative samples and 400 positive
instances to form a batch, avoiding overfit to negative class
as positive instances are outnumbered by negative ones. For
baseline implementation, We set the maximum length as 100
because their architectures only allow a fixed temporal length.
For Tapnet [20], we use 1000 training trajectories during
implementation because it does not allow batch mode training.
B. Experimental Results

Ship type classification. We evaluate the classification per-
formance with respect to three representative ship types: I)
Fishing vs non-fishing vessels, II) Cargo vs non-cargo vessels,
and III) Tanker vs non-tanker vessels. Recognizing these types
of ships plays a vital role in the daily affairs of vessel
management, monitoring, and scheduling. For example, fishing
ship identification can detect IUU fishing activities, and tanker
and cargo predictions help secure overseas transportation. We
compare our method with Tapnet [20], Multivariate LSTM-
FCNs [9], and MiniROCKET [3]. Details about the baselinees
can be found in Section IV.

The result in Table I shows that our approach achieves
consistent and overall the best performance compared to other
methods. Among these four methods, TapNet [20] achieves
relatively low AUC and low AP score, which might be due to
using a subset of training data. In detecting Tanker or Fishing,
Multivariate LSTM-FCNs [9] and MiniROCKET [3] archive



Figure 4: Histogram of weight λ of all matched samples

Figure 5: Recall of two fusion strategies (blue line and red
lines indicate the baseline and uncertainty-aware fusion).

better performance than our method by a small margin, but
their performance is inconsistent and drops a lot in other tasks.

Uncertainty estimation. We evaluate the relation between
predictive confidence and prediction accuracy. A prediction
with low uncertainty (high confidence) is expected to be
correct than high uncertainty (low confidence). To assess how
strong this trend is, we evaluate the accuracy of prediction
at different confidence levels. We find a set of percentile of
the confidence and set these percentages as thresholds, and
then we compute the accuracy of predictions whose confidence
is above the threshold. Figure 3 shows the relation between
threshold and accuracy on three ship type classification tasks.
The results consistently indicate that BNN confidence is a
reliable indicator of correct predictions.

Shapelet identification. We evaluate the impact of the atten-
tion mechanism on detecting shapelets. Since the comparison
baselines do not leverage the MIL perspective, they can only
perform whole trajectory classification. Thus, we focus on
investigating the effect of removing the attention mechanism
from the proposed model. We use the Fishing vs Non-fishing
classification task to identify the most discriminate instances
for fishing vessel trajectory, which are expected to have the
navigation status as “Engaged in Fishing.” The result shows
that the attention mechanism effectively improves the AUC
score from 84.11% to 85.67%.

Data fusion. We evaluate the impact of different modalities
on the model prediction. Figure 5 shows that the naive

combination of two modalities is ineffective as it results in
a marginal performance gain. On the contrary, the proposed
uncertainty aware data fusion reaches a good balance between
modalities and significantly improves model performance.

We evaluate the model performance at different degrees
of data fusion. Unlike the previous evaluation, the result of
data fusion only makes sense for test cases that contain both
AIS and SAR information. So we first construct the test
dataset by traversing all instances with matching identities
(MMSI) from AIS and SAR datasets. Figure 5 demonstrates
the effectiveness of the uncertainty guided data fusion. The
blue curve shows that the tendency of the model recall (y-
axis) is affected by fusion coefficient, λ, where λ = 0 implies
the single modality(no fusion) of SAR and the vertical line at
λ = 0.5 implies the equal weight data fusion. Note that the
recall curve is sub-optimal since all data instances are forced to
adopt the same λ for data fusion. The proposed model is more
flexible by adapting different λs to different data instances.
The red horizontal line indicates the recall of the proposed
model (0.79) achieved with the averaged λ = 0.4, which is
significantly better than equal weight data fusion (0.68). The
entire blue curve is under our adaptive data fusion, which
outperforms all possible fusion strategies with λ fixed to all
data instances.

In Figure 4, we further show how the proposed approach
assigns λ values based on data distribution. The result shows
that the λ values are dispersed to different ranges in order to
minimize the learning objective. Customizing λ for each data
instance is the key to data fusion since it allows the model
to down weight or switches off the irrelevant or noisy signals
from a certain modality according to some prior knowledge.
In this work, such prior knowledge is dynamically updated by
previously learning experiences and instantiated in uncertainty.

VI. CONCLUSION

As the number of data samples, the size of features, and the
temporal length in the time series data continue to increase in
the big data era, novel challenges arise for large-scale time
series classification that makes conventional approaches less
effective. In this paper, we tackle the TSC problem from
the multiple instance learning perspective by developing a
novel uncertainty-aware model to ensure robust model training
under noise. In particular, the predicted uncertainty serves as
an effective indicator to identify the most probable positive
instances, which can lead to improved classification accuracy.
When other data modalities are available, uncertainty-aware
data fusion can be performed to boost the overall prediction
performance further. Extensive experiments conducted on real-
world AIS data and the fusion with the SAR images demon-
strate the effectiveness of the proposed approach.
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