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ABSTRACT

With increased awareness comes unprecedented expectations. We live in a digital,

cloud era wherein the underlying information architectures are expected to be elastic, se-

cure, resilient, and handle petabyte scaling. The expectation of epic proportions from the

next generation of the data frameworks is to not only do all of the above but also build it

on a foundation of trust and explainability across multi-organization business networks.

From cloud providers to automobile industries or even vaccine manufacturers, a typical

supply chain consists of complex networks of suppliers, manufacturers, distributors, re-

tailers, auditors, and consumers. With cloud providers, even though there is an increased

focus on self-service or cloud provider-managed SaaS (Software-as-a-service), a portion

of sales for an enterprise customer occurs the old-fashioned way with the sales depart-

ment drawing up a purchase order for the procurement process. In many cases, there

could be several disjoint, not fully digitized strings of suppliers behind the scenes. This
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leaves the buyer unbeknownst and unaware of the state of their order in real-time as it

is challenging to build machine learning and AI-based systems for order fulfillment, time

and cost predictive models, share data transparently and issue remediations when multiple

organizations are involved to fulfill an order.

In this dissertation, motivated by challenges in the industry, we propose a decen-

tralized distributed system that can be considered as a building block for supply chain

infrastructures, regardless of industry. The design goal of our system is to streamline

complex non-repudiated transaction workflows by efficient handling of enterprise-scale

purchase orders. We present transparent alternatives in real-time to customers based on

model inference to respond to prediction requests. To further support this, we build

a recommendation system model (Matrix Factorization) that is trained using Federated

Learning on an Ethereum blockchain network. We leverage smart contracts that allow

decentralized serverless aggregation to update localized items vectors. Furthermore, we

utilize Homomorphic Encryption (HE) to allow sharing the encrypted gradients over the

network while maintaining their privacy. Based on our results, we argue that training a

model over a serverless Blockchain network using smart contracts will provide the same

accuracy as in a centralized model while maintaining our serverless model privacy and re-

ducing the overhead communication to a central server. Finally, we assert such a system

that provides transparency, audit-ready and deep insights into supply chain operations for

enterprise cloud customers resulting in cost savings and higher Quality of Service (QoS).
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Blockchain

Access to the Internet has now become an entitlement in most countries and a

critical part of our daily lives. By leveraging innovations in the Internet of Things (IoT)

and scalable data systems [50, 51], a plethora of new business applications can emerge in

the coming years. These applications can impact domains such as government, finance,

trade, commerce, education, and online engagement. Technology experts in the field of

distributed computing expect blockchain technology to make waves similar to the ones

we saw at the advent of the Internet. In simple terms, a blockchain is a decentralized,

distributed system wherein copies of an immutable and secure time-stamped ledger are

held by multiple participating parties. With data being shared and accessed by all par-

ticipating entities, it lends itself to being more trustworthy and unfettered, as there are

no brokers in the middle or need for a central authority. All the top technology players

have been embracing and nurturing blockchain technology and have been very careful

not to marginalize it as part of the larger infrastructure. With the promise of blockchains

in any reliable and auditable transaction application, there has been a lot of research and

development around “smart contracts” whose use makes distributed computing possible.

Essentially, a smart contract is a computer code that runs on top of a blockchain and

allows parties to securely execute transactions based on certain agreements.
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Gartner predicts that by using blockchains and smart contracts, companies will

increase overall data quality by 50% by 2023. Furthermore, they expect transparency,

granularity, and quality in decision making (with analytic systems) will increase tremen-

dously as data availability will also increase by 30%. As blockchain technology has

entrenched over the past few years, there seem to be a renaissance in business-to-business

(B2B) scenarios. Entirely new business models have emerged forging ahead distributed

ledger technologies (DLT) and data-driven digital networks. Blockchains solve several

business problems that exist today in DLTs. Examples include: (a) How does one identify

and inventory distributed datasets? (b) What about data governance to fulfill regulatory

compliance to reduce operational risks? This is where smart contracts are useful. A smart

contract facilitates transactions between interested parties in the network when specific

events are triggered. Smart contracts add tremendous power to a blockchain by making it

transaction-worthy and thereby, enabling its widespread adoption.

Blockchain technology can also be used to secure smart cities. In recent decades,

the world has experienced unprecedented urban growth due to population increase, lim-

ited resources, and climate changes. Research shows that more people live in cities (54%)

compared to people who live in rural areas (46%), and this percentage will increase up to

(66%) by 2050. To cope with the huge increase in population, smart cities are aiming to

implement and utilize modern technology. So far, the advancements of IoT and wireless

have made it easy to interconnect remote devices. Such devices were distributed publicly

in different locations, and for this reason, such devices should be able to block security at-

tacks. There is a strong case to be made to use blockchain networks as a solution for such
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systems because they contain a ledger that records all the transactions and operations and

is secure since the attacker has to compromise 51% of the network to enforce the hashing

power of the target network. Additionally, by utilizing smart contracts, we can manage

such transactions without an intermediary [13].

1.2 Blockchain as service

Blockchain technology is a distributed database of records or shared public/pri-

vate ledgers with smart contracts of all digital events that have been executed and shared

among blockchain participants [11, 69]. Blockchain has gained recent popularity in sup-

ply chains due to several network-organic features, the fundamental ones being Prove-

nance, Consensus, Immutability and Finality. By providing cryptographic proof of a set

of transactions, blockchain gets us one step closer to building trust in a system providing

secure audit trails. Typically complex order fulfillments are facilitated by businesses par-

ticipating in a heterogeneous network of geographically dispersed suppliers, customers,

regulators, lending institutions, and other supporting entities. This has the potential for

disparities to quickly escalate [33] as evidenced in recent COVID-19 supplies and vaccine

distribution. It exposed fragility in our vaccine supply chain with 72% of active ingredi-

ents manufactured outside the United States [15]. The enterprise cloud supply chain has

similar challenges. The cost of procuring a Hybrid Cloud (a system consisting of private

and public cloud services) can be in the order of several million dollars. Hence, suppliers

need to be incentivized to invest in the overall health of the supply chain network in ad-

dition to just optimizing locally. Solving such a gamut of challenges are pivotal in cloud
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resource procurement and deployment supply chain orchestration [15].

Large enterprises strategically deploy a multi-cloud solution to build cloud-native

containers [17,68]. This means the entire process of ordering, procuring, deploying, set up

cloud resources across multiple cloud vendors and platforms based on their information

architecture needs is a combinatorial explosion problem at the very least as shown in

Figure 1.

Figure 1: Hybrid cloud and multi-cloud resource procurement supply chain.

In addition to multi-cloud, hybrid deployments are prevalent [70] as customers
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may be in various stages in their cloud journey. Some critical applications may never

move to public clouds but will require cloud packaged software to run on their private

in-house cloud environments. This is also observed as part of our practical experience

dealing with such scenarios.

1.3 Blockchain and Machine Learning

Blockchain with its shared ledger represents a single system of cryptographic

truth, tamper-resistant audit logs, and algorithmic trust, all of which provide the foun-

dation that AI-based complex supply chains need. Blockchain has established itself as

a disruptive technology enabling organizations to reinvent, cross borders and collabo-

rate with their business network in previously unimaginable ways. Proof helps engender

trust, and blockchains provide irrefutable cryptographic proof of transactions for secure

audit trails and thereby, promote trust in the overall system [7]. Figure 2 illustrates the

use of Merkle trees to encode blockchain data to be more secure as every parent node

is labeled with the cryptographic hash of its child nodes. Smart contracts (autonomous

contracts or chain code) are a core fabric component that enables automation across a

multi-organization trusted network and its algorithms define the life cycle of one or more

business objects.

Multi-organization enterprise customers looking to modernize their automation

stack and gravitating toward a consume anywhere architecture with a hybrid cloud frame-

work to address the dynamic nature of their businesses and in doing so, they also do want

to not worry about accountability, privacy, scalability, and finality of transactions. Recent
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Figure 2: A Hash tree or Merkle tree combined with hash chain promotes efficient search

within a block - O(log N)

advances in enterprise blockchain have not only entrenched these enterprise attributes but

also proved the potential applicability of blockchain is far greater than just the ubiqui-

tous cryptocurrency. It encompasses a vast range of industries including building a very

robust supply chain where it is important to understand data provenance, how goods are

sourced, how ethical is the process, how easy is to log, track and prove exceptions and

thereby shorten reconciliation cycles. It is imperative for such a supply chain to have the

system be fault-tolerant. With blockchain fault-tolerant consensus algorithms, the net-

work continues to operate even in the presence of malicious or careless participants. Just

like any established network, they need to be governed member access permissions that

are regulated based on business needs i.e., permissioned does not mean private.

1.3.1 Why Federated Learning?

Businesses continue to burn the midnight oil to protect and preserve security and

privacy [24, 40]. However, the effectiveness of AI depends on access to all the data we

generate. Motivated by growing private data concerns, as well as the explosion in comput-

ing capabilities that end-users possess, a new machine learning paradigm called Federated

Learning is gaining popularity. Federated Learning performs Machine Learning by first
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training a model at each client-side privately and confidentially and subsequently collects

and averages models from all participating clients to generate a more generalized model

Figure 3 [23, 47].

There are multiple hospitals represented, with each hospital having a different

number of x-ray images, perhaps representing different demographics (general vs pedi-

atric vs geriatrics vs cancer specialties, etc.,). The hospital in the bottom right corner has

only 3 x-ray images (in real life there could be a few hundred or thousands) but they may

not be enough to train a model. For example, if a hospital wants to train a model to predict

2 types of cancers, but most of the cancer x-ray images they have for one type of cancer,

then the model will not learn how to predict the second type of cancer accurately. There-

fore, these 4 hospitals in the diagram collaborate together in order to train a powerful

model that has been trained on different types of cancers. So each hospital provides the

x-ray images they have. The problem is that they are not allowed to share these images

with each other (privacy concerns). The solution is to add a trusted central server (which

does not have access to the images either). This server’s job is to create a model and send

it to all the collaborated hospitals. Each hospital will then take the model and train it on

their own dataset then return the model to the server. The central server will then average

all of these models to create a global model. This global model is a powerful model that

has been trained on all of the hospital’s images while maintaining each hospital’s privacy.

Since none of the clients share their confidential data, it solves multi-organization

data privacy challenges [31]. Healthcare and user’s edge devices are two of the main cate-

gories that use Federated Learning to train models. However, when deployed to solutions
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Figure 3: Federated Learning implemented between three hospitals

across multi-organizations current Federated Learning architecture has a few challenges

such as excessive communications, scalability, and data leakage.

1.4 Key Contributions and Novelty

In our work, we propose a decentralized blockchain network and smart contracts

to allow transparent, audit-ready, immutable, and trust-based collaboration between mul-

tiple cloud providers and vendors as part of fulfilling a complex customer purchase order.

Our target was to improve the enterprise customer’s Quality of Service (QoS) attributes

when deploying and maintaining a multi-cloud solution. We further intend to delight their

experience by providing fabric to share accurate supply chain insights from multiple par-

ties by implementing a decentralized (instead of centralized) federated learning matrix

factorization model using Ethereum blockchain.

The evolution of novelty is shown in Figure 4 and key contributions of our work
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Figure 4: Evolution of Key FedSmarteum Contributions.

are as follows:

• A decentralized trusted architecture to overcome the centralized federated learn-

ing single server challenges such as the single point of failure and the excessive

communications between a single server and the rest of the nodes.

• Smart contracts to orchestrate enterprise customer purchases of multi-cloud assets

deployed on a permissioned blockchain network. The novelty of the solution also

lies in using smart contracts as the control plane to integrate the Federated Learning

algorithm to recommend cloud provider resources based on (similar) customers

usage patterns.

• Decentralized architecture protects users from a trusted but curious server. The

worker nodes carry out the updates using the encrypted data and gradients.
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• Federated learning implementation on blockchain network allows collaboration be-

tween several parties to generate a global model even when if there is no trust

between the included parties.

• Our system can be applied publicly to provide customers and third parties with

insights, future predictions, and recommendations while training the model on the

localized data without violating their privacy.

• Decentralized recommendation system that uses worker nodes on the blockchain

network to train and update items vectors instead of a central server.

• Distributed IPFS storage hash-based cost optimization (which also reduces gas fees)

for the entities. We used IPFS to store, send, and receive user’s HE gradients over

the blockchain (Ethereum) network.
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CHAPTER 2

BACKGROUND

2.1 Blockchain

Blockchain by itself does not entirely encompass the space of what is called dis-

tributed ledger technologies which record and maintain anything of value. It is interesting

to note that there are actually other ways of achieving this distributed consensus idea

that is done slightly differently. In blockchain, there are mainly two types of blockchain

networks, permissioned and permission-less networks [4]. In general, the difference

between these two types is obvious from their names. The permission-less blockchain

is the network that requires no permissions to participate in the chain which is the main

type that was outlined by Satoshi Nakamoto. All general blockchain networks are con-

sidered to be permission-less chains which is another way to say public. Anyone can

join the permission-less blockchain. However, it tends to be a bit slower than the permis-

sioned ones. All transactions stored on permission-less networks are usually validated by

the public without any third party. On the other hand, permissioned blockchains can be

considered private blockchains as well. Joining a permission blockchain may require the

permission of the owner of the chain. Moreover, validating the stored data may also be

done by the owner and the responsible team. Permission and permission-less blockchain

share several similarities [66] such as:

• Both permission and permission-less blockchains are immutable which means both
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of the networks will not allow modifying or altering the stored data without having

sufficient power over the network.

• Both are distributed ledgers which means having different versions of the same data

that is stored in different places and connected through the same network.

• Both networks use a consensus mechanism which means multiple versions of the

ledger to agree on what all should look like.

While the permissioned blockchains can have access control, high customizability,

and better scalability, it may also have some drawbacks such as the security that depends

on its members and it is less transparent from the permission-less blockchains.

2.2 Consensus in Blockchain Networks

2.2.1 Consensus Algorithms

Blockchains are known for their immutability and reliability. In blockchain net-

works, there is no central system of authorization, rather it is a decentralized network

where all the peers in the network agree to validate the state of the distributed ledger. This

type of verification where all the peers agree on the same operation can be done with the

help of consensus protocol which are part of blockchain networks. In general, consensus

algorithms help in building trust and reliability between the peers within a network. In

particular, these consensus algorithms validate each block before they get added to the

network. Each block has to be the one and only version of the block that has been agreed

upon by all the peers [48].
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Consensus algorithms work in a way that allows each node in the network to

have the same priority among all the other nodes. In other words, consensus algorithms

maintain some agreements and collaboration between all the peers to maintain the peers’

rights in the network. A list of the most common consensus algorithms:

• Proof of Work (POW) relies on selecting a miner for the generation of the next

block. The idea is to solve mathematical questions and give out the solution. Such

questions and puzzles require a lot of computational power. Therefore, the node that

solves the puzzle first gets to mine the next block. Bitcoin is an example network

that uses POW.

• Proof of Stake (POS) Ethereum uses POS as a consensus algorithm instead of POW.

In POS, the investment happens in the coins rather than the computational power.

The validators invest by locking up their coins as a stake. Then validators start

betting on the blocks that can be added to the network and the reward comes based

on their performance.

• Proof of Capacity (POC) relies on the validators investing in their hard disk drive

rather than investing in the computational power. The more space a validator has,

the better chance they get for being selected to mine the next block.

• Proof of Elapsed Time is a consensus algorithm that was proposed by Intel where

the miners will be randomly chosen based on random waiting time. PoET is similar

to POW wherein both miners have to solve a hash problem, but in PoET it is done

with significantly lower energy consumption.
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There are many other consensus algorithms such as Proof of Burn (POB), Proof of

Importance (POI), Delegated Proof of Stake (DPoS), Practical Byzantine Fault Tolerance

(PBFT), etc., that are used by various networks to achieve specific objectives outlined by

the consensus algorithms.

2.2.2 Consensus in Permissioned and Permission-less Networks

The previous section explained how the blockchain network allows members to

participate in the verification process to verify blocks. However, this process in permis-

sioned networks is a little bit different than permission-less networks. In permission-less

networks (the public networks), anyone can join, participate in the consensus process,

and mine for the next block. Bitcoin and Ethereum are two of the biggest permission-less

network examples.

Permission-less networks, as discussed earlier, provide better decentralization than

permissoned networks. Therefore, all the peers in the network have to agree upon the ver-

ification and the trust between each other. However, permissioned networks are different.

Permissioned and permission-less share the same characteristics such as immutability and

decentralization, but permissioned networks are owned by private sectors that may have

different type of consensus. Generally, in permissioned networks, the owner verifies and

decides who can join the network. Furthermore, the owner can assign a few members to

help in verifying and managing the consensus. NXXTECH is an example of permissioned

networks that use Proof of Authority (POA) as a consensus protocol [29].
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2.3 Hyperledger

2.3.1 Hyperledger

Hyperledger is a hub for blockchain development. Official hyperledger defines it

as Hyperledger is an open-source collaborative effort created to advance cross-industry

blockchain technologies. It is a global collaboration, hosted by The Linux Foundation,

including leaders in finance, banking, Internet of Things, supply chains, manufacturing,

and Technology [1].

The Hyperledger hub or platform is mainly for blockchain technology. Here is a

list of the most common Hyperledger projects:

• Hyperledger Fabric is an IBM project that was designed for the purpose of large-

scale blockchain applications with some flexibility in permissions. Hyperledger

IBM is provided as a service that is easy to start and implement [34, 36–38].

• Hyperledger Iroha is another project that was mainly designed to keep things simple

and easy to incorporate into infrastructure, IoT devices, and other applications.

• Hyperledger Sawtooth is a project developed by Intel that uses a consensus al-

gorithm called Proof of Elapsed Time (PoeT). Additionally, there are many other

Hyperledgers such as Hyperledger Composer, Explorer, Burrow, Cello, etc.

Libra [43] is a permissioned blockchain digital currency that was proposed by

Facebook. Currently, the currency is not fully released, only some of the experimental

code was released. Libra, the decentralized blockchain database was designed mainly
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for the volatility in cryptocurrency with the ability to serve as an exchange medium for

billions of people around the world. Libra blockchain was meant to create a huge infras-

tructure to foster innovation and increase access to financial services. Libra Core was

implemented to validate Libra. Since Libra is a permissioned blockchain, it will not rely

on cryptocurrency mining, rather only authorized members from Libra are allowed to

validate and process the transactions.

2.3.2 Blockchain-as-a-Service (BaaS) Offering

BaaS offering started recently due to the increasing adoption of blockchains in

the marketplace. BaaS offering is about third-party businesses installing blockchain net-

works technologies to help in developing and maintaining blockchain networks on cloud

service providers. BaaS has grown really fast recently and gained a lot of attention since

it resolves most of the complex work around the network topology and makes it easier

and faster for end-users to start building the DApps without focusing on the underly-

ing infrastructure [20]. BaaS resolves many of the issues related to transparency, effi-

ciency, and cost. Most companies choose to use BaaS to meet user requirements in a

faster way. Moreover, using a cloud-based solution such as Blockchain-as-a-Service by

governments and individual users will further limit the need to manage their data and

networks and ensure all security controls are in place [46]. Currently, there are many

companies that offer such services such as DRAGONCHAIN, BLOQ, FACTOM, SYM-

BIONT, BLOCKSTREAM, etc. However, since blockchain is a growing and never-ending

network, it cannot be offered as Blockchain-as-a-Product (BaaP). Therefore, most of the
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BaaS providers offer to make it easier for users, business owners, and companies to start

using the database directly by offering different services [73] such as:

• Installing the infrastructure to simplify writing to the database.

• Installing traceable chain solutions for auditing.

• Decentralization for identities for single sign-on.

2.3.3 Bitcoin

The idea of Bitcoin as digital currency is also not a new idea. Satoshi Nakamoto

proposed a more reliable decentralized architecture and reignited the space [53]. From a

technical perspective, we can think about the Bitcoin ledger as a State Transition Func-

tion where the input is a state and a transaction and the output is another state. Generally,

in the banking system, the input state is the current balance and the transaction is sending

some amount of money ($X) from party A (Alice) to party B (Bob). When this transaction

happens, the state function reduces ($X) from Alice and adds the same amount to Bob.

However, it also checks if Alice has ($X) even before the transaction takes place. If Alice

does not then the state returns an error. This can be easily expressed as in Algorithm 1.

In Bitcoin, the state is the collection of coins that a user has before spending them.

2.3.4 Ethereum

Ethereum is one of the cryptocurrencies platforms that provides a global comput-

ing platform which is known as Ethereum Virtual Machine (EVM) [12]. Programmers
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Algorithm 1 Bitcoin Transaction
1: function TRANSFER(S,R,A)

2: for Each r in R do

3: if sender is not S then

4: return Error

5: end if

6: if {Signatures} does not match {Signaturer} then

7: return Error

8: end if

9: if {Alicebalance} < A then

10: return Error

11: end if

12: end for

13: return Successfully sent for all recipients

14: end function
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use different languages in order to write JavaScript-like code such as Solidity which is

one of the most common languages used for Ethereum and smart contracts. Smart con-

tracts include different services such the computational power, online storage, network

bandwidth, etc. Some current proposals are targeting the interaction in the physical world

transactions as well. This is another level of smart contracts that may include smart man-

agement and ownership.

2.3.5 Corda

Corda is a permissioned decentralized ledger framework that uses the pluggable

method of consensus. Corda is the only open-source blockchain/distributed ledger plat-

form built for business [19]. Corda enables businesses to transact directly and in strict

privacy using smart contracts, reducing transaction and record-keeping costs and stream-

lining business operations. Corda is partially decentralized and specifically designed for

financial applications [64].

2.3.6 Iota

Iota is a distributed ledger that uses Directed Acyclic Graph (DAG) instead of a

blockchain. This protocol is known as Tangle. Iota was mainly designed for IoT appli-

cations. In fact, Iota is the first cryptocurrency that was designed for IoT applications

purposes. It was designed in a way to minimize the network overhead and the transaction

time. Iota does not have a transaction fee and it uses cumulative weight as a reliability

indicator [64].
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2.3.7 Developer Tools and environments

Blockchains and smart contracts have gained a lot of attention in the last few years

due to their decentralized architecture. These applications have been mushrooming in

many application areas. In this section, we discuss popular tools, environments, platforms

[3] and programming languages [4] used to build smart contracts in a blockchain network.

a) Platform and Tools

• Ethereum: Vitalik Buterin released the Ethereum whitepaper in 2013. Since then,

Ethereum has grown and popular very fast. Vitalik’s vision was to allow devel-

opers to code their own decentralized DApps on blockchain and Ethereum is the

supercomputer that allows renting out the computational power, gas, and other re-

sources. Ethereum started with the consensus algorithms Proof-of-Work (POW)

following Nakamoto’s mechanism. However, Ethereum plans to move to Proof-of-

Stake (POS) where all the mining process is virtual and the miner’s hash is propor-

tional to their stake [49].

• EOS: EOS is originated from the software EOSIO that was built by Block.one.

Ethereum is the first platform for smart contracts. However, it is very slow manag-

ing 15-20 contracts/second. Therefore, there was a need for another platform that

is faster and supports more modern DApps and that is the reason behind EOS. EOS

aims to support large-scale DApps by using decentralized operating systems rather

than decentralized supercomputers like Ethereum. EOS users own resources in ex-

change for their stake share. So, users who own 0.001% of the stake, own 0.001%
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of the computational power as well.

• Cardano: Cardano was found by one of the Ethereum co-founds, Charles Hoskin-

son. Cardano is somehow unique since it was originated from academic research

where the team wanted to set some principles such as:

– The Separation of accounting and computation to different layers.

– The implementation of core components should be in highly modular code.

– A competition between a small group of researchers and developers in peer-

reviewed research.

– The development of a funding mechanism for future use.

• RootStock (RSK): The RSK platform is connected to Bitcoin blockchain through

sidechain technology. The purpose of RSK was to be a competitor with Ethereum

but using Bitcoin as the underlying cryptocurrency. RSK started with a smart idea

which is to provide Bitcoin with smart contract functionalities.

b) Programming Languages

• Solidity was originally developed by Gavin Wood, Christian Reitwiessner, Yoichi

Hirai, and several of Ethereum’s core contributors. Solidity is relatively new and

it is an object-oriented Turing-complete programming language that has around

200,000 developers.

• Golang is a programming language with C-like syntax. Most of the code that is

used in hyperledger Fabric for smart contracts was developed using Golang [25].
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• JavaScript is a dynamic object-oriented programming language. Before JS, web-

sites used to be static. JS plays a very important role in web technologies.

• C++ is a general-purpose programming language. It may not be the easiest language

to code with, but it is one of the most reliable and used languages and that is due to

its strength and ability to scale.

• Java is one of the most popular programming languages. Java has a very similar

syntax to C++. It is reliable, popular, and has a lot of support online.

• SQL was developed by IBM to communicate with databases by sorting, querying,

and interacting with data.

2.4 Application of Blockchain

2.4.1 Popular Use Cases of Blockchain

While it appears the industry has now a plethora of use-cases that are, in retrospect

almost all of them are tailor-made for blockchain technology. Here are some broad cate-

gories that give us a perspective on the far-reaching impact of blockchain. Cryptocurrency

was the first and most widely known but it did not take long for the industry to quickly

realize that the underlying technology was applicable to multiple market sectors. Cryp-

tocurrencies allow interested parties to transact digital currency with each other but that

can be extended beyond just peer-to-peer transactions. Just imagine the power of busi-

nesses transacting across borders with the same ease with blockchain technology. Supply

chain is being tapped in a huge way to reduce the churn in the plethora of transactions
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that must occur to broker a supply chain transaction. Even having the ability to establish

the validity of the vendor or supplier who are geographically dispersed is a huge plus!

Personal data management is the novel notion of an individual owning their per-

sonal data and having the ability and means to share it with whomever they want. It allows

individuals to maintain and control their privacy. Individuals may choose to sell their data,

donate for research, etc., basically, individuals control how their medical history data is

used. Very practical and quick use is the ability to have an individual’s medical history

travel with the individual. Since it is verified from previous doctors, hospitals, and lab

reports, it speeds up processing by avoiding mundane tasks such as filling out the same

paperwork every time and minimizes interaction with intermediaries like the insurance

companies. The notion of an individual owning their own medical history and data is

quite enticing. Some companies are working on tracking the origins of diamonds to en-

sure buyers that the diamonds they purchase do not originate from parts of the world that

are in conflict and do not conform to UN regulations. There are several use cases that

encompass the vast expanse of finance, forensics, voting, food safety, and so on. The use

of blockchain technology and building DAPs are far too many.

Smart Dubai, as an example, is a project that was issued by the Strategic Affairs

Council, part of The Executive Council of Dubai to mandate the UAE pass as the only dig-

ital identity to be used by citizens and residents to access government services in Dubai.

This comes as a huge jump in the context of smart cities that utilize blockchain networks

in different aspects and government sectors. From 2015 to 2017, Dubai’s blockchain com-

munity grew by 24%, five percentage points above the global average of 19%, which is a
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huge jump for the city after they realized how important and useful blockchain networks

are. Currently, 24 blockchain use cases are now being implemented across 8 industry sec-

tors including finance, education, real estate, tourism, commerce, health, transportation,

and security. Such networks make it easier for governments to manage the city network

through smart contracts, and easier for users to get their work done in a faster way without

the delay that occurs usually because of the intermediary level. Furthermore, this takes

the trust between the user and the applied system to another level where it is almost im-

possible for hackers to change or alter the data in the network since it is almost impossible

for hackers to compromise 51% or more of the city’s network. [67]

In this section, we will discuss the potential pitfalls, challenges and advantages,

and disadvantages of smart contracts. We summarize the properties of different blockchains

in Table 1.

2.4.2 Pitfalls

Atzei et.al. [3] have discussed several pitfalls of smart contracts. These are pre-

sented below:

• Smart contracts are public on Ethereum. Therefore, all the code and data on smart

contracts can be seen by others. The private keyword on the smart contract does not

actually make the data private from the users, rather from other contracts. There-

fore, the best practice while having data on smart contracts is to encrypt the data.

• While the public functions within smart contracts are callable from the world, the

private functions are callable from within the contract itself. Setting some functions
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Table 1: Landscape of blockchain platforms

Name Permiss-

ioned

Permission

less

POW POS POA POC Tangle Plugg-

able

Smart

Con-

tracts

Ethereum
√ √ √ √

Hyperledger
Fabric

√ √ √

Libra
√ √ √

NXXTECH
√ √ √

Multichain
√ √

Corda
√ √ √

Iota
√ √

to public and others to private is an important thing to remember while writing these

contracts.

• Each transaction requires a specific amount of gas and it cannot be done without it.

Therefore, utilizing efficient data structures for different tasks is really important.

Removing unnecessary processes is also important to reduce the amount of gas.

• Test your smart contract many times to make sure it does not have any vulnerabil-

ities or broken pieces. This is one of the most important tips and extra testing will

not harm your contract, but it will make it better. There are different tools where

you can test your contract with such as test coverage analyzers, linkers, formal

verification, Symbolic execution, etc.
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2.4.3 Challenges

Smart contracts are types of executable programs that run between business par-

ties. They are pieces of code that execute when called. Mostly, these contracts are strict

and trusted. However, these contracts are still vulnerable and can be broken by hackers if

they understand the contract really well. In some cases, the conditions listed in smart con-

tracts can be met by a third party. So far, few cases were registered where smart contracts

have been broken and millions of dollars have been lost. Nevertheless, this issue is not

specific to smart contracts, rather it is a security issue in general. It should be noted that

smart contract technology is promising and there is an ongoing effort to fix such issues

and make these contracts efficient and more reliable.

2.4.4 Advantages and Disadvantages of Smart Contracts

Blockchains and smart contracts help us record transactions. All of the smart

contract transactions are stored in chronological order in the blockchain network. Smart

contracts allow automating the process between parties. Additionally, blockchains and

smart contracts are the essential key factors towards smart cities. It is time to move to a

secure network with smart contracts that people trust to store, manage, and control dif-

ferent systems within smart cities. In general, smart contracts make it faster for users to

get their work done without the middleman in a more secure technique. Smart contracts

are executable programs that provide the first party with an asset of value in case of the

second party conditions are met. Therefore, there is no need for middle parties anymore.

However, there are no standards or regulating bodies that govern what such technologies
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should follow. In fact, being fairly new and not entrenched yet, smart contract standards

are altered frequently. Moreover, these concepts are implemented in different technolo-

gies, programming languages, and platforms, making it hard to keep track of all of the

advantages and disadvantages of these various implementation stacks. Hence making it

very complex for a novice user interested in this technology.

Smart contracts can help in reducing fraud activities by recording all transactions

in the blockchain network. However, the immutability can be considered as both an ad-

vantage and disadvantage at the same time since changing these blocks is very hard and

the nodes will detect any suspicious editing of the existing blocks. At any time, if there is a

change a new contract needs to be created. Otherwise, the existing contracts cannot be al-

tered or changed. Furthermore, smart contracts can reduce failure since the decentralized

architecture means no specific organization or entity is responsible for the blockchain net-

work. Hence, if one node is down, nothing will be lost. However, writing smart contracts

in an inefficient way may lead to consuming too much gas (the required fee to execute a

smart contract). Moreover, having too many smart contracts can impact performance by

delaying its execution, and thereby contribute to delay in the overall network. See Table 2.

2.5 Understanding Cloud Provider Supply Chain

Blockchain is a team sport and is often based on open governance whose benefits

are viewed in terms of Assets, Participants and Transactions. This distributed peer-to-peer

network comprises multiple stakeholders from different organizations requiring a shared

view of (in)tangible assets and the provenance of their associated transactions. A group of
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Table 2: Advantages and Disadvantages of Smart Contracts

Advantages Disadvantages

Records all transac-

tions

Lack of rules or reg-

ulatory body

Executable pro-

grams that enforce

conditions

Can be challenging

to create and main-

tain new contracts

Reduces fraud activ-

ities

Immutable

Reduces failure by

recording all trans-

actions

Inefficient smart

contracts are cost

prohibitive

Enforces conditions

consistently

Too many contracts

impacts perfor-

mance

such transactions forms a block is cryptographically and chronologically linked together

post validation (based on consensus algorithms).

Blockchain networks are permissioned and permission-less as their names im-

ply [44]. Satoshi Nakamoto [54] describes the blockchain public permissionless network

that powers cryptocurrency. However, business networks have specific rules around pri-

vacy and confidentiality, how transactions are endorsed, how consensus is achieved (often

selective endorsement as opposed to proof of work), and who on the network is permis-

sioned to receive them.
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Hyperledger is a blockchain development hub [2]. One of the projects is Hy-

perledger Fabric which is an IBM project that enables the development of large-scale

blockchain applications [11, 18, 61]. Cloud service providers recently started to offer

Blockchain-as-a-Service (BaaS) which is quietly gaining popularity with DAP (Decen-

tralized Application) developers [72].

It is commonplace for a cloud provider to have business systems catering to thou-

sands of suppliers, partners, and internal stakeholders often working on siloed systems

attempting to solve disputes that are innate to cloud provider supply chain network’s qual-

ity of service [65] (see Figure 5). Such a business system dexterously passes the Fit for

Blockchain test. Desirable platform attributes such as consensus, provenance, immutabil-

ity, and finality [33] attract DAP developers. Audit transparency enables all supply chain

entities to query the ledger to accurately determine the progress of the cloud procurement

order and facilitate the prevention of breakdowns before they occur. With reasonable

anonymity, for example, it can identify and recommend resurrecting a storage appliance

vendor without disrupting the procurement chain flow.

Such deep levels of audit capabilities also satisfy regulatory compliance. Simul-

taneous peer-peer transaction settlements of geographically dispersed data center vendors

can also eliminate intermediaries, which also translate to savings and promotes trust. Sup-

ply chain resiliency is vastly improved by smart contracts and human delays and errors

are vastly reduced or eliminated. Automatic triggers can be put in place to notify par-

ticipants to take corrective actions in near-real-time (or smart inventory predicting). For

example, a particular data center is having issues with fulfilling a vSphere Hypervisor on
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Figure 5: Actors (humans/systems) involved in the cloud provider supply chain.
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Intel’s Xeon (Broadwell) processor bare-metal request. In the age of demanding strong

social ethics, we would like to call out a welcoming side effect of provenance. Consumers

with strong socially ethical values expect the same from their suppliers. Even in a cloud

procurement transaction, the consumer can verify that all parts of the cloud infrastructure

are procured in socially responsible ways [17, 22, 45, 61].
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CHAPTER 3

ETHEREUM AND SMART CONTRACTS

3.1 Smart Contracts

While smart contracts are the executable files [14], the ledgers are the files that

hold the current and the historical information about different business operations and

entities.

A common set of contracts, interests, processes, rules, and definitions should be

set before different business parts start transactions. Figure 6 shows a basic contract in

its executable form with simple conditions to sell a car. Blockchain networks turn these

rules and contracts into executable programs that are known as smart contracts. Smart

contract goal is to enforce the set of rules that were defined within while its execution [21].

For instance, we can add a condition within our smart contract to ensure that the newly

purchased car will be delivered within a specific time frame. Otherwise, a funded amount

of money will be released automatically. In our previous diagram, we can see how both

parts contribute to the smart contract through different functions such as (setCar, update,

transfer, etc.). These steps are required to establish an agreed business process such as

selling a car [35].

In general, there are two states that a ledger can hold. First, the immutable records

are the immutable records that were recorded using the blockchain. Second, the world

state is the current state that holds the required objects’ cache and value. Smart contracts
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Figure 6: Smart contract classes

have access to two different pieces of the ledger, the immutable and the world state to

perform different operations such as appending, updating, or deleting data (See Figure 7).

Figure 7: Blockchain

3.1.1 Endorsement Phase

Smart contracts come with different endorsement policies that approve transac-

tions generated by smart contracts before releasing them. More than one organization
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might share to endorse a smart contract before considering it valid. All of these transac-

tions along with their final output valid or invalid are recorded using the ledger. Generally,

any node in the network will have the authority to validate the smart contract. Unlike Hy-

perledger Fabric which requires a trusted organization to validate the contract.

3.1.2 Validation

The validation happens in two steps. First, the transaction has to be validated by a

trusted organization. Second, the current value of the world state needs to be validated.

As discussed earlier, smart contracts can be used in various sectors to execute

transactions without man-in-the-middle. They can be written such that when a seller

wants to sell tickets for an event, a smart contract can be written to release the ticket to

the buyer instantly upon meeting the specific conditions. In such scenarios, there is no

need for a third party. The smart contract will release the payment to the seller and the

item (ticket) to the buyer automatically. When a buyer fails to pay the required amount of

credits, we can enforce the rules and conditions that need to be executed as a consequence.

There are several discussions in the marketplace to consider using smart contracts

in real estate transactions. Its popularity will increase if we implement these contracts to

be secure and tamper-proof for artifacts like clear title, liens, and other encumbrances so

that they are transparent to the buyer. As seen in Figure 8, the smart contract will release

the money to the seller, while releasing the property to the buyer at the same time. We

can assume the contract also takes care of automatically notifying both parties, city and

county registrars, and other stakeholders about the executed transaction for posterity and
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action.

Figure 8: Transaction validation through smart contract (1-Seller and Buyer initiate; 2-

Smart contract requests Blockchain; 3-Blockchain validates smart contract request; 4-

Release for both parties)

3.2 Calculating the importance of a Smart Contract

Generally, it is hard to evaluate how good a smart contract is and that is due to the

different criteria and standards are there. To be more specific, while evaluating a smart

contract, a specific evaluation technique to the method should be followed such as the

popularity of contracts. In this section, we evaluate the contract based on their popularity.

In simple words, the more account addresses calling the DApp, the better the contract is

(taking into consideration the importance of the calling accounts). Given Figure 9 where

we have three accounts calling the DApp, the total importance for this contract is 3 units

assuming that each account contributes with 1 unit.

However, the more contract a user call, the less attention these contracts get which

means if a user calls only 1 contract, then the contract gets the user’s full attention and
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Figure 9: The function for getting all the services

get 1 unit for popularity. When a user calls many contracts, that means the user attention

will be distributed over all the contracts which means each contract will get 1/n popularity

units. In the following figure, three account addresses call two contracts. The amount of

attention that each contract gets from accounts A and B is 1/2 since each of them calls

two contracts and the attention will be divided among. Whereas the amount of attention

that the second contract is getting from account C is 1 since it is the only contract that C

is calling as can be seen in Figure 10.

Figure 10: The function for getting all the services

Consider having one account calling different contracts and each contract is being

called by a different account multiple times. In order to translate this scenario into Math,
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we can think about it as a bipartite graph where one side is the accounts and the other side

are the contracts. Calculating the edge between the contract u and the account v can be

done using Equation 3.1 [55]:

W(u,v) =
#(u, v)∑

(u,x) #(u, x)
× Pu, (3.1)

where #(u, v) is the number of times the address u calls the contract v. Since the accounts

have different levels of importance based on different parameters within different systems,

the term P u was added to indicated different level of importance for different accounts.

Computing the score of a contract v can be done using Equation 3.2.

Score(v) =
∑
(u,v)

Wu,v (3.2)

3.2.1 Use Cases

Real Estate: The impact of blockchain and smart contracts on real estate is akin

to the impacts that Uber and Lyft had over traditional transportation methods. Ownership

of apartments or houses can be transferred without the middleman. Smart contracts can

release the ownership automatically when the transaction conditions are met such as the

amount owed, time period, etc. With the help of blockchain and smart contracts, complex

and time-consuming real estate transactions can be reduced to a few clicks on a smart

device.

Dealerships: Dealerships can use smart contracts to keep track of vehicles ownerships

and maintenance. For example, smart contracts may be enforced to make maintenance
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every six months or so. If the condition fails then a driving license will be suspended or

other action may take place.

Elections: We can use blockchains and smart contracts in government elections where

we make some conditions for voters such as age, US citizen, etc. Once these conditions

are met then, the voter can vote. After that, it will be hard to manipulate the votes. So this

gives us a solution to keep track of votes.

Management: We can also use such technology for management purposes where the

owner can release the products once he receives the money.

Medication: Applying blockchain and smart contracts in medicine helps prevent fraud by

registering every step, process, medicine, and state in the blockchain after the condition

of the patient is met.Using blockchain and smart contracts we can apply such networks

that store health data information to be useful in critical and emergency situations such as

involving experts and individuals in the crisis.

3.3 Writing Smart Contracts

Smart contracts can be written and used in many different languages and plat-

forms. Solidity for example is one of the most common programming languages that is

used for smart contracts. In our work, we will go over the basics of smart contracts using

Solidity and how to implement our scenario using Solidity. Each Solidity program starts

with the phrase pragma solidity ∧ 0.5.0, which means this smart contract is written using

Solidity version 0.5.0. The keyword “contract” is used to start a smart contract followed

by the name of the contract. After that, the user may start declaring the needed variables
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and data structures to hold the required values. These variables can be declared in Solidity

using one of the following types:

3.3.1 Using Basic Data Types

String which is one of the most common data types and it is used to store string

type values such as Hello World. Int which is another common data type that holds a

value of an integer number without fractions (positive/negative). Uint unsigned integer

which is an integer without a sign (positive by default). Bool which is the Boolean type

to hold either True or False, could also refer to “0” or “1”. Address which is similar to

string. It holds 20-byte address which is the size of the Ethereum address.

One can use a combination of these variables to create specific data structures

using a “struct” followed by the struct name. For example, struct mySpecificStructure

string name, int age, address myAddress is a simple example on how to combine different

variables.

Fixed-array which is a container that holds a value of several same-type variables.

Mapping Is a data structure that is used to describe key: value pairs. It is known as a

dictionary or hashmap or hash table in other programming languages.

We will use Remix online IDE to run Solidity to explain how to use the most com-

mon smart contracts data structures and how to implement our system the Provisioning

blockchain. The screenshot below shows one of the simplest implementations for smart

contracts where it contains a single string variable “systemName” and two functions that

returns the value of this variable and set a new value, listing 5.
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For this demo, we will use the Solidity version 0.5.1. After compilation, you

should get a green notification which means there are no syntax errors in the smart contract

and it is ready for deployment. This is the dashboard for Remix where a user can choose

the account to use and deploy the smart contract using an interface. After deployment,

the user will be able to see two buttons (these buttons reflect the execution mode of the

functions of the smart contract). By clicking one of these buttons, you are basically calling

the function that is associated with that specific button as shown in Figure 11.

Figure 11: The deployment of Provisioning blockchain

By clicking on the first function getSystemName, the function will return the de-

fault value of the variable since the variable has not been set yet. The default value has

been set to IBMProvisioningBC using the constructor. To set a new value, fill up a new

value in the blank and call the function setSystemName. By calling the getSystemName

again, you will notice how the value was set directly. By looking at Remix logs, you will

be able to see how these blocks are generated after each operation as in Table 3.

By expanding one of the operations, you can see the block hash, where did it come
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Table 3: Remix transactions logs

[call] from:0xca35b7d915458ef540ade6068dfe2f44e8fa733c

to:ProvisioningBlockChain.getSystenName()

data:0x499...d4983

transact to ProvisioningBlockChain.setSystemName pending ...

[vm]from:0xca3...a733cto:

ProvisioningBlockChain.setSystemName(string)

0xbbf...732dbvalue:0 weidata:0xa44...00000logs:

0hash:0xe08...78214

call to ProvisioningBlockChain.getSystenName

[call]from:0xca35b7d915458ef540ade6068dfe2f44e8fa733cto:

ProvisioningBlockChain.getSystenName()

data:0x499...d4983

from, transaction cost, value, etc., as show in Table 4.

Table 4: Expanding a specific log shows the transaction hash

transaction hash 0xbbad6006f1b ... 01d4eb1a1c8483ac4

from 0xca35b7d915458ef540ade6068dfe2f44e8fa733c

to 0xbbf289d846208c16edc8474705c748aff07732db

transaction cost 22692

execution cost 1420

hash 0xbbad6006f1b7794 ... 31afe29ae01d4eb1a1c8483ac4

input 0x499d4983

Notice that it is not necessary to have a getSystemName function, we can add the
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modifier “public” in front of the variable name and that allows calling the variable to

return its value without a function. Moreover, the constructor can also be removed. The

value can be set directly after the variable name, listing 6.

The modifier constant can be added to prevent changing the variable value in

future.

ENUM type enumerated list that allows us to keep track of the list items. In our

scenario, we will use the enum to keep track of our PBC system states. We declared an

enum State that has five different states. By default, the state will be set to Waiting. The

function pbcDev will change the state of the state to Dev. Another function isActive will

return if the current state is Active or not as seen in listing 7.

The function isActive will return False that is because the default state is “Waiting”

whereas the function pbcDev will change the current state to Dev and the pbcState will

return the current state of the system.

Our attention is to build a provisioning smart contract that keeps track of all the

services for a current system. At any time, users should be able to add, delete, display

different services. Our network with the help of our smart contract will allow us to keep

track of all the services in the system currently. Moreover, at any specific time, users

should be able to trace back the blocks to see the previous services in the system. The

smart contract will be the executable program that users interact with to add, delete, edit

a service. Using the ledger, all the transactions will be recorded to allow the owners to

trace back who added the service, who removed a service, etc. This will help us monitor,

control, and manage these services in a better way.
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3.3.2 Smart Contract Functions

Our current smart contract contains four main functionalities.

a) Add a New Service

After listing the functions names along with their parameters, the smart contract

will look as shown in listing 8.

For the purpose of filling these functions we have different options, whether we

use key-value data structure which is known as mapping or we can use a simple array. For

each data structure, there are advantages and disadvantages that we will discuss soon.

Mapping Keyword for Storing Key-Value Pairs: One of the ways to accomplish

our task is to use a mapping data structure to map each service address to a bool variable.

The bool variable verifies if the service exists in our system then it holds True, False

otherwise. After filling up the missing pieces, the smart contract will have the same code

as in listing 9.

Please note that adding and removing services is a quick and easy task that takes

O(1). However, returning and displaying all the services may not be possible using this

data structure since Solidity does not support iterating.

Using Arrays: Let us implement the same functionalities with an array data struc-

ture rather than a mapping as shown in listing 10.

Note that we were able to solve our previous issue which is listing the entire

services that currently exist in the system. However, removing service may take O(n) in

the worst case. Also, we have added another function to return the index for a specific

service.
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Using a Linked List: We begin with the same data structure “mapping” and for

each position will store the address of the next address. Table 5 represents the mapping.

Table 5: A hash-map using a linked list

Key Value

placeHolder 0x01

0x01 0x0a

0x0a 0xdd

0xdd 0x33

0x33 0xa1

0xa1 placeHolder

Figure 12 represents the linked list. The previous data structure can be imple-

mented as in Figure 11. The previous code will create the mapping and set the default

value Placeholder to point to itself which means the mapping is empty. Adding a new

Service is simple as adding a new node at the top of our linked list as in Figure 13 and

listing 11.

Figure 12: A link list for our services

Delete an Existing Service: Deleting a service is basically deleting a node from

the linked list. In our case, it is a single link list in which all we have to do is to place
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Figure 13: Illustration of adding a service

a pointer at the node that we want to delete, change the pointer from the previous node

to the next node and finally delete the first pointer that points to the unwanted node. See

Figures 14, 15, 16, and 13.

Figure 14: A pointer to the node to be deleted

Figure 15: Change the pointers direction

Note that we have used the function getPrevService that is currently not in our

code. We can implement it as shown in listing 14.
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Figure 16: What is the linked list used to be

List All Existing Services: To accomplish this task we start by looping through

our mapping starting from the Placeholder address. As each address points to the next ad-

dress, this process will keep going until it points to the Placeholder again. See Figure 15.
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CHAPTER 4

RELATED WORK

Given the complexity of the proposed system, we have a two-part approach to the

related work discussion. The first part focuses on the federated learning (matrix factor-

ization) model used in our technique. The second part evaluates similar systems that use

federated learning built on blockchain.

4.1 FedMF

The authors of FedMF [16], Chai et al., introduced a secure matrix factorization

framework using federated learning where the model learns using the user’s gradients

only that are sent to the server instead of the raw preference data. The authors proved

that while the gradients seem secure enough, they still might leak some of the user’s

data. [60, 77] Therefore, they took the implementation of FedMF a step further by im-

plementing the matrix factorization framework using homomorphic encryption. [27]. To

this end, the implementation of FedMF is a secure framework that can be used to learn

a matrix factorization model. The architecture of FedMF still relies on the traditional

federated learning approach that utilizes a single centralized server. In industry, when a

huge number of parties are included, a single server will not be efficient to coordinate,

collect, average all of the client’s models. Therefore, a decentralized version of FedMF is

required to allow multiple worker nodes to carry the global computational progress.
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4.2 Baffle

The authors of BAFFLE [62] created a decentralized aggregator-free blockchain-

driven environment that leverages smart contracts to coordinate the federated learning

settings and aggregate the user’s models. BAFFLE enhances the aggregation process and

boosts the computational progress by dividing the global parameters space into chunks

with a score and a bid strategy. Chunking the parameters space is due to the limit of the

pertaining size of the Ethereum Virtual Machine (EVM) which is 24 kB [57]. Further-

more, due to the expensive SC storage, the models need to be stored in a serialized format.

Therefore, the authors use a partitioning algorithm that is used by all of the users to first

chunk then serialize the parameters. Finally, the budget for each chunk allows users to

decide on which chunks to contribute with, which saves time, capacity, and does not add

unnecessary communication on the network. However, the machine learning model type

that is used in BAFFLE allows aggregating the user’s models in order to generate a more

generalized global model. But that is not the case when it comes to recommendation sys-

tems models where each user data vector is different than the others since not all of the

users have the same items and products. Therefore, it is not possible for matrix factor-

ization techniques to aggregate the user’s models to generate a global model. For matrix

factorization, each user data vector needs to be updated individually based on that specific

user’s data. Hence, BAFFLE environment is not applicable for recommendation system

models. Furthermore, in our implementation, we store the items data on the worker nodes

and keep the user’s data localized on the user’s machines while leveraging the benefits of

smart contracts for other federated learning tasks.
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4.3 Trust-based system for Collaborative Filtering Recommendation Systems on

the Blockchain

Tzu-Yu et al. [76] proposed a trust-based system for Collaborative Filtering rec-

ommendation systems on the blockchain. The proposed system provides a secure and

trust-based system supported by the use of smart contracts in the main blockchain proto-

col. Using blockchain the authors proposed a framework to collect large volumes of data

and allow users to host and share a mutual recommender model that is being used as a

public resource. Using incentive mechanisms, users are able to share the model param-

eters, new images, movies, titles, etc. that allow updating the existing models hosted by

a specific user or a group of users. In such scenarios, all users are assumed to be trusted

users who will not share malicious information or update the model with false predictions.

In addition to the model parameters being shared publicly on the network, the gas fees

for the smart contract storage and other operations are very expensive. In our implemen-

tation, all of the gradients are stored in IPFS (distributed storage). The hash from IPFS is

then shared on the Ethereum network to reduce gas fees instead of sharing the actual data.

On top of that, all operations and model updates are computed using the homomorphic

encrypted items and gradients vectors.

4.4 Healthmudra

Blockchain started to make in-roads into the medical fields to facilitate collabo-

ration between patients, healthcare providers, and insurers via a secure, transparent, and
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immutable network. The authors of HealthMudra Rashmi et al. [10] presented a rec-

ommender system that prevents diabetes which is the most challenging disease in the

healthcare sector. [10] HealthMudra is built using a blockchain network powered by ma-

chine learning algorithms and optimization protocols that mainly use filtering techniques

to provide recommendations in order to prevent diabetes. Such implementations are help-

ful when patients share their health data with different healthcare providers to get helpful

recommendations. In our work, we consider federated learning to keep the user data lo-

calized. Even when gradients are shared, they are shared after applying homomorphic

encryption to perform all of the learning and model updating using the encrypted data

and not raw data.

4.5 FLChain

Several studies have discussed the area of federated learning using blockchain

which lead to a new paradigm known as FLchain. This technique transfers the current Mo-

bile Edge Computing (MEC) networks into decentralized, secure, and privacy-preserving

systems. Nguyen et al. [56] proposed a FLchain network to train a shared model using

mobile edge devices. FLchain allows training a shared model while keeping the user’s

data localized on their devices to benefit from privacy enhancement. A group of MEC

servers is initialized with their associated user’s devices. Each user carries out the train-

ing locally and commits its update to these servers through a transaction that is stored

in a Merkle tree. Such approaches like FLchain and BAFFLE are applicable in the case
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of using specific types of machine learning techniques where averaging all user’s mod-

els generates a better global model. However, in recommendation systems averaging all

user’s updates is not the right way to achieve better accuracy since each user’s updates are

specific to that user. In the recommendation systems area, users with similar behaviors

tend to have similar updates, but that cannot be generalized among all of the users on the

network.
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CHAPTER 5

APPROACH

5.1 FedSmarteum for multi-organization automation

We propose FedSmarteum, a decentralized distributed architecture as shown in

Figure 17 using blockchain and smart contracts to enable cloud providers and their suppli-

ers to navigate their supply chain and engage the customer with verifiable and immutable

data. We evaluated cloud resource provisioning compute, storage, and network resources.

We evaluated the use of permissioned Blockchain-as-a-Service (BCaaS) platform

offered by several cloud providers, including IBM. This facilitates the development and

deployment of the blockchain network exploiting built-in capabilities for the governance

of policies, smart contracts, security, and compliance, etc.

As part of this approach, a private permissioned blockchain network was devel-

oped with all the stakeholders as peers. As shown in Figures 18 19, we have customer,

seller, biller, DevOps admin, third-party suppliers who are either systems or stakeholders

participating in the blockchain. To facilitate faster deployment of the blockchain network,

we suggest using a BCaaS instance from a cloud provider (in this case IBM Blockchain

Platform). This will set up peer stakeholders nodes owned and administered by the im-

pacted organizations. The peers will also host instances of ledgers and smart contracts

where transactions are validated and executed.
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Figure 17: Actors (humans/systems) involved in the cloud provider supply chain.
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Organizations were created for each of the entities and policies for managing net-

work participants. Channels were created to facilitate information exchange between

peers such as DevOps and sales organizations to protect the privacy of pricing information

and prevent sharing from the broader network.

We used Visual Studio Code with the IBM Blockchain Platform extension to cre-

ate and package smart contracts. From the IDE, we packaged and exported the smart

contracts and we used the IBM blockchain platform console to install and instantiate the

smart contracts. Upgrading smart contracts to newer versions was very simple.

We are depicting a simplified typical scenario (compute, storage and software)

as handled by the permissioned blockchain version of FedSmarteum in Figure 18. This

represents supply chain interactions for a hyperconverged appliance purchase order. How-

ever, in reality, several other business processes that are part of the purchase fulfillment

that also have the potential to go wrong are not depicted for brevity. Smart contracts

help to automate some of the notification processes so that actions are taken immediately.

During the process, the status of the purchase order and all transactions initiated by sub-

mitTransaction are stored in the blockchain. All stakeholders in the supply chain can see

exactly where a given order is in the process, problems encountered, and who is currently

holding up the fulfillment. For example, in the permissioned blockchain version of FedS-

marteum, smart contracts are implemented to automatically trigger additional business

workflows. When the system is back-ordered in a data center and the customer needs to

be solicited to pick other options in case wait time is unacceptable, the application in-

vokes processNotification in the customer’s smart contract to notify the customer about
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Figure 18: Smart contract enabled hyperconverged appliance supply chain.
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the situation. The customer changes the order by specifying a different datacenter with

confirmed availability or chipset or storage performance attributes, and the procurement

process automatically continues with updated terms and possible cost implications. The

DevOps engineer may also be notified by the smart contract to fix the problem.

Several smart contracts were created to simulate our use cases. The smart con-

tracts follow the fabric-contract-api interface. For example, async PlaceComputeOrder(ctx,

dataCenterId, computeType, orderId, customerEmail) and the application submits the

“PlaceComputeOrder” transaction by contract.submitTransaction(’PlaceComputeOrder’,

”DAL01”, ”vm.small”, orderId, customerEmail );.

The transparency that the framework provides to the customer along with access to

the provenance of data is unmatched. Furthermore, there is nothing stopping the platform

to take this a step further wherein the sales leader (who is another peer in the network) is

also notified by the smart contract which determines that there was a change to the origi-

nal purchase contract and needs to be modified. The speed with which this exchange can

transpire, and the resultant non-repudiated transaction that meets all legal requirements as

well that can be put in place was previously unimaginable in existing supply chain work-

flows. All peers are rightly incentivized to facilitate the earliest fulfillment of the order.

It also helps them to keep their inventories current by optimizing with their downstream

suppliers and vendors.

We then built an application to execute the business logic in smart contracts to

perform operations such as creating, transferring, or updating cloud provider assets on

the blockchain ledger. For example, updating the procurement status of bare metal and
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Figure 19: Transaction block history in IBM Blockchain platform console

storage. Attributes such as Identity and Access Management (IAM) to authenticate users

and systems were set up, analytics to alert on problematic third-party vendors, etc. We ob-

served that as expected all the transactions are recorded in the blocks. This is visible in the

IBM Blockchain console as shown in Figure 5, thereby promoting trust and transparency

among the stakeholders.

5.2 Extending FedSmarteum to incorporate Federated Learning

We further enhanced FedSmarteum with the ability for multiple organizations to

share an aggregated recommendation system that allows enterprise customers the ability

to make decisions based on latest supply chain and resource availability metrics. With
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transparency built into the system, organizations can train models privately on their pri-

vate data and facilitate the presentation of collective predictive analytics to an enterprise

customer.

The system is built using an Ethereum blockchain in order to provide customers

with transparency while keeping the data private. Ethereum leverages the use of smart

contracts that coordinates the federated learning process between all the included nodes

and cloud parties. In our work, we train a Matrix Factorization model in a federated way

where all the customers’ data remain localized on data owner’s devices. The items data

will be placed on one of the worker nodes (could be one of the nodes that are included

in training the model). Sending and receiving the training data, weights, and gradients

on the Ethereum network is too expensive and requires a lot of gas fees, other than the

network transfer size limitations. Therefore, we use a distributed database (IPFS) [39]

that provides hash-based storage. When storing an object in IPFS, the distributed storage

will provide a hash to be used when reading the object from the storage. Consequently,

instead of sharing a model, dataset, or gradients set on the blockchain, we store these

objects on IPFS and then send that hash to the smart contract which is going to share

it with the participating nodes. In this way, all of the nodes will be able to share data

on the blockchain using IPFS without incurring expensive fees. The remaining question

is, should all the nodes trust IPFS or the worker nodes in order to share their weights or

gradients? The answer is no. In our work, we have enabled homomorphic encryption

where each node encrypts its data before sharing it on IPFS or on the chain. Using HE,

nodes do not need to trust IPFS or any of the worker nodes. HE allows operations on
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the encrypted data such as addition, multiplication, and subtraction. In our scenario, we

are using the encrypted customer’s data to update the encrypted items data. Therefore,

all the participants keep their data private and share their encrypted gradients only. The

smart contract coordinates the federated learning process between the included parties.

The purpose of the blockchain network is to keep all the parties included and updated

during the process. Blockchain provides transparency between the customers and the

cloud providers. All customers will be up to date with their procurement and services

while the cloud providers will be able to get insights using the customer’s data without

violating their privacy as shown in Figure 20.

There are 2 main parts depicted in Figure 20. The first one is the multi-organization

supply chain blockchain application and the second part below is the federated learning-

based recommendation system. All organizations are nodes in the blockchain and so

are the worker nodes of the recommendation system. It should be noted that given the

complexity of the architecture represented Figure 20, it only represents some of the key

connections and flows involved in the execution of the system. Initially, we integrate into

the supply chain ordering pipeline, as in this case, the PlaceComputeOrder smart contract,

which may be initiated by a company’s DevOps automation that is in place based on the

purchase order. The definition of the smart contract that for PlaceComputeOrder is also

depicted (to the right). It is part of the Cloud provider fabric and has privileges to procure

any compute resource that is part of the purchase order interacting with the APIs in the

hardware services layer of the cloud provider. This smart contact orchestrates the train-

ing phase of the federated learning model by controlling the traffic between the worker
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Figure 20: Architecture of FedSmarteum

60



nodes and the cloud providers. The smart contract also facilitates recommendations to the

user via events and orchestrates all the rounds and epochs as part of the recommendation

system using items and users data.

5.3 FedSmarteum Methodology

As discussed earlier, federated learning is an approach to allow users to train a

shared model on their joint data without exposing users’ local data. Federated learning

comes under the umbrella of privacy-preserving techniques and can be categorized based

on the distribution characteristics of the data [74]. Horizontal federated learning is one of

the categories of federated learning where users’ data share the same feature space while

different users have different samples. Therefore, this matrix factorization model can be

considered as an example of horizontal federated learning since the rating data shared

with each user has the same feature space, but different users have different samples. In

our implementation, we assume all of the users in our scenario are cloud providers. Our

technique secures the users further from the central server since this server might be a

trusted, but curious server.

5.3.1 Objective Function - Stochastic Gradient Descent for user-level matrix

factorization

In this section, we introduce the optimization method that is used in the matrix

factorization model [16, 41] which is stochastic gradient descent. We design a serverless

decentralized network to update the model locally using worker nodes in a decentralized

way instead of relying on a central server.
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Assuming we have a m number of items and n number of users where each user

rated a number of items (a subset of m). Given [n] := {1, 2, ..., n} which is the set of

users and [m] := {1, 2, ...,m} is the set of items, we can denoteM ∈ [n]X[m] for the

user-item rating pairs and M is the total number of ratings M = |M|. We denote the

user i that rated item j by rij . Assuming the value rij is given, then the recommendation

system is expected to predict all of the items for all of the users by fitting a binary model

on the existing ratings. That is computed using user matrix U ∈ Rn×d and item matrix

V ∈ Rm×d and the output matrix is then used to predict the user i’s rating on items j

which can be described as 〈ui, vj〉. The authors of FedMF [16] shows how to compute U

and V by solving the regularized least squares minimization as in Equation 1.

min
U,V

1

M
(ri,j − 〈ui, vj〉)2 + λ||U ||22 + µ||V ||22 (5.1)

λ and µ are small values that were added to rescale the penalizer. U and V will be

updated using the Stochastic Gradient Descent as in Equations 2 and 3.

uti = ut−1i − γ∇ui
F (U t−1, V t−1) (5.2)

vti = vt−1i − γ∇viF (U
t−1, V t−1) (5.3)

where

∇ui
F (U, V ) = −2

∑
j:(i,j)

vj(ri,j − 〈ui, vj〉) + 2λui (5.4)
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Figure 21: Deployment flow depiction of FedSmarteum.

∇viF (U, V ) = −2
∑
i:(i,j)

ui(ri,j − 〈ui, vj〉) + 2λvj (5.5)

This update takes place iteratively until the number of rounds are met.

5.3.2 The Decentralized Matrix Factorization

In our implementation, all users keep their rating data localized without sharing

it with anyone. Then, the model is trained on the user’s joint data. In order to achieve

this goal, we leverage the use of the decentralized matrix factorization approach. This
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approach decomposes the updating of algorithms into two parts where the first part is

performed on the user’s device locally and the second part is computed using the worker

nodes in a decentralized way. Equation number 2 is computed on the user i’s device

whereas equation 3 computes in a decentralized way using the worker nodes. The decen-

tralization part is because of two main reasons: (i) to keep the user’s rating data localized,

and (ii) to prevent a trusted but curious server from recovering insights from the model.

Algorithm 2 Decentralized User-level matrix factorization
1: Init: Worker nodes initialize item profile matrix V

2: Init: User initializes user profile matrix U

3: Output: Converged U and V

4: IPFS and worker nodes keeps latest item-profile for all users

5: User local update:

6: Smart Contract shares the hash with users to obtain V, perform local update:

7: uti = ut−1i - γ ∇ui
F (U t−1, V t−1)

8: Gradienti = γ ∇vi F (U
t−1, V t−1)

9: Worker nodes update:

10: Smart Contract shares IPFSGradienti block with worker nodes for user-i

11: Perform update: vti = vt−1i - Gradienti

The general user-level matrix factorization method allows users to keep their data

localized on their devices while they share the generated gradients as plain text with the

server [41]. The authors of FedMF [16] proved that while the users keep their data lo-

calized, the server is still able to decode users’ ratings through the gradients. Therefore,

the authors have implemented the recommendation system using HE in order to secure

the gradients. The server is still able to perform the same updates using the encrypted
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gradients while maintaining the model accuracy. The encrypted gradients will secure the

users from the curious server and other attacks. However, the server will have an overhead

updating the encrypted items data using the encrypted gradients. We replaced the server

with worker nodes in order to carry out the items update in a decentralized fashion.

Our focus was on the efficiency of a decentralized framework while maintain-

ing the model accuracy. We observed our generated model had similar predictions when

testing the recommendation system on the MovieLens [52] rating dataset and our cloud

dataset. However, since our algorithm was implemented in a decentralized way, there is

a difference in the execution time as in our proposed approach the worker nodes are car-

rying out the items updates instead of the central server. Algorithm 2 shows the updating

procedures.

Using the cloud provider illustration, we examine Algorithm 2 to depict the train-

ing algorithm for updating/training the USERS data in a cloud provider. To train, we

need both ITEMS (V) and USERS (U) data. We begin by initializing the ITEMS matrix

V in the worker nodes and the users matrix U in the cloud provider. The output describes

trained U and V in Step 3. In step 4, we use IPFS to keep track of V. We then start with

local updates (training) for all cloud providers. The smart contract shares the hash of the

ITEMS vector V with the cloud providers to perform a local update. At this point, each

cloud provider has both parts as shown in step 6. Steps 7 and 8 represent how to update

user and gradients, after which we perform worker node updates, update the shared items

matrix, and specific item record as shown in steps 9-11.
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5.4 Passing Gradients Over Blockchain

Most of the Blockchains have an upper size limit on the transactions. Ethereum

Virtual Machine (EVM) has the limit of 24 kB [57]. Any random smart contract that con-

tains many functions, too much code, with multiple events will hit the size limit instantly.

For example, ERC1400 Security Token Standard requires 27 functions and 13 events [57].

With additional application functions and specific code to implement these standards, the

limit will easily exceed 24 kB. Therefore, storing a large volume of amount of data on the

smart contract is not feasible.

On the other hand, gas fees paid for transactions is expensive. As of August 25,

2021, the gas fee for a single transaction is 0.0013 Ether/transaction [75], with the Ether

price today is $3,247.73, each Ethereum transaction costs almost $4. For example, the

average size of a photo that was taken using an iPhone-6 is 2-3MB. Hence, depending

on the Ether price, buying a car might be cheaper than adding one photo on Ethereum

blockchain [58]. Ethereum network can be used due to its security, immutability, and

transparency. However, for distributed storage purposes, we have used Interplanetary File

System (IPFS) [39]. Using Ethereum and IPFS creates a simple, yet powerful, system of

immutable content. This way, all data, and models can be stored on IPFS, while trans-

actions and communications can take place using the Ethereum blockchain. Using IPFS,

we are able to timestamp much larger data to be used over the blockchain than the pure

blockchain networks. When users add data to IPFS, the protocol returns a hash for the

data. This hash is cryptographically guaranteed to be unique to the content so no two

sections of data will have the same hash. When the same section of data is added again
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to IPFS for the second time, the same unique hash will be returned. To retrieve data from

IPFS, we use the reverse way. The same cryptographic hash returned from the storage

process is then returned for the IPFS in order to retrieve the original data that was stored.

By using the IPFS mechanism, we guarantee that our data has not been tampered with.

Furthermore, all of the data stored on IPFS during our implementation is homomorphic

encrypted. Therefore, the data cannot be read or tampered with by others. The receiver

node can then download the encrypted data from IPFS and use the gradients for updating

the items data. The smart contract is responsible for this process and directing the hash

values between the user’s local devices, worker nodes, and training nodes.

After the model is trained, the items data can be used with customer data to provide

specific recommendations for that customer. The updated items data will be available in

IPFS and worker nodes. The participating cloud providers and other privileged entities

in the supply chain can use this data with new customer’s data to generate predictions

and recommendations. The reason for leaving the encrypted items data on worker nodes

is due to the fact that training is perpetual and iterative. As additional customers and

data are generated, so are the training iterations. The accuracy of the model has a strict

relationship with time and the number of users. All participating cloud providers have

equal access to the model.

Figure 21 represents the deployment architecture for FedSmarteum. We have mul-

tiple stakeholders of the system including developers who are responsible for maintaining

smart contracts, the data scientists who build and maintain ML algorithms, the blockchain

governor who is responsible for setting up and maintaining the network connection and
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protocols, and finally, the customer who relies on the system for insights to help make

business decisions on cloud resource utilization across a multi-organization platform de-

ployment. For example, a customer may be recommended by the model that a specific

machine type on data center X has taken longer to deploy due to unavailability of the de-

sired chipset, and other customers have either chosen to deploy a different machine type

of chipset or pick an entirely different region previously. Having this recommendation

enables customers to avoid unnecessary delays and costs. Also note that in our system,

the customer is a training data provider for data scientists to train the ML models in a

federated learning approach.

As alluded to earlier, smart contracts are developed to orchestrate the supply chain

flow and federated learning technique and they constitute the backbone of our system.

We deploy these smart contracts using the Remix platform on the Ethereum network.

Machine Learning engineers and data scientists can then build their models and start the

training process. The worker nodes connected to IPFS will then pull the encrypted items

data from IPFS, decrypt it, generate gradients, and update the customer’s data, and finally

encrypt the gradients and push them back to IPFS. IPFS contains the latest items data that

can be used to get insights by using the Analytics platform supplied by cloud providers.

For example, we can deploy on an IBM Red Hat OpenShift cluster in a containerized

environment which gives us ready access to analytic tools. As a cloud provider, we can

rely on these insights to provide recommendations and predictions for future customers

based on the previous customer’s behavior.
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5.5 Recommendation System in Play

For purposes of illustration, we begin with an enterprise customer making an order

request to procure several resources. Prior to the order being placed, it is directed to the

recommendation system to validate the availability or price range of the order or time

to deploy (based on similar recent orders) with similar resources, workloads or perhaps a

high-performance storage (GB/sec throughput). The recommendation system may predict

to the customer that there is cost-effective and faster option on another cloud provider

based on model memorization (intuitively, we say that a model unintentionally memorizes

some value if the model assigns that value a significantly higher likelihood than would be

expected by random chance). The customer then has an option to change the order to

whatever was recommended or to keep the initial order. Deployment changes and billing

information changes are made automatically based on customer input.

This drastically saved the customer time, reduced cost, possibility of dealing with

future incompatibilities, clarity in billing, and most important is entrenching trust and

transparency in dealing with their enterprise orders with their supplier. Addressing some

or all of these dimensions ensures customer delight, satisfaction, and repeat business

which are intangibles that drive any business.
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CHAPTER 6

IMPLEMENTATION AND EVALUATION

6.1 Implementation

We deployed an Ethereum blockchain connected to multiple participating nodes

that represent cloud providers and other stakeholders in the multi-organization supply

chain. We conducted all of the smart contract executed federated learning evaluation

using a well known MovieLens dataset [32] and our private cloud dataset. We ran the

evaluations using a different number of users, items, and rounds. Our implementation

relies on decentralized architecture and smart contracts that coordinate the training pro-

cess between cloud providers and worker nodes. Owing to this, we observed a few extra

seconds of delay for each round of execution. This extra time is attributed to the time it

takes for the smart contract to initialize the process with the worker nodes and the rest of

the additional time is consumed during the process of pushing and pulling the encrypted

data from IPFS. It is our intent to demonstrate that for industry applications, we can re-

place the central server with decentralized distributed worker nodes using blockchain and

smart contracts while maintaining the same model accuracy. Table 6 shows the observed

difference in time between the distributed FedSmarteum and the centralized implemen-

tation. Figure 6 compares the execution time between FedSmarteum and the centralized

implementation. In this experiment, we ran both models on the cloud dataset including

20 customers with 40 items (multi-cloud resources and services). The difference in time
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between the models in negligible which validates the decentralized approach applicability

of FedSmarteum Figures 22, 23, 24.

Figure 22: Place compute order transaction block in the ledger.

We deployed an Ethereum blockchain connected to multiple participating nodes

that represent cloud providers and other stakeholders in the multi-organization supply

chain as shown in Figure 25. We conducted all of the smart contract executed federated

learning evaluation using a well-known MovieLens dataset [32] and our private cloud

dataset. We ran the evaluations using a different number of users, items, and rounds.
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Figure 23: Place compute order order event.

Our implementation relies on decentralized architecture and smart contracts that coordi-

nate the training process between cloud providers and worker nodes. Owing to this, we

observed a few extra seconds of delay for each round of execution. This extra time is at-

tributed to the time it takes for the smart contract to initialize the process with the worker

nodes and the rest of the additional time is consumed during the process of pushing and

pulling the encrypted data from IPFS. It is our intent to demonstrate that for industry ap-

plications, we can replace the central server with decentralized distributed worker nodes

using blockchain and smart contracts while maintaining the same model accuracy. Ta-

ble 6 shows the observed difference in time between the distributed FedSmarteum and

centralized FedMF federated learning architectures. Figures 26, 27, 28, 29 compare the

execution time between FedSmarteum and FedMF. In figure 26, we ran both models on

the cloud dataset including 20 customers with 40 items (multi-cloud resources and ser-

vices), Figure 27 we used 50 customers with 45 items, Figure 28 we used 75 customers
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Figure 24: Smart Contract for place compute order.

73



with 45 items, and Figure 29 we used 100 customers with 45 items. As can be seen in

Figure 26, the difference in time between the models is negligible which validates the

decentralized approach applicability of FedSmarteum.

Figure 25: FedSmarteum Deployment framework.

6.2 Statistical Analysis

We look at the bar graphs Figures 26 - 29 and Table 6 to compare the time taken

to train the model in two different modes distributed and centralized. This data indicates

that it takes longer to train the model in distributed mode. However, we want to determine

whether the difference is statistically significant.

In order to do that, we perform statistical analysis between distributed training
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Table 6: Execution time for movielens dataset on a distributed and a centralized federated

learning topologies.

Distributed Centralized

3
U

se
rs

-
10

It
em

s

R-1 0:00:42 0:00:40

R-5 0:02:41 0:02:35

R-10 0:05:34 0:05:08

R-15 0:08:33 0:07:50

R-20 0:10:54 0:09:27

R-25 0:14:31 0:12:59

5
U

se
rs

-
20

It
em

s

R-1 0:01:55 0:01:48

R-5 0:08:50 0:07:51

R-10 0:16:39 0:15:31

R-15 0:24:41 0:23:41

R-20 0:31:41 0:28:31

R-25 0:44:31 0:37:42

10
U

se
rs

-
40

It
em

s

R-1 0:06:25 0:06:09

R-5 0:29:30 0:27:52

R-10 1:02:54 0:57:02

R-15 1:29:30 1:20:59

R-20 1:56:15 1:50:39

R-25 2:26:37 2:19:47

“R” represents the number of rounds. The time is expressed in Hours:Minutes:Seconds.
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Figure 26: The execution time for centralized vs. distributed using movielens dataset.

The experiment includes 20 customers with 40 items.

Figure 27: The execution time for centralized vs. distributed using our cloud dataset. The

experiment includes 50 customers with 45 items.
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Figure 28: The execution time for centralized vs. distributed using our cloud dataset. The

experiment includes 75 customers with 45 items.

Figure 29: The execution time for centralized vs. distributed using our cloud dataset. The

experiment includes 100 customers with 45 items.
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mode and centralized training mode on two different data sets by comparing the means

of the two groups. For purposes of brevity, we will select the following datasets for our

statistical analysis.

Case 1: 10 customers, 40 items, Table 6

Case 2: 100 customers, 45 items, Figure 29

6.2.1 Hypothesis

Research Hypothesis: There is a significant difference in the means model-training

time between distributed mode and centralized mode.

Null Hypothesis: There is no significant difference in the means model-training

time between distributed mode and centralized mode.

6.2.2 Choosing the right statistical analysis model

The right test to choose depends on the hypothesis (what we want to analyze) and

the data set.

(i) The hypothesis compares the means between the two groups (distributed vs central-

ized).

(ii) The data type is time duration, which is a ratio data type.

We think the two-tailed independent-samples t-test is the appropriate test since it

is used to compare the means between two groups. Furthermore, the basic assumptions

of the t-test is met:
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1 The data consists of one dependent variable (the time duration) which is a ratio data

type.

2 The data consists of one dependent variable that consists of two categorical, inde-

pendent groups distributed training mode and centralized training mode.

We will run other statistical tests to verify the assumptions of the t-test before

performing the t-test analysis. These are the statistical assumptions that must be met:

1 The data is independent.

2 The data is normally distributed.

3 The data is homogenous.

As discussed above, we will run the t-test twice, one for each pair of data set.

6.2.3 Case 1: 10 customers, 40 items

Test for data Independence: Yes, since the two groups do not have any relationship

or influence between observations.

Testing for Normality: The data is normally distributed because Shapiro-Wilk test

(Figure 30) indicates that p > 0.05. Furthermore, the box plots (Figure 33) and the Q-Q

Plots (Figures 31 32) indicate the data is normally distributed.

Test for homogeneity of Variances: Met. Variances are the same since (p=0.882)

> 0.05 as shown in Figure 34

The t-statistics is 0.161, p=0.876. Because p is > 0.05, this is not statistically

significant.
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Figure 30: Tests for Normality.

Figure 31: Normal Q-Q plot of time for centralized.
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Figure 32: Normal Q-Q plot of time for distributed.

Figure 33: Box plot depicting normally distributed and centralized.
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Figure 34: Levene’s test for homogeneity of variances.

Figure 35: Group Statistics.

Effect Size: Although we have discovered that the difference is not statistically

significant, we still need to calculate the effect size. As shown in Figure 37, Coden’s d =

0.093, which is considered a small effect.

Conclusion: We wanted to know whether the difference in the means of the time

required to train the model between distributed mode and centralized mode is significant.

The research hypothesis is “There is a significant difference in the means model-training

time between distributed mode and centralized mode”. The Null Hypothesis is “There is

no significant difference in the means model-training time between distributed mode and

centralized mode”.

We chose a two-tailed independent samples t-test and tested the assumptions. The

data is normally distributed based on the plots and Shapiro-Wilk’s test (Sig (p) > 0.05).
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Figure 36: Independence Samples test.

Figure 37: Effect size.
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The data was found to be homogenous. We found the effect size to be 0.093, which is

small. The means from the two groups were 1:15:11 +- 0:52:50 and 1:10:24 +- 0:50:19

respectively. The t-statistic value is 0.161, (Sig (p)=0.876 > 0.05). Therefore, the null

hypothesis was accepted.

6.2.4 Case 2: 100 customers, 45 items

Test for data Independence: Yes, since the two groups do not have any relationship

or influence between observations.

Testing for Normality: The data is normally distributed because Shapiro-Wilk test

(Figure 38) indicates that p > 0.05. Furthermore, the box plots (Figure 41) and the Q-Q

Plots (Figures 39 40) indicate the data is normally distributed.

Test for homogeneity of Variances: Met. Variances are the same since (p=0.963)

> 0.05 as shown in figure 42

The t-statistics is 0.052, p=0.959. Because p is > 0.05, this is not statistically

significant.

Effect Size: Although we have discovered that the difference is not statistically

significant, we still need to calculate the effect size. As shown in Figure 45, Coden’s d =

0.030, which is considered a small effect.

Conclusion: We wanted to know whether the difference in the means of the time

required to train the model between distributed mode and centralized mode is significant.

The research hypothesis is “There is a significant difference in the means model-training

time between distributed mode and centralized mode”. The Null Hypothesis is “There is
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Figure 38: Tests for Normality.

Figure 39: Normal Q-Q plot of time for centralized.
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Figure 40: Normal Q-Q plot of time for distributed.

Figure 41: Box plot depicting normally distributed and centralized.
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Figure 42: Levene’s test for homogeneity of variances.

Figure 43: Group Statistics.

Figure 44: Independence Samples test.

Figure 45: Effect size.
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no significant difference in the means model-training time between distributed mode and

centralized mode”.

We chose a two-tailed independent samples t-test and tested the assumptions. The

data is normally distributed based on the plots and Shapiro-Wilk’s test (Sig (p) > 0.05).

The data was found to be homogenous. We found the effect size to be 0.030, which is

small. The means from the two groups were 8:05:31 +- 5:55:53 and 7:54:50 +- 5:50:34

respectively. The t-statistic value is 0.052, (Sig (p)=0.959 > 0.05). Therefore, the null

hypothesis was accepted.

6.3 Benchmark Description and Workload

We conducted our experiments using two datasets. The first one is the MovieLens

datasets [52] is a well-known benchmark that has been collected and made available by

the GroupLens Research. [30] The dataset contains 100,000 movie ratings and 3,600 tag

applications applied to 9724 movies by 610 users. The dataset is available at the following

link: https://grouplens.org/datasets/movielens/.

The second dataset is our private cloud dataset. The premise for this dataset was to

represent cloud resources (compute, storage, network, etc.,) procured by enterprise cus-

tomers across multiple cloud providers in order to deploy their application workloads Fig-

ures 46, 47. This cloud dataset includes data for 50 different cloud deployable resources

provisioned across multiple cloud providers and third-party vendors along with the count

for each resource applied. We ran our evaluation using 50, 75, and 100 customers with 45

items.
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Each user in the cloud dataset is represented with a specific id to keep track of all

user’s deployments and resources. When a user deploys and provisions a resource such

as an x-type server, the server id will then be added to that specific user record. Our

cloud dataset is represented using records where the user id is the key for each record.

Resources deployed by a specific user will be added to his specific record to create a

relationship between the user id and the resource id. The count is also included in this

process, when a resource id is added to a user record, the number of resources will also be

added to the record. This dataset can be represented using a graph where the main node is

the user id, and the objects connected to the main nodes are the resources deployed by the

user. Each resource node will have its own objects and entities such as the count, price,

date, etc.,

6.4 Blockchain Implementation and Encryption

To implement the homomorphic encryption, we used the Python programming

language. Using Paillier encryption, [59] we kept the length of the public key 1024. We

used Truffle Suite [71] in order to deploy a synthetic Ethereum blockchain for develop-

ment and testing purposes. In particular, we used Ganache version 2.5.4 [26] which allows

interacting with smart contracts using Python. The smart contracts were deployed using

Remix IDE. [42] All smart contracts were written in Solidity programming language us-

ing the compiler version ˆ0.4.21.

IPFS version 0.15.0 was used to allow the distributed encrypted items data to

be shared. IPFS powers the Distributed Web using a peer-to-peer hypermedia protocol
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Figure 46: Compute options for cloud provider machine types.
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Figure 47: Multi-zone data centers, multi-tenant hosts, Operating system options.
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designed to preserve and grow humanity’s knowledge by making the web upgradeable,

resilient, and more open. [39]

6.5 FedSmarteum APIs

As mentioned before, we injected our smart contracts in Python through different

APIs that interact with the smart contracts interface. In listing 1 is the APIs from the

user that interact with smart contracts directly in order to update their gradients. Listing

2 shows how the loss is being calculated. Listing 3 shows how worker nodes iterate over

the items and interact with smart contracts to update the items for different users. Listing

4 shows the actual wrapper for Python APIs that call the smart contract APIs.

Listing 1: User update on worker nodes.

d e f u s e r u p d a t e ( s i n g l e u s e r v e c t o r , u s e r r a t i n g l i s t , pos ) :

g e n h a s h = s m a r t c o n t r a c t . g e t I t e m s V e c ( )

s u b p r o c e s s . run ( [ ’ i p f s ’ , ’ g e t ’ , g e n h a s h ] , s t d o u t = s u b p r o c e s s .

PIPE )

f =open ( ’ i t e m s v . p ’ , ’ rb ’ )

e n c r y p t e d i t e m v e c t o r = p i c k l e . l o a d ( f )

f . c l o s e ( )

i t e m v e c t o r = np . a r r a y ( [ [ p r i v a t e k e y . d e c r y p t ( e ) f o r e in

v e c t o r ] f o r v e c t o r in e n c r y p t e d i t e m v e c t o r ] , d t y p e =np .

f l o a t 3 2 )

g r a d i e n t = {}
f o r i t e m i d , r a t e , in u s e r r a t i n g l i s t :
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e r r o r = r a t e − np . d o t ( s i n g l e u s e r v e c t o r , i t e m v e c t o r [

i t e m i d ] )

s i n g l e u s e r v e c t o r = s i n g l e u s e r v e c t o r − l r * ( −2 *
e r r o r * i t e m v e c t o r [ i t e m i d ] + 2 * r e g u *
s i n g l e u s e r v e c t o r )

g r a d i e n t [ i t e m i d ] = l r * ( −2 * e r r o r *
s i n g l e u s e r v e c t o r + 2 * r e g v * i t e m v e c t o r [ i t e m i d

] )

e n c r y p t e d g r a d i e n t = { v e c t o r : [ p u b l i c k e y . e n c r y p t ( e ,

p r e c i s i o n =1e −5) f o r e in g r a d i e n t [ v e c t o r ] ] f o r v e c t o r in

g r a d i e n t }

f =open ( ’ u s e r o u t . p ’ , ’wb ’ )

p i c k l e . dump ({ ’ s i n g l e u s e r v e c t o r ’ : s i n g l e u s e r v e c t o r , ’

e n c r y p t e d g r a d i e n t ’ : e n c r y p t e d g r a d i e n t } , f )

f . c l o s e ( )

u s e r h a s h = s u b p r o c e s s . run ( [ ’ i p f s ’ , ’ add ’ , ’ u s e r o u t . p ’ ] ,

s t d o u t = s u b p r o c e s s . PIPE )

u s e r h a s h = u s e r h a s h . s t d o u t . decode ( ’ u t f −8 ’ ) . s p l i t ( ) [ 1 ]

s m a r t c o n t r a c t . s e tGradHash ( u s e r h a s h , pos )

Listing 2: Calculating loss.

d e f l o s s ( ) :

l o s s = [ ]

# User u p d a t e s

f o r i in r a n g e ( l e n ( u s e r i d l i s t ) ) :

f o r r in r a n g e ( l e n ( t r a i n d a t a [ u s e r i d l i s t [ i ] ] ) ) :

i t e m i d , r a t e , = t r a i n d a t a [ u s e r i d l i s t [ i ] ] [ r ]
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e r r o r = ( r a t e − np . d o t ( u s e r v e c t o r [ i ] , i t e m v e c t o r [

i t e m i d ] ) ) ** 2

l o s s . append ( e r r o r )

r e t u r n np . mean ( l o s s )

Listing 3: Calling smart contracts and passing gradients.

e n c r y p t e d i t e m v e c t o r = [ [ p u b l i c k e y . e n c r y p t ( e , p r e c i s i o n =1e −5)

f o r e in v e c t o r ] f o r v e c t o r in i t e m v e c t o r ]

f =open ( ’ i t e m s v . p ’ , ’wb ’ )

p i c k l e . dump ( e n c r y p t e d i t e m v e c t o r , f )

f . c l o s e ( )

g e n h a s h = s u b p r o c e s s . run ( [ ’ i p f s ’ , ’ add ’ , ’ i t e m s v . p ’ ] ,

s t d o u t = s u b p r o c e s s . PIPE )

g e n h a s h = g e n h a s h . s t d o u t . decode ( ’ u t f −8 ’ ) . s p l i t ( ) [ 1 ]

s m a r t c o n t r a c t . s e t I t e m s V e c ( g e n h a s h )

f o r i t e r a t i o n in r a n g e ( m a x i t e r a t i o n ) :

e n c r y p t e d g r a d i e n t f r o m u s e r = [ ]

u s e r t i m e l i s t = [ ]

f o r i in r a n g e ( l e n ( u s e r i d l i s t ) ) :

u s e r u p d a t e ( u s e r v e c t o r [ i ] , t r a i n d a t a [ u s e r i d l i s t [

i ] ] , i )

r e t u r n e d h a s h = s m a r t c o n t r a c t . ge tGradHash ( i )

s u b p r o c e s s . run ( [ ’ i p f s ’ , ’ g e t ’ , r e t u r n e d h a s h ] ,

s t d o u t = s u b p r o c e s s . PIPE )
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f =open ( ’ u s e r o u t . p ’ , ’ rb ’ )

pob j = p i c k l e . l o a d ( f )

f . c l o s e ( )

u s e r v e c t o r [ i ] = pob j [ ’ s i n g l e u s e r v e c t o r ’ ]

g r a d i e n t = pob j [ ’ e n c r y p t e d g r a d i e n t ’ ]

e n c r y p t e d g r a d i e n t f r o m u s e r . append ( g r a d i e n t )

f o r g in e n c r y p t e d g r a d i e n t f r o m u s e r :

f o r i t e m i d in g :

f o r j in r a n g e ( l e n ( e n c r y p t e d i t e m v e c t o r [ i t e m i d

] ) ) :

e n c r y p t e d i t e m v e c t o r [ i t e m i d ] [ j ] =

e n c r y p t e d i t e m v e c t o r [ i t e m i d ] [ j ] − g [

i t e m i d ] [ j ]

Listing 4: Python based Smart contract APIs

d e f s e t I t e m s V e c ( new hash ) :

t x h a s h = c o n t r a c t . f u n c t i o n s . s e t I t e m s V e c t o r ( new hash ) .

t r a n s a c t ( )

web3 . e t h . w a i t F o r T r a n s a c t i o n R e c e i p t ( t x h a s h )

p r i n t ( ’ The new hash f o r I t e m s V ec to r has been s e t t o : {}
’ . f o r m a t (

c o n t r a c t . f u n c t i o n s . g e t I t e m s V e c t o r H a s h ( ) . c a l l ( )

) )

d e f g e t I t e m s V e c ( ) :

r e t u r n c o n t r a c t . f u n c t i o n s . g e t I t e m s V e c t o r H a s h ( ) . c a l l ( )

d e f getWorkerAdd ( ) :

r e t u r n c o n t r a c t . f u n c t i o n s . ge tWorke rAddres s ( ) . c a l l ( )
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d e f se tGradHash ( new hash , pos ) :

t x h a s h = c o n t r a c t . f u n c t i o n s . s e t G r a d i e n t s H a s h ( new hash ,

pos ) . t r a n s a c t ( )

web3 . e t h . w a i t F o r T r a n s a c t i o n R e c e i p t ( t x h a s h )

p r i n t ( ’ Done u p d a t i n g t h e g rad hash a r r a y ’ )

d e f ge tGradHash ( pos ) :

r e t u r n c o n t r a c t . f u n c t i o n s . g e t G r a d i e n t s H a s h ( pos ) . c a l l ( )

In this section thus far we demonstrated performance and scalability character-

istics among other things of critical elements of novelty in the FedSmarteum system

such as IPFS, federated learning, HE, etc., It is important to note that executing an enter-

prise customer purchase order across multiple cloud provider’s supply chains to massive

scale is both cost and time prohibitive. It is critical to call out that in addition to multi-

organization automation, there are several other intangibles that need to be considered

by both consumers and suppliers to orchestrate and reap benefits from multi-organization

automation. Table 7 attempts to summarize some of the key dimensions of implementing

FedSmarteum and deploying it as a plug and play system compared to several existing

supply chains that may have pockets of automation and optimization.

Furthermore, with such a system, we inch closer to building multi-organization

systems across any industry that is willing to share. For example pharmaceuticals and

drug delivery companies. Such organizations with research funding can share data across

a blockchain network that trains on its local privacy-preserved data and shares the model

outcomes and training results. Recommendation systems can be built to reduce or avoid
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Table 7: Tangible and intangible perspectives for multi-org organization supply chain

Area Existing Supply Chains FedSmarteum

Novelty No similar systems FedSmarteum

Automation

Partial and confined
to company’s firewalls,
SLAs are hard to meet

Makes multi-org
automaton possible

Transparency
Siloed data visibility,
minimal transparency

Will drive
incentivize
increased

transparency

Elapsed time
Days/weeks to

handle non-digital

Hours (potentially),
with stakeholder

agreement

Incentive to improve
Lack of clear

E2E accountability

Hold supply chain
blocking entities

accountable

Future work
Peephole optimizations,

incremental at best

AI to improve
predictions

and preempt issues,
increased stakeholder

collaboration

unnecessary research, be highly accurate saving both time and money by alerting par-

ticipating entities of training results. The smart contracts orchestrate the learning so all

epochs and rounds are calculated and immutable. This can easily lend itself to attribution

of who contributed what and how much to the model accuracy. Such a transparent system

allows for revenue sharing models as well as build trusts across the board.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

Democratization via a decentralized architecture provides equal rights for clients

to share unbiased data. The effective use of blockchain to drive the underpinnings of

the supply chain in general and specifically for cloud provider supply chain procurement

and deployment will vastly change the landscape of customer, cloud provider, and their

vendors. This will help cloud providers focus their attention on improving their internal

processes and automation and servicing their customers even more efficiently with trust

in resiliency in their engagement. AI has cemented its place as the tool of choice for

analytic workloads and also helps build predictive models that are able to assist and auto-

mate workflows across multi-organizations business networks. Current implementations

lean toward federated learning for training AI models on private data. However, federated

learning relies on a central server to perform the global computation progress which can

lead to several issues related to handling data heterogeneity between parties, coordination

of learning process, bias due to lack of verification datasets, single point of failure, and

above all communication overhead between parties involved. We proposed a decentral-

ized federated learning matrix factorization technique implemented using a blockchain.

Our implementation leverages the use of smart contracts to orchestrate and automate the

asset procurement process. This immutable, decentralized architecture reduces the over-

head communication between the server and all the nodes while retaining data ownership
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and privacy with participants. Additionally, we eliminated the single point of failure and

proved that decentralized recommendation systems can be implemented using blockchain

while maintaining the model accuracy with marginal overhead in computational time. We

hope this paper will inspire cloud providers and their supplier community to consider a

decentralized framework as they engineer their next generation of supply chain automa-

tion.

We believe the watershed moment for transparent and trustworthy multi-organization

supply chain orchestration has arrived. To further our research in this area, we plan to fo-

cus on reducing the time required to complete a single iteration and worker node updates

using our decentralized federated learning technique. We also hope to design more accu-

rate prediction models for resource procurement and deployment through the effective use

of reinforced learning. We hope to explore similar techniques to homomorphic encryption

that requires less computing and updating time. Reducing the communication between

worker nodes, IPFS, and smart contracts will reduce the execution time in each iteration.

We are also investigating model governance and how cloud providers can have access to

the model based on the provided training data and accuracy before and after including

each cloud provider. Finally, we want to further improve this framework’s plug-and-play

delivery model to solve various other industry supply chains challenges.
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CHAPTER 8

APPENDIX

Listing 5: A simple contract

pragma s o l i d i t y ˆ 0 . 5 . 1 ;

c o n t r a c t P r o v i s i o n i n g B l o c k C h a i n {
s t r i n g systemName ;

c o n s r u c t o r ( ) p u b l i c {
SystemName = ” P r o v i s i o n i n g B C ” ;

}
f u n c t i o n getSys tenName ( ) p u b l i c view r e t u r n s ( s t r i n g memory )

{
r e t u r n systemName ;

}
f u n c t i o n setSystemName ( s t r i n g memory sysName ) p u b l i c {

systemName = sysName ;

}
}

Listing 6: Using the public keyword

pragma s o l i d i t y ˆ 0 . 5 . 1 ;

c o n t r a c t P r o v i s i o n i n g B l o c k C h a i n {
s t r i n g p u b l i c systemName = ” P r o v i s i o n i n g B C ” ;

f u n c t i o n setSystemName ( s t r i n g memory sysName ) p u b l i c {
systemName = sysName ;

}
}
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Listing 7: Using enum in a smart contract

pragma s o l i d i t y ˆ 0 . 5 . 1 ;

c o n t r a c t P r o v i s i o n i n g B l o c k C h a i n {
enum S t a t e {Wait ing , Dev , T e s t i n g , A c t i v a t e }
S t a t e p u b l i c p b c S t a t e = S t a t e . Wai t i ng ;

f u n c t i o n pbcDev ( ) p u b l i c {
p b c S t a t e = S t a t e . Dev ;

}
f u n c t i o n i s A c t i v a t e ( ) p u b l i c view r e t u r n s ( boo l ) {

r e t u r n p b c S t a t e == S t a t e . A c t i v e ;

}
}

Listing 8: Four services in the smart contract

pragma s o l i d i t y ˆ 0 . 5 . 1 ;

c o n t r a c t P r o v i s i o n i n g B l o c k C h a i n {
/ / A d a t a s t r u c t u r e w i l l be added h e r e

f u n c t i o n a d d S e r v i c e ( a d d r e s s s e r v i c e ) p u b l i c {
r e q u i r e ( ! i s C u r r e n t S e r v i c e ( s e r v i c e ) ) ;

/ / TODO

}
f u n c i o n d e l S e r v i c e ( a d d r e s s s e r v i c e ) p u b l i c {

( r e q u i r e ( ! i s C u r r e n t S e r v i c e ( s e r v i c e ) ) ;

/ / TODO

}
f u n c t i o n i s C u r r e n t S e r v i c e ( a d d r e s s s e r v i c e ) p u b l i c view

r e t u r n s ( boo l ) {
/ / TODO

}
f u n c t i o n g e t A l l S e r v i c e s ( ) p u b l i c view r e t u r n s ( a d d r e s s [ ]

memory ) {
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/ / TODO

}
}

Listing 9: Using mapping in the smart contract

pragma s o l i d i t y ˆ 0 . 5 . 1 ;

c o n t r a c t P r o v i s i o n i n g B l o c k C h a i n {
mapping ( a d d r e s s => boo l ) s e r v i c e s ;

/ / A d a t a s t r u c t u r e w i l l be added h e r e

f u n c t i o n a d d S e r v i c e ( a d d r e s s s e r v i c e ) p u b l i c {
r e q u i r e ( ! i s C u r r e n t S e r v i c e ( s e r v i c e ) ) ;

s e r v i c e s [ s e r v i c e ] = t rue ;

}
f u n c i o n d e l S e r v i c e ( a d d r e s s s e r v i c e ) p u b l i c {

( r e q u i r e ( ! i s C u r r e n t S e r v i c e ( s e r v i c e ) ) ;

s e r v i c e s [ s e r v i c e ] = f a l s e ;

}
f u n c t i o n i s C u r r e n t S e r v i c e ( a d d r e s s s e r v i c e ) p u b l i c view

r e t u r n s ( boo l ) {
r e t u r n s e r v i c e s [ s e r v i c e ] ;

}
f u n c t i o n g e t A l l S e r v i c e s ( ) p u b l i c view r e t u r n s ( a d d r e s s [ ]

memory ) {
/ / TODO

}
}

Listing 10: Using arrays

pragma s o l i d i t y ˆ 0 . 5 . 1 ;

c o n t r a c t P r o v i s i o n i n g B l o c k C h a i n {
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a d d r e s s [ ] s e r v i c e s ;

f u n c t i o n a d d S e r v i c e ( a d d r e s s s e r v i c e ) p u b l i c {
r e q u i r e ( ! i s C u r r e n t S e r v i c e ( s e r v i c e ) ) ;

s e r v i c e s . push ( s e r v i c e ) ;

}
f u n c i o n d e l S e r v i c e ( a d d r e s s s e r v i c e ) p u b l i c {

( boo l found , u i n t 2 5 6 index ) = g e t S e r v i c e I n d e x ( s e r v i c e ) ;

r e q u i r e ( found ) ;

f o r ( u i n t 2 5 6 i = index ; i< s e r v i c e s . l e n g t h ; ++ i ) {
s e r v i c e s [ i −1] = s e r v i c e s [ i ] ;

}
s e r v i c e s . pop ( ) ;

}
f u n c t i o n i s C u r r e n t S e r v i c e ( a d d r e s s s e r v i c e ) p u b l i c view

r e t u r n s ( boo l ) {
( boo l found , ) = g e t S e r v i c e I n d e x ( s e r v i c e ) ;

r e t u r n found ;

}
f u n c t i o n g e t A l l S e r v i c e s ( ) p u b l i c view r e t u r n s ( a d d r e s s [ ]

memory ) {
r e t u r n s e r v i c e s ;

}

f u n c t i o n g e t S e r v i c e I n d e x ( a d d r e s s s e r v i c e ) i n t e r n a l view

r e t u r n s ( bool , u i n t 2 5 6 ) {
f o r ( u i n t 2 5 6 i = 0 ; i<s e r v i c e s . l e n g t h ; ++ i ) {

i f ( s e r v i c e == s e r v i c e s [ i ] ) {
r e t u r n ( true , i )

}
}
r e t u r n ( f a l s e , 0 ) ;
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}
}

Listing 11: Mapping address to another address

mapping ( a d d r e s s => a d d r e s s ) n e x t S e r v i c e ;

u n i t 2 5 6 p u b l i c l i s t S i z e ;

a d d r e s s c o n s t a n t p l a c e H o l d e r = a d d r e s s ( 1 ) ;

c o n s t r u c t o r ( ) p u b l i c {
n e x t S e r v i c e [ p l a c e H o l d e r ] = p l a c e H o l d e r ;

}

Listing 12: Adding a service

f u n c t i o n a d d S e r v i c e ( a d d r e s s s e r v i c e ) p u b l i c {
r e q u i r e ( ! i s C u r r e n t S e r v i c e ( s e r v i c e ) ) ;

n e x t S e r v i c e s [ s e r v i c e ] = n e x t S e r v i c e s [ p l a c e H o l d e r ] ;

n e x t S e r v i c e s [ p l a c e H o l d e r ] = s e r v i c e ;

l i s t S i z e ++;

}

Listing 13: Deleting a service

f u n c t i o n d e l S e r v i c e ( a d d r e s s s e r v i c e ) p u b l i c {
r e q u i r e ( i s C u r r e n t S e r v i c e ( s e r v i c e ) ) ;

a d d r e s s p r e v S e r v i c e = g e t P r e v S e r v i c e ( s e r v i c e ) ;

n e x t S e r v i c e s [ p r e v S e r v i c e ] = n e x t S e r v i c e s [ s e r v i c e ] ;

n e x t S e r v i c e s [ s e r v i c e ] = a d d r e s s ( 0 ) ;

l i s t S i z e −−;

}

Listing 14: Get the previous service
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f u n c t i o n g e t P r e v S e r v i c e ( a d d r e s s s e r v i c e ) i n t e r n a l view r e t u r n s (

a d d r e s s ) {
a d d r e s s c u r A d d r e s s = p l a c e H o l d e r ;

w h i l e ( n e x t S e r v i c e s [ c u r A d d r e s s ] != p l a c e H o l d e r ) {
i f ( n e x t S e r v i c e s [ c u r A d d r e s s ] == s e r v i c e ) {

r e t u r n c u r A d d r e s s ;

}
c u r A d d r e s s = n e x t S e r v i c e s [ c u r A d d r e s s ] ;

}
r e t u r n a d d r e s s ( 0 ) ;

}

Listing 15: List all existing services

f u n c t i o n g e t A l l S e r v i c e s ( ) p u b l i c view r e t u r n s ( a d d r e s s [ ] memory ) {
a d d r e s s [ ] memory s e r v i c e s = new a d d r e s s [ ] ( l i s t S i z e ) ;

a d d r e s s c u r A d d r e s s = n e x t S e r v i c e s [ p l a c e H o l d e r ] ;

f o r ( u i n t 2 5 6 i = 0 ; c u r A d d r e s s != p l a c e H o l d e r ; ++ i ) {
s e r v i c e s [ i ] = c u r A d d r e s s ;

c u r A d d r e s s = n e x t S e r v i c e s [ c u r A d d r e s s ] ;

}
r e t u r n s e r v i c e s ;

}

In this section, we provide few code snippets to help with results reproduction.

For example, listing 16

Listing 16: User update on worker nodes.

d e f u s e r u p d a t e ( s i n g l e u s e r v e c t o r , u s e r r a t i n g l i s t , pos ) :

g e n h a s h = s m a r t c o n t r a c t . g e t I t e m s V e c ( )
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s u b p r o c e s s . run ( [ ’ i p f s ’ , ’ g e t ’ , g e n h a s h ] , s t d o u t = s u b p r o c e s s .

PIPE )

f =open ( ’ i t e m s v . p ’ , ’ rb ’ )

e n c r y p t e d i t e m v e c t o r = p i c k l e . l o a d ( f )

f . c l o s e ( )

i t e m v e c t o r = np . a r r a y ( [ [ p r i v a t e k e y . d e c r y p t ( e ) f o r e in

v e c t o r ] f o r v e c t o r in e n c r y p t e d i t e m v e c t o r ] ,

d t y p e =np . f l o a t 3 2 )

g r a d i e n t = {}
f o r i t e m i d , r a t e , in u s e r r a t i n g l i s t :

e r r o r = r a t e − np . d o t ( s i n g l e u s e r v e c t o r , i t e m v e c t o r [

i t e m i d ] )

s i n g l e u s e r v e c t o r = s i n g l e u s e r v e c t o r − l r * ( −2 *
e r r o r * i t e m v e c t o r [ i t e m i d ] + 2 * r e g u *
s i n g l e u s e r v e c t o r )

g r a d i e n t [ i t e m i d ] = l r * ( −2 * e r r o r *
s i n g l e u s e r v e c t o r + 2 * r e g v * i t e m v e c t o r [ i t e m i d

] )

e n c r y p t e d g r a d i e n t = { v e c t o r : [ p u b l i c k e y . e n c r y p t ( e ,

p r e c i s i o n =1e −5) f o r e in g r a d i e n t [ v e c t o r ] ] f o r v e c t o r in

g r a d i e n t }

f =open ( ’ u s e r o u t . p ’ , ’wb ’ )

p i c k l e . dump ({ ’ s i n g l e u s e r v e c t o r ’ : s i n g l e u s e r v e c t o r , ’

e n c r y p t e d g r a d i e n t ’ : e n c r y p t e d g r a d i e n t } , f )

f . c l o s e ( )
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u s e r h a s h = s u b p r o c e s s . run ( [ ’ i p f s ’ , ’ add ’ , ’ u s e r o u t . p ’ ] ,

s t d o u t = s u b p r o c e s s . PIPE )

u s e r h a s h = u s e r h a s h . s t d o u t . decode ( ’ u t f −8 ’ ) . s p l i t ( ) [ 1 ]

s m a r t c o n t r a c t . s e tGradHash ( u s e r h a s h , pos )

Listing 17: Calculate user model loss.

d e f l o s s ( ) :

l o s s = [ ]

# User u p d a t e s

f o r i in r a n g e ( l e n ( u s e r i d l i s t ) ) :

f o r r in r a n g e ( l e n ( t r a i n d a t a [ u s e r i d l i s t [ i ] ] ) ) :

i t e m i d , r a t e , = t r a i n d a t a [ u s e r i d l i s t [ i ] ] [ r ]

e r r o r = ( r a t e − np . d o t ( u s e r v e c t o r [ i ] , i t e m v e c t o r [

i t e m i d ] ) ) ** 2

l o s s . append ( e r r o r )

r e t u r n np . mean ( l o s s )

Listing 18: Update the items model distributed

t i m e o r = t ime . t ime ( )

t = t ime . t ime ( )

e n c r y p t e d i t e m v e c t o r = [ [ p u b l i c k e y . e n c r y p t ( e , p r e c i s i o n =1e

−5) f o r e in v e c t o r ] f o r v e c t o r in i t e m v e c t o r ]

f =open ( ’ i t e m s v . p ’ , ’wb ’ )

p i c k l e . dump ( e n c r y p t e d i t e m v e c t o r , f )

f . c l o s e ( )

g e n h a s h = s u b p r o c e s s . run ( [ ’ i p f s ’ , ’ add ’ , ’ i t e m s v . p ’ ] ,

s t d o u t = s u b p r o c e s s . PIPE )

g e n h a s h = g e n h a s h . s t d o u t . decode ( ’ u t f −8 ’ ) . s p l i t ( ) [ 1 ]
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s m a r t c o n t r a c t . s e t I t e m s V e c ( g e n h a s h )

p r i n t ( ’ I t em p r o f i l e e n c r y p t u s i n g ’ , t ime . t ime ( ) − t , ’

s e c o n d s ’ )

f o r i t e r a t i o n in r a n g e ( m a x i t e r a t i o n ) :

p r i n t ( ’ I t e r a t i o n ’ , i t e r a t i o n )

# S tep 2 User u p d a t e s

e n c r y p t e d g r a d i e n t f r o m u s e r = [ ]

u s e r t i m e l i s t = [ ]

f o r i in r a n g e ( l e n ( u s e r i d l i s t ) ) :

u s e r u p d a t e ( u s e r v e c t o r [ i ] , t r a i n d a t a [ u s e r i d l i s t [

i ] ] , i )

r e t u r n e d h a s h = s m a r t c o n t r a c t . ge tGradHash ( i )

s u b p r o c e s s . run ( [ ’ i p f s ’ , ’ g e t ’ , r e t u r n e d h a s h ] ,

s t d o u t = s u b p r o c e s s . PIPE )

f =open ( ’ u s e r o u t . p ’ , ’ rb ’ )

pob j = p i c k l e . l o a d ( f )

f . c l o s e ( )

u s e r v e c t o r [ i ] = pob j [ ’ s i n g l e u s e r v e c t o r ’ ]

g r a d i e n t = pob j [ ’ e n c r y p t e d g r a d i e n t ’ ]

e n c r y p t e d g r a d i e n t f r o m u s e r . append ( g r a d i e n t )

# S tep 3 S e r v e r update

f o r g in e n c r y p t e d g r a d i e n t f r o m u s e r :
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f o r i t e m i d in g :

f o r j in r a n g e ( l e n ( e n c r y p t e d i t e m v e c t o r [ i t e m i d

] ) ) :

e n c r y p t e d i t e m v e c t o r [ i t e m i d ] [ j ] =

e n c r y p t e d i t e m v e c t o r [ i t e m i d ] [ j ] − g [

i t e m i d ] [ j ]

# f o r comput ing l o s s

i t e m v e c t o r = np . a r r a y ( [ [ p r i v a t e k e y . d e c r y p t ( e ) f o r e in

v e c t o r ] f o r v e c t o r in e n c r y p t e d i t e m v e c t o r ] )

p r i n t ( ’ l o s s ’ , l o s s ( ) )

m, s = divmod ( i n t ( t ime . t ime ( ) − t i m e o r ) , 60)

h , m = divmod (m, 60)

p r i n t ( f ’{h : d } :{m: 0 2 d } :{ s : 0 2 d} ’ )

Listing 19: Calculate user accuracy distributed.

p r e d i c t i o n = [ ]

r e a l l a b e l = [ ]

# t e s t i n g

f o r i in r a n g e ( l e n ( u s e r i d l i s t ) ) :

p = np . d o t ( u s e r v e c t o r [ i : i + 1 ] , np . t r a n s p o s e (

i t e m v e c t o r ) ) [ 0 ]

r = t e s t d a t a [ u s e r i d l i s t [ i ] ]

r e a l l a b e l . append ( [ e [ 1 ] f o r e in r ] )

p r e d i c t i o n . append ( [ p [ e [ 0 ] ] f o r e in r ] )

p r e d i c t i o n = np . a r r a y ( p r e d i c t i o n , d t y p e =np . f l o a t 3 2 )
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r e a l l a b e l = np . a r r a y ( r e a l l a b e l , d t y p e =np . f l o a t 3 2 )

p r i n t ( ’ rmse ’ , np . s q r t ( np . mean ( np . s q u a r e ( r e a l l a b e l −

p r e d i c t i o n ) ) ) )

Listing 20: Smart Contract API calls.

i m p o r t j s o n

from web3 i m p o r t Web3

# Set up web3 c o n n e c t i o n wi th Ganache

g a n a c h e u r l = ” h t t p : / / 1 2 7 . 0 . 0 . 1 : 7 5 4 5 ”

web3 = Web3 ( Web3 . HTTPProvider ( g a n a c h e u r l , r e q u e s t k w a r g s ={ ’

t i m e o u t ’ : 50} ) )

# Set a d e f a u l t a c c o u n t t o s i g n t r a n s a c t i o n s − t h i s a c c o u n t i s

u n l o c k e d wi th Ganache

web3 . e t h . d e f a u l t A c c o u n t = web3 . e t h . a c c o u n t s [ 0 ]

# G r e e t e r c o n t r a c t ABI

a b i = j s o n . l o a d s ( ’ ’ )

a d d r e s s = web3 . toChecksumAddress ( ’ ’ ) # FILL ME IN

# I n i t i a l i z e c o n t r a c t

c o n t r a c t = web3 . e t h . c o n t r a c t ( a d d r e s s = a d d r e s s , a b i = a b i )

d e f s e t I t e m s V e c ( new hash ) :

t x h a s h = c o n t r a c t . f u n c t i o n s . s e t I t e m s V e c t o r ( new hash ) .

t r a n s a c t ( )

web3 . e t h . w a i t F o r T r a n s a c t i o n R e c e i p t ( t x h a s h )
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p r i n t ( ’ The new hash f o r I t e m s V ec to r has been s e t t o : {} ’ .

f o r m a t (

c o n t r a c t . f u n c t i o n s . g e t I t e m s V e c t o r H a s h ( ) . c a l l ( )

) )

d e f g e t I t e m s V e c ( ) :

r e t u r n c o n t r a c t . f u n c t i o n s . g e t I t e m s V e c t o r H a s h ( ) . c a l l ( )

d e f getWorkerAdd ( ) :

r e t u r n c o n t r a c t . f u n c t i o n s . ge tWorke rAddres s ( ) . c a l l ( )

d e f se tGradHash ( new hash , pos ) :

t x h a s h = c o n t r a c t . f u n c t i o n s . s e t G r a d i e n t s H a s h ( new hash , pos )

. t r a n s a c t ( )

web3 . e t h . w a i t F o r T r a n s a c t i o n R e c e i p t ( t x h a s h )

p r i n t ( ’ Done u p d a t i n g t h e g rad hash a r r a y ’ )

d e f ge tGradHash ( pos ) :

r e t u r n c o n t r a c t . f u n c t i o n s . g e t G r a d i e n t s H a s h ( pos ) . c a l l ( )
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