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Abstract

We propose Cluster Pruning (CUP) for compressing and ac-
celerating deep neural networks. Our approach prunes simi-
lar filters by clustering them based on features derived from
both the incoming and outgoing weight connections. With
CUP, we overcome two limitations of prior work—(1) non-
uniform pruning: CUP can efficiently determine the ideal
number of filters to prune in each layer of a neural network.
This is in contrast to prior methods that either prune all lay-
ers uniformly or otherwise use resource-intensive methods
such as manual sensitivity analysis or reinforcement learn-
ing to determine the ideal number. (2) Single-shot operation:
We extend CUP to CUP-SS (for CUP single shot) whereby
pruning is integrated into the initial training phase itself. This
leads to large savings in training time compared to traditional
pruning pipelines. Through extensive evaluation on multi-
ple datasets (MNIST, CIFAR-10, and Imagenet) and models
(VGG-16, Resnets-18/34/56) we show that CUP outperforms
recent state of the art. Specifically, CUP-SS achieves 2.2x
flops reduction for a Resnet-50 model trained on Imagenet
while staying within 0.9% top-5 accuracy. It saves over 14
hours in training time with respect to the original Resnet-50.
Code to reproduce results is available her

1 Introduction

Deep neural networks (DNN) have achieved tremendous
success in many application areas such as computer vi-
sion (Simonyan and Zisserman 2014)), language translation
(Sutskever et al. 2014) and disease diagnosis (Esteva et al.
2017). However, their performance often relies on billions
of parameters and entails a large computational budget. For
example, VGG-16 (Simonyan and Zisserman 2014} encum-
bers 16 GFLOPS and 528 MB of storage space for inference
on a single image. This hinders their deployment in real-
world applications that require low memory resources or en-
tail strict latency requirements. Model compression aims at
reducing the size, computation and inference time of a neu-
ral network while preserving its accuracy.

In this paper, we propose a new channel pruning based
model compression method called Cluster Pruning or CUP,
that clusters and prunes similar filters from each layer. One

Uhttps://github.com/duggalrahul/CUP_Public

E Il VGG-16
g 400 Manual
= B CUP
Y
)
@
o 200
=
2 Ll
0 IIII ’ | -
5 10

Layer number

Figure 1: Comparison on the number of filters in each layer of
(1) the original VGG-16 model trained on CIFAR-10 (2) the com-
pressed VGG-16 obtained through manual sensitivity analysis (L1
et al. 2016) and (3) the compressed VGG-16 obtained through
CUP. Observe that the pruning pattern for CUP correlates highly
with the manual method. CUP can automatically determine that lay-
ers 1 to 7 are more sensitive than layers 8 to 14. Consequently, the
later layers are pruned more aggressively than the earlier ones.

of the key challenges in channel pruning is to determine
the optimal layerwise sparsity. For deep networks, introduc-
ing per layer sparsity as a hyperparameter leads to an in-
tractable, exponential search space. Many prior works either
completely avoid this problem by uniformly pruning all lay-
ers (He et al. 2017;|He et al. 2018aj;\He et al. 2019) or over-
come it using costly heuristics such as manual sensitivity
analysis (L1 et al. 2016)), reinforcement learning (He ef al.
2018b). Note that uniform pruning may lead to suboptimal
compression since some layers are less sensitive to pruning
than others (Liu et al. 2018)).

With CUP, we enable layerwise non-uniform pruning
whilst introducing only one hyperparameter ¢. In figure [T}
we compare the number of filters in the compressed VGG-16
model obtained via CUP versus the model obtained through
manual sensitivity analysis (Li ef al. 2016). We observe that
the pattern of pruning achieved by CUP correlates highly
with the manual method. Specifically, CUP automatically
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Training Flops  Accuracy (%)

Model Time (hr)  (x10°) (Top-1/Top-5)
Resnet-50 66.00 8.21 75.87 1 92.87
Resnet-50 CUP-SS  51.58 372 7439 / 91.94

Table 1: Comparison of training time on Imagenet ILSVRC 2012).
Each model was trained on 3x Titan Xp’s with 12 GB RAM each.
CUP-SS reduces the training time by over 14 hours while reducing
the flops by 2.2x. The final top-1/top-5 accuracy is within 1.5/1
percent of the original model.

determines that layers 1-7 are more sensitive to pruning than
layers (8 — 13). Thus the later layers are pruned more ag-
gressively than the earlier ones. Notice that the overall com-
pression achieved by CUP is significantly higher.

The second benefit of CUP is that it can operate in the
single-shot setting i.e. avoid any retraining whatsoever. This
is achieved by extending CUP to CUP-SS (for CUP single
shot) which iteratively prunes the original model in the ini-
tial training phase itself. This is done by calling CUP before
each training epoch. In contrast to recent methods (He et
al. 2018a; He et al. 2019; ?), CUP-SS reduces the num-
ber of flops during training which results in large savings in
training time. We compare the training times for different
models on Imagenet in table |I} Notice that CUP-SS saves
over 14 hours in training time while achieving 2.2x flops
reduction in comparison to training a full Resnet-50. The
compressed model loses less than 1.5% (1%) in top-1 (top-
5) accuracy compared to the original model. A substantial
saving in training time can be huge for scenarios that in-
volve frequent model re-training — for example, healthcare
wherein large models are retrained daily to account for data
obtained from new patients.

To summarise, in this paper we propose a new channel
pruning method — CUP that has the following advantages:

1. The pruning amount is controlled by a single hyperpa-
rameter. Further, for a fixed compression ratio, CUP can
automatically decide the appropriate number of filters to
prune from each layer.

2. CUP can operate in the single-shot setting (CUP-SS)
thereby avoiding any retraining. This massively reduces
the training time for obtaining the compressed model.

3. Through extensive evaluations on multiple datasets
(MNIST, CIFAR-10, and ImageNet) we show CUP and
CUP-SS provide state of the art compression perfor-
mance. We open-source all code to enable reproduction
and extension of the ideas proposed in this paper.

The rest of the paper is structured as follows. In section
we review related research. In section |3| we first describe
the CUP framework and then extend it to the single shot
setting—CUP—-SS. Then in section [4| we outline the evalu-
ation metrics and evaluate our method against recent state of
the art. In section [5] we perform ablation studies and sum-
marise our findings into actionable insights. Finally, in Sec-
tion [6] we conclude with a summary of our contributions.

2 Related Work

Neural Network Compression is an active area of research
wherein the goal is to reduce the memory, flops, or inference
time of a neural network while retaining its performance.
Prior work in this area can be broadly classified into the fol-
lowing four categories:

(1) Low-Rank Approximation: where the idea is to re-
place weight matrices (for DNN) or tensors (for CNNs) with
their low-rank approximations obtained via matrix or ten-
sor factorization (Jaderberg et al. 2014; Wang et al. 2018)).
(2) Quantization wherein compression is achieved by us-
ing lower precision (and fewer bits) to store weights and
activations of a neural network (Courbariaux et al. 2015}
Jacob et al. 2018)). (3) Knowledge Distillation wherein com-
pression is achieved by training a small neural network
to mimic the output (and/or intermediate) activations of a
large network (Hinton et al. 2015} [Crowley er al. 2018]).
(4) Pruning wherein compression is achieved by eliminat-
ing unimportant weights (Han et al. 2015 L1 et al. 2016;
/huang et al. 2018). Methods in these categories are con-
sidered orthogonal and are often combined to achieve more
compact models.

Within pruning, methods can either be structured or un-
structured. Although the latter usually achieves better prun-
ing ratios, it seldom results in flops and inference time reduc-
tion. Within structured pruning, a promising research direc-
tion is channel pruning. Existing channel pruning algorithms
primarily differ in the criterion used for identifying prune-
able filters. Examples include pruning filters, with smallest
L1 norm of incoming weights (Li et al. 2016), largest av-
erage percentage of zeros in their activation maps (Hu e
al. 2016)), using structured regularization (Wen et al. 2016;
Liu et al. 2017) or with least discriminative power (Zhuang
et al. 2018)). Some of these methods (L1 ef al. 2016; He er
al. 2017) involve per layer hyperparameters to determine
the number of filters to prune in each layer. However, this
can be costly to estimate for deep networks. Other methods
avoid this issue by doing uniform pruning (He ef al. 2018a;
He et al. 2019). This, however, can be a restrictive setting
since some layers are less sensitive to pruning than others
(L1 et al. 2016)).

Channel pruning based model compression has tradi-
tionally employed a three-step regime involving (1) train-
ing the full model (2) pruning the full model to desired
sparsity and (3) retraining the pruned model. However, re-
cently some works have tried to do away with the retrain-
ing phase altogether (He er al. 2018a; |He et al. 2019; ?;
?). In this paper, we call this single-shot setting. Since it
avoids any retraining, the single-shot setting can reduce the
training time for obtaining a compressed model by atleast
2x. With CUP-SS, however, we are able to further reduce
the training time by iteratively pruning the model during the
training phase itself. The reduction in flops during training
results manifests itself with a decrease in training time. In
the next section, we describe the CUP framework and dis-
cuss its extension to CUP—-SS.



3 cuUP Framework
3.1 Notation

To maintain symbolic consistency, we use a capital symbol
with a tilde, like W, to represent tensors of rank 2 or higher
(i.e. matrices and beyond). A capital symbol with a bar, like
F, represents a vector while a plain and small symbol like
b represents a scalar. A lower subscript indicates indexing,
so, F; ; indicates the element at position (7,5) while a su-
perscript with parenthesis like W () denotes parameters for
layer [ of the network.

3.2 CUP overview

Per layer cluster
count n®
(manual mode)

Global similarity
thresholdt  OR
(automatic mode)

Input Output
Layer | _| Compute per Cluster filters N Prune filters |Pruned layer [
filter features based on features from clusters

Step 1 Step 2 Step 3

Figure 2: Method overview for Cluster Pruning (CUP).

The CUP pruning method is essentially a three-step pro-
cess and is outlined in figure[2] The first step computes fea-
tures that characterize each filter. These features are specific
to the layer type (fully connected vs convolutional) and are
computed from the incoming and outgoing weight connec-
tions. The second step clusters similar filters based on the
features computed previously. This step can operate in either
manual or automatic mode. The third and last step chooses
the representative filter from each cluster and prunes all oth-
ers. In the following subsections, we go over the three steps
in detail.

3.3 Step 1: Feature computation

The feature set for a filter depends on whether it is a part
of a fully connected layer or a convolutional layer. In this
section, we assume layers [ — 1,7/ and [ + 1 of the neural
network contain n, m and p filters respectively.
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Figure 3: Feature computation for filters in (a) fully connected lay-
ers and (b) convolution layers of a neural network.

Fully Connected Layers

The I** fully connected layer is parametrized by weights
WO e R™*" and bias E(l) € R™. Within this layer, filter
1 performs the following nonlinear transformation.

0 =0+ B (1)
Where 0" s the output vector from layer | — 1,
WEZ) , EE” are the i*" row vector and element of the weight

matrix and bias vector respectively. These also constitute
the set of incoming weights to filter <. Finally, o is a non-

linear function such as RELU. Note that the weight vector

—=(I+1
W( 1+ ) € RP corresponds to column ¢ of the weight matrix

for layer [ + 1. Equivalently, these are also the weights on
outgoing connections from filter ¢ in layer .

‘We define ﬁi(f:) , the feature set of filter ¢ as

fi(ﬁl:) = concat (Wi(l:),ﬁl(-l), ’Wz(éﬂ) ) 2
; ;

input features  output features

where concat concatenates twa vectors into one. We have

F( ) € R+P+1 a5 shown in ﬁg

Convolutional Layers : The /' convolutional layer is
completely parameterized by the 4-D weight tensor W) ¢

Rxm>knxFw and the bias vector BY € R™. The four di-
mensions of W) correspond to - number of input channels
(n), number of filters in layer [ (m), height of filter (k) and
width of filter (k,,). The convolution operation performed by
filter 7 in layer [ is defined below

oW

7,patc

(l))

p=oW% 200  +B 3)

patc

Where OZ patc
a kj, x k,, spatial crop Q(;thh € R™*Fnxkw of the output
map of layer [ — 1. Also W( ) e Rrxknxku and B(l) €ER

are the input weight tensor and bias for filter ¢ in layer [. ®
computes the elementwise dot product between 4-D tensors

A, BasA® B = Ea Eb Zc Ed Aa,b,c,dBa,b,c,d~
We define Fi(’lz), the feature set of filter % as

€ Ris the output of filter 4 computed on

Fy) = concat(g(WY, ).67, WiTY ) @

input features output features

Q(X:,:,:) = [HXL:,:”FwHyH)Z—C,:,:”F] (5)

Here g : R x R x R® — R® computes the channel-
wise frobenius norm of any arbitrary 3D tensor X . The input
features in (@) are computed from weights corresponding to
filter <. The output features are computed from channels of
filters in the succeeding layer that operate on the activation
map produced by filter <. The input and output features are il-

lustrated in ﬁgure Like before, we have fl(l) € Rrp+l



3.4 Step 2: Clustering similar filters

Given feature vector F, i(,l:) € R" P11 for each filter 7 in layer
l, we cluster similar filters in that layer using agglomerative
hierarchical clustering (Wilks 2011, Chapter 15). The clus-
tering algorithm permits two modes of operations - manual
and automatic. These modes offer the tradeoff between 1)
the user’s control on the exact compressed model architec-
ture and 2) The number of hyperparameters introduced in
the compression scheme.

o Manual mode: This mode requires to specify the num-
ber of clusters nY) for each layer I. As we will see in
step 3, n(!) also equals the number of remaining filters in
layer [ post pruning. This control over the exact architec-
ture however, comes at the cost of expensive hyperparam-
eter search to identify optimal n("). Prior work by (He er
al. 2018b) demonstrates an automated strategy using rein-
forcement learning to successfully identify optimal n(").

e Automatic mode: This mode uses a single hyperparam-
eter - the global distance threshold ¢ to automatically de-
cide the number of filters to prune in each layer [. This
mode trades the ability to specify exact models with intro-
ducing fewer hyperparameters - only 1 in this case. Auto-
matic mode is advantageous in situations wherein hyper-
parameter search is costly. These might include pruning a
deep model trained on large datasets where it may not be
feasible to use an RL based search strategy to train 100s
of candidate compressed models.

In our experiments, we use the standard python imple-
mentation of hierarchical clusteringﬂ To cluster filters in

layer [, the algorithm starts off with m clusters CEI)W €
[1,m] each containing a single filter (Remember layer { con-
tains m filters). In each iteration, the algorithm merges two
clusters as per the Wards variance minimization criterion.

The criterion specifies to merge two clusters <c§,”, (Cz(ll) that
lead to the least decrease in intra cluster variance over all
possible pairings of clusters in C(Y), This clustering opera-
tion can be visualized as building a binary tree (called the
dendrogram) with weighted edges as in figure ] Each non-
leaf node of the dendrogram specifies a cluster with the
height corresponding to the distance between its children
(figure [d).

The automatic mode corresponds to clipping the dendro-
gram at height ¢, for all layers, thus leading to clusters cor-
responding to ¢. Figure []illustrates automatic mode cluster-
ing for 8 filters wherein the threshold ¢ leads to 3 clusters.
In manual mode, the cluster merge operation is performed
m —n(") times for layer [. Thus post clustering, we have ex-
actly n( clusters or [CY)| = n(), Regardless of operating
mode, the output of step 2 is the set of clusters CY) corre-
sponding to filters in layer [ of the neural network.

3.5 Step 3 : Dropping filters from clusters
Given the set of filter clusters C() for layer [, we formulate
pruning as a subset selection problem. The idea is to deter-

Zhttps://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.
html
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Figure 4: Illustration for automatic mode clustering on layer [ con-
taining 8 filters. Clipping the dendrogram using threshold ¢ leads
to 3 clusters.

mine the most representative subset of filters SS-I) for all filter
clusters Cg) € CW. Pruning then corresponds to replacing

all filters in (Cg-l) by SS-I). Note that SS-I) also denotes the set
of filters remaining after pruning.

Motivated by prior work, several subset selection criterion
can be formulated as below

e Norm based : (L1 er al. 2016) prune filters based on the
[1 norm of incoming weights. So norm based subset se-
lection may amount to choosing the top k% filters having
the highest feature norm as the cluster representative.

e Zero activation based : (Hu er al. 2016) prune filters
based on the average percentage of zeros (ApoZ) in their
activation map when evaluate over a held-out set. So this
method may amount to choosing the top k% filters having
least ApoZ as the cluster representative.

e Activation reconstruction based : (He er al 2017)
prunes filters based on its contribution towards the next
layer’s activation. So this method may amount to choos-
ing top k% filters having maximum contribution.

In this paper, we chose the norm based subset selection
criterion while constraining the cluster representative to con-
tain a single filter. Thus

st = argmax”ﬁi(l.) l|2 ©)
iect 7.

Here ﬁi(l:) € R™TP+1 ig the feature set for f i containing

both the input and output features. Note that since \Sg) |=1,
number of remaining filters in layer [ post pruning equals the
number of clusters.

3.6 Single-shot pruning

The traditional pruning pipeline involves a three-step pro-
cess - 1) train a base model, 2) prune to desired sparsity and
3) retrain. In the single shot pruning, steps 2,3 are discarded
and pruning is performed during the initial training phase.
We enable single-shot pruning through CUP-SS whereby
a small portion of the original model is pruned after every
epoch of the initial training phase. This is done by calling
CUP with a linearly increasing value for ¢ in each epoch of
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the training phase. We find that the following linear schedule
for t(e) (value of ¢ at epoch ) suffices for good performance.

tle)=ke+b @)

Here k,b are hyperparameters controlling the slope and

offset of the linear pruning schedule. A direct consequence

of single-shot pruning is a large reduction in training time.
The CUP-SS algorithm is outlined in algorithm|[I]

Algorithm 1 CUP-SS: Single Shot Cluster Pruning

1: procedure CUPSS(model, tgt_flops, k, b)
2: e+ 0

3: t<0

4: while e # n_epochs do

5: e<e+1

6: if get_flops(model) > tgt_flops then

7: t+ ke+bd >e.q. {7
8: model <— CUP(model, t)

9: end if

10: model < TRAIN (model,n_epochs = 1)

11: end while
12: end procedure

4 Experiments
4.1 Datasets
We evaluate our methods against prior art on three datasets.

e MNIST (LeCun et al. 1998)) : This dataset consists of
60,000 training and 10,000 validation images of handwrit-
ten digits between 0-9. The images are greyscale and of
spatial size 28 x 28.

e CIFAR-10 (Krizhevsky and Hinton 2009) : These
datasets consist of 50,000 training and 10,000 validation
images from 10 classes. The images are 3 channel RGB,
of spatial size 32 x 32.

o Imagenet 2012 (Russakovsky ef al. 2015)) : This dataset
consists of 1.28 million images from 1000 classes in the
training set and 50,000 validation images. The images are
3 channel RGB and are rescaled to spatial size 224 x 224.

4.2 Training Procedure & Baseline Models

For MNIST and CIFAR datasets, we reuse the training hy-
perparameter settings from (Liu ef al. 2017). All networks
are trained using SGD with batch size - 64, weight decay -
10~*, initial learning rate - 0.1 which is decreased by a tenth
at 1/2 and 3/4 the number of total epochs. On MNIST, we
train for 30 epochs while on CIFAR 10 the networks are
trained for 160 epochs. On Imagenet, we train with a batch
size of 256 for 90 epochs. The initial learning is set to 0.1.
This is reduced by a tenth at epochs 30 and 60. We use a
weight decay of 10~*. After compression, the model is re-
trained with the same strategy. The baseline models are de-
scribed next.

o ANN: We use the multiple layer perceptron with 784-500-
300-10 filter architecture in (Liu et al. 2017; Wen et al.
2016). This is trained upto 98.63% accuracy.

e VGG-16 (Simonyan and Zisserman 2014): This the stan-
dard VGG architecture with batchnorm layers after each
convolution layer. It is trained up to 93.64% on CIFAR-
10.

o Resnet-56 (He er al. 2016): We use the standard Resnet
model which is trained up to 93.67% on CIFAR-10.

e Resnet-{18,34,50} (He er al. 2016): We use the official
pytorch implementations for the three models. The base-
lines models have 69.87%, 73.59% and 75.86% Top-1 ac-
curacies on Imagenet respectively. For Resnets, we only
prune the first layer within each bottleneck.

4.3 Comparison metrics

We benchmark CUP against several recent state of the art
compression methods. Whenever possible, relevant results
are quoted directly from the referenced paper. For (Wen ef
al. 2016)) we use our implementation. The compression met-
rics are reported as M = COZ bp‘?f':md where P can be one of

the following measured attributes (MA).
e Parameter reduction (PR) : The MA is number of weights.

e Flops reduction (FR) : The MA is number of multiply and
add operations to score one input.

e Speedup: The MA is time to score one input on the CPU.

4.4 Comparison on accuracy change

Goal: To measure the change in accuracy while compressing
model B to M2 on the MNIST dataset.

Here, model B is a four layer fully connected neural network
and consists of 784-500-300-10 filters (Wen et al. 2016; |Liu
et al. 2017). In (Wen et al. 2016) model B is compressed
to model M1: 434-174-78-10 which corresponds to 83.5%
parameter reduction. In (Liu ef al. 2017) it is compressed to
model M2: 784 — 100 — 60 — 10 which corresponds to 84.4%
sparsity.

Result: We present results in table [2| under two settings—
(1) “Without retraining” wherein the trained model is pruned
and no retraining is done thereafter. A lesser drop in accu-
racy signifies the robustness of our filter saliency criterion.
For further intuition on our filter saliency criterion and its

Method Model Accuracy change (%)
Without With
retraining  retraining
Base B 0
random M2 -57.04% -0.18%
L2 M2 -19.04% -0.16%
L1 (Li et al. 2016) M2 -18.48% -0.25%
SSL (Wen et al. 2016) M1 - -0.10%
Slimming (Liu ef al. 2017) M2 - -0.06%
CUP M2 -13.26% 0.00%

Table 2: Accuracy change while compressing base model B (784 —
500—300—10) to the compressed model M1 (434—174—78—10)
and M2 (784 — 100 — 60 — 10). CUP achieves the best accuracy
with and without retraining.



Method Ell:;%le FR (%) élcl;l;;icy method sSll:);gle FR (x) Accuracy change
Resnet-56 on CIFAR 10 Resnet-18 on ImageNet
LT (Li et al. 2016} X 1.37x 0.02% Topl / Tops
ThiNet (Luo et al. 2017) X 1.99x -0.82% Slimming (Liu et al. 2017) X 1.39x  -1.77% / -1.29%
CP (He et al. 2017) X 2.00x -1.00% GM (He et al. 2019} X 171 -1.87% / -1.15%
GM (He et al. 2019) X 2.10x -0.33% COP () X 1.75x -2.48% |/ NA
GAL-0.8(?) X 2.45% -1.68% CuP X 1.75x  -1.00% / -0.79%
.coe X 277x ______-040% "SFP(Heetal. 2018a) /" 171x  -3.18% / -1.85%
SFP (He et al. 2018a) 4 2.10x -1.33% GM (He et al. 2019) v 1.71x  -247% / -1.52%
ZCNF;)(E) , ; 1.25x —0.78‘;7 CUP-SS v 1.75x  -2.50% / -1.40%
AL-0.6 (?) 1.59% -0.28%
GM (He et al. 2019) v 2,10 -0.70% Resnet-34 on ImageNet
CUP-SS v 2.12x -0.31% FR (x) Topl / Top5
L1 (Li et al. 2016) X 1.31x  -1.06% / NA
VGG-16 on CIFAPI}KI("M R GM (He et al. 2019} X 1.69%  -129% / 0.54%
: ] CUP X 1.78x  -0.86% / -0.53%
Ll Lieral 2016) X 277 /151x -0.15% SFP(Heeral 2018a) /169X 2.09% / -129%
ThiNet (Luo et al. 2017) X 1.92x /2.00x -0.14% GM (He et al. 2019} v/ 1.69%  2.13% / -0.92%
CP (He et al. 2017} X 1.92x/200x  -0.32% cupSS ' v 171 161% 7 -102%
Slimming (Liu ef al. 2017) X 8.71x /2.04x -0.19%
VIB (Dai ef al. 2018} X 17.27x/343x  -0.20% Resnet-50 on ImageNet
GAL-0.1(?) X 5.61x /1.82x -0.54% FR (x) Topl / Top5
Scue X 2338x/370x  -070% Thinet (Luo ef al. 2017) X 2.25x  -1.87% / -1.12%
VCNP (?) v 3.75%x /1.64% -0.07% CP (He et al. 2017) X 2.00x NA / -1.40%
GAL-0.1 (?) v 5.61x /1.82x -3.18% NISP (Yu ef al. 2018) X 1.78x  -0.89% / NA
CUP-SS v 17.12x /3.15% -0.40% SFP (He et al. 2018a) X 2.15x  -14.0% / -8.20%
FCF (?) X 2.33x  -1.60% / -0.69%
Table 3: Comparison with prior art on CIFAR-10. The dotted line GAL-0.3-joint (?) _ X 222 -4.35% | -2.05%
. R .. . 1. GM (He et al. 2019) X 2.15x  -1.32% / -0.55%
separates methods with and without re-training. FR and PR indicate CUP X 2.47%  -127% | -0.81%
the flops and parameter reduction (higher is better). Our goal here TSFP(Heeral 201820 v/ T T T1M1x  154% 1 081%
is to maximize FR and PR for an acceptable change in accuracy. GM (He et al. 2010} v/ 2.15x  -2.02% / -0.93%
CUP-SS v 220x  -1.47% / -0.88%

connection to magnitude pruning, we refer the reader to Ap-
pendix Under setting (2): “with retraining”, we retrain
the model post pruning. Observe that CUP fully recovers
model B’s performance and there is no loss in the com-
pressed model’s accuracy.

Key Takeaway: CUP leads to the smallest drop in accuracy.

4.5 Comparison on parameter and flop reduction

Goal: To maximize the flops (or parameter) reduction while
maintaining a reasonable drop in accuracy.

Result: In tables [3] 4] we present the flops and parameter re-
duction along with the accuracy change from the baseline
model. For a fair comparison, we consider two settings -
“With retraining” which is indicated by a X, and “without
retraining” or single shot which is indicated by a /.

With retraining: In the first half of tables [3 4] we con-
sider the traditional 3 stage pruning setting where retraining
is allowed. As a model designer using CUP, our aim is to set
as high a t that leads to some acceptable loss in accuracy.
Consequently, we identify the optimal ¢ using a simple line-
search as detailed in the following section on ablation study
and Appendix [D| From the tables we see that CUP always
leads to a higher flops reduction (FR) for a lower or compa-
rable drop in accuracy.

Without retraining: In the lower half of tables [3| @] we
don’t allow any retraining post pruning. As a model designer
using CUP-SS, our aim is to identify the optimal %, b that
lead to some acceptable loss in accuracy. We determine the
best k, b through a line search on k£ while constraining b = 0
(for CIFAR-10) and b = 0.3 (for Imagenet). Detailed anal-

Table 4: Comparison with prior art using Resnets trained and eval-
vated on Imagenet. FR indicates flop reduction (higher is better).
NA denotes non-availability in the original paper. Notice that some
methods achieve lesser accuracy change. However it must be noted
that these models are less compact as evidenced by the lower FR.

ysis is presented in the section on ablation study and Ap-
pendix [D]

Key Takeaway: We notice that when retraining is allowed,
we always obtain higher compression regardless of the
method used. This is to be expected since multi-shot meth-
ods expend more resources while training. The real benefit
for single-shot methods comes with the drastic reduction in
training time as we will see in the next subsection.

4.6 'Training time speedup

Goal: To minimize the training time while maximizing the
flops reduction (FR) and top-1 accuracy. No model retrain-
ing is allowed.

Result: In table 5| we present the Top 1 accuracy, flops re-
duction and training times for Resnet-50 models on Ima-
genet. Observe that CUP-SS saves almost 6 hours with re-
spect to its nearest competitor (GM) with the minimum FR.
Further, the model obtained has higher top-1 accuracy. No-
tably, it saves almost 8 hours with respect to the original
Resnet-50.

Key Takeaway: CUP-SS leads to fast model training.

4.7 Comparison on inference time speedup
Goal: To study the effect of CUP on inference time.
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Figure 5: Results for compressing VGG-16 (on CIFAR-10) versus global threshold ¢. (a) accuracy of the compressed model (in %) versus ¢
(b) parameter reduction versus ¢, (c) flop reduction versus ¢, (d) shows wall clock speedup versus ¢.

Top-1 Training Time
Method Acc (%) TROD(GPU Hours)
Resnet-50 7587  1.00% 66.0
SFP (He eral. 2018a)  74.61  1.73x 61.8
GM (Heeral 2019) 7413  2.15% 62.2
CUP-85 7434 221x 51.6

Table 5: Comparison of training time for Resnet-50 on Imagenet. 1
GPU hour implies 1 hour of training on 3 Titan Xp GPUs @ 12 GB
RAM each. FR indicates flops reduction (higher is better). CUP-SS
saves more than 10 hours with respect to its nearest competitor
(GM) while maximizing FR and Top-1 accuracy. Higher Top-1 of
SFP is because it is much less compact than other models (1.73 %
FR versus 2.15x and 2.21 x).

Result: In figure[5d] we plot the inference time speedup ver-
sus t for a VGG-16 model trained on CIFAR-10. Indeed, we
see that with higher ¢, the speedup increases. Specifically for
t = 1, the model is 4.6 x faster.

Key Takeaway: CUP and CUP-SS speed up inferencing.

5 Ablation studies
5.1 Oncupfort

Goal: To study the effect of varying ¢ in CUP.

Result: In figure 5] We apply CUP to 9 VGG-16 models on
CIFAR-10 corresponding to ¢t ~ Uniform(0.7,1.1). The
final accuracy, parameters reduction, flops reduction and in-
ference time speedup are plotted in fig[Sh-d. Like previous
studies, we see from fig[5a] that mild compression first leads
to an increase (94.17% from 93.61%, for t = 0.75) in valida-
tion accuracy. However, further compression (¢ = [0.8—1.1]
leads to a drop in accuracy.

Key Takeaway: Higher ¢ leads to more compression.

5.2 Oncup-ss for k,b

Goal: To study the effect of varying k, b in CUP-SS.

Result: In fig [ we plot the final accuracy for VGG-16
and Resnet-56 trained on CIFAR-10 versus k. Recall that
k controls the slope of the single-shot pruning schedule in-
troduced in while b is the offset. We constrain b = 0.
From the figure, we see that for both VGG-16 (fig [6d) and

Resnet-56 (fig[6b) the ideal value of k lies somewhere in the
middle of the interval [0.01, 0.05]. A too small or a too large
value of k leads to a larger drop in accuracy.

Key Takeaway: A very fast pruning schedule (high k) can
damage the neural network whereas a very slow pruning rate
may lead to incomplete pruning.
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Figure 6: Validation accuracy on CIFAR-10 versus & for compress-
ing (a) VGG-16 and (b) Resnet-56 using CUP-SS. As intuition
suggests, A very fast pruning schedule (high k) can damage the
neural network whereas a very slow pruning rate may lead to in-
complete pruning.

6 Conclusion

In this paper, we proposed a new channel pruning based
method for model compression that prunes entire filters
based on similarity. We showed how hierarchical cluster-
ing can be used to enable layerwise non-uniform pruning
whilst introducing only a single hyperparameter. Using var-
ious models and datasets, we demonstrated that CUP and
CUP-SS achieve the highest flops reduction with the least
drop in accuracy. Further, CUP-SS leads to large savings in
training time with only a small drop in performance. We also
provided actionable insights on how to set optimal hyperpa-
rameters values. In this work, we used a simple yet effec-
tive linear trajectory for setting ¢ in CUP-SS. In future, we
would like to extend this to non linear pruning trajectories
with goal of further reducing the training time.
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A Intuition behind clustering filters

In this section we build the intuition behind clustering filters
based on features derived from both incoming and outgo-
ing weights. Consider one simple case of a fully connected
neural network with n, m filters in layers [ — 1 and [, re-

spectively. Here layer [ is parametrized by weights wo e

R™*™ and bias b") € R™. Within this layer, filter i performs
the following nonlinear transformation.

—(1 —)=(-1

0, = o(W0" ™ 44" ®)
Where OV
the i** row and element of the weight matrix and bias vec-
tor respectively. These also constitute the set of incoming
weights to filter ¢. Finally o is a non linear function such as
RELU.

Given this notation, a filter k in layer [ + 1 receives
the combined contribution from filters % and j equal to

Wééﬂ)@(l) + Wé§+1)5§l) where W™ and W,g.ﬂ) are

is the output from layer [ — 1, Wl(l), bgl) are

the weights from filter ¢ to filter k£ and from j to k, respec-
tively. This is illustrated in the top of figure

Depending on the input and output weight values, the fol-
lowing two cases can arise

o If the input weights of filter ; and ; are same (Srini-
vas and Babu 2015) (e, W.” = W and " = b\ )

or equivalently 62@ = 5;”. Then the combined contri-
bution can be provided by a single filter with output con-

nection weight N,SH) + Wééﬂ) and the other filter can
be pruned. This case corresponds to clustering and prun-
ing similar filters ¢ and j based on input weights and is

illustrated in figure [/|bottom left.

o If the output weights of filters : and j are same (i.e.
Wlxﬂ) = Wééﬂ)) Then combined contribution can be

provided by an equivalent filter computing 61@ + 6?
and the other filter can be pruned. This case corresponds
to clustering and pruning similar filters ¢ and j based on
output weights and is illustrated in figure [7]bottom right.

Inspired from these idealised scenarios, we propose to iden-
tify and prune similar filters based on features derived from
both incoming and outgoing weights.

B Filter Saliency & connection to magnitude
pruning
(Han et al. 2015) propose to prune individual weight con-
nections based on magnitude thresholding. (Li ef al. 2016)
generalize this idea to prune entire filters having a low L1
norm of incoming weights. CUP generalizes further by using
feature similarity as the pruning metric. This metric captures
the notion of pruning based on weight magnitude as noted in
figure [8a| where we plot the average L1 norm of features for
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Figure 7: Intuition for using input and output weight connections.
The top diagram illustrates original neural net structure. The bot-
tom left diagram illustrates the case with same input weights. The
bottom right diagram illustrates the case with same output weights

filters in a cluster versus the cluster size. Magnitude pruning
operates only at the right end of that figure wherein majority
filters have small weights. However, CUP operates along the
entire axes which means it additionally prunes similar fil-
ters that have high weight magnitudes. Hence CUP is able to
prune a higher number of filters and thus encumbers a lower
drop in accuracy for a sufficiently pruned network. This is
observed in table[2]where L1 and L2 based magnitude prun-
ing lead to 13.48% and 19.04% accuracy drop (without re-
training) versus 8.26% for CUP.
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Figure 8: (a) shows the average L1 norm of cluster with size (b)
shows the accuracy of the compressed model versus compression.

Figure [8b] presents the accuracy for CUP using features
computed from “incoming”, ’outgoing” and “’both” type of
weight connections. Each point along the x-axis notes the
percentage of filters dropped from all layers of model B.
This is varied from [0.6, 0.9] in steps of 1. The y-axis notes
the validation accuracy of the resulting model. It is observed

that the combination of input/output features works best.

C Comparison with sensitivity driven
pruning
In this section, we show similarities in the final model that is

automatically discovered by CUP versus the manually dis-
covered model in prior works (Li ef al. 2016). Figure [J]
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Figure 9: Comparison on number of filters pruned for compressing
VGG-16 on CIFAR-10 using CUP (T=0.9) versus manual sensitiv-
ity analysis in (L1 ez al. 2016).

compares the number of filters remaining in each layer after
compressing VGG-16 on CIFAR-10, through CUP (T=0.9)
versus that determined through manual sensitivity analysis
in (Li ef al. 2016). Sensitivity analysis involves measuring
drop in validation accuracy with pruning filters from layer [
while keeping all other layers intact. Layers that are deemed
not sensitive are pruned heavily by both methods (layers 8-
13) whereas sensitive layers are pruned mildly (layers 1-6).

D Line search
D.1 for ¢t in CUP

The only hyperparameter for compression using the CUP
framework is the global threshold ¢. As a model designer,
our goal is to identify the optimal ¢ that yields a model that
satisfies the flops budget of the deployment device. In ta-
ble[§] we demonstrate the final accuracy achieved by various
Resnet variants (trained on Imagenet) for increasing values
of . notice how the flops reduction metric (FR) gracefully
increases with increasing ¢. This is similar to the observation
for compressing VGG-16 on CIFAR-10 as noted in section

[land fig[5d

D.2 for k,bin CUP-SS

The only hyperparameters for compression using the
CUP-SS framework are k,b. From our experience on
CIFAR-10, we realize that £ needs to be neither too small
nor too large. Consequently, we found & = 0.03 worked
well and fixed it for all experiments. For our linesearch pre-
sented in table[7] we vary b over steps of 0.1. Notice that the
reduction in training time for Resnet-50 is much larger than
that for other models. This is due to the fact that the original
model itself is much larger than its 18 and 34 layer variants.
Thus compressing it 2x results in a much larger reduction
in flops and training time. As a model designer, our goal is
to identify a good k, b that leads to large training time reduc-
tion. Having set these values, the designer needs to specify
the tgt_flops (in algorithm[I)) that satisfies the flops budget
of the deployment device.

t FR Accuracy Change (%)
(x) Top-1/ Top-5
Resnet-18 on Imagenet
Base  Ix  69.88/8926
0.8 1.75x% 68.88 / 88.47
0.825 1.97 x 68.29 / 88.15
Resnet-34 on Imagenet
Base  Ix  7359/9144
0.60 1.78 % 72.73/90.91
0.65 2.08x 71.99/90.47
0.675 2.29x 71.65/90.21
0.70 2.55x% 71.15/90.08
Resnet 50 on Imagenet
(Base  Ix  7586/92.87
0.65 2.18x% 75.07/92.30
0.675 2.32x 74.73/92.14
0.70 2.47x 74.60 /92.06
0.725 2.64x 74.42/91.74

Table 6: Line search on ¢ for compressing Resnet variants on Im-
agenet using CUP. Notice that increasing ¢ leads to a graceful in-
crease in flops reduction (FR).

k/b FR Accuracy Change (%)  Training
(x) Top-1/ Top-5 Time (hrs)
Resnet-18 on Imagenet
Base 1x 69.88 /89.26 38.75
1 0.03/03 1.74x ¢ 67.38/87.86 386
0.03/0.4 1.90x 66.86 / 87.37 38.8
0.03/0.5 1.83x 67.24/ 87.59 38.4
Resnet-34 on Imagenet
Base 1x 73.59791.44 4491
S 0.03/03 1.71x 7 71.98/9042 397
0.03/0.4 2.08x 71.69 /90.28 39.4
Resnet 50 on Imagenet
Base 1x 75.86/92.87 66.00
1 0.03/0.3 220x  7440/91.99 5448
0.03/0.4 2.16x 74.31/92.10 52.45
0.03/0.5 2.21x 74.39/91.94 51.58

Table 7: Line search for k, b in compressing Resnet variants using
CUP-SS. We desire a higher FR for an acceptable drop in accu-
racy. The key observation here is the increasingly larger savings in
training time for Resnet 18/34/50.
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