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Abstract—Structural concept complexity, class overlap, and
data scarcity are some of the most important factors influencing
the performance of classifiers under class imbalance conditions.
When these effects were uncovered in the early 2000s, un-
derstandably, the classifiers on which they were demonstrated
belonged to the classical rather than Deep Learning categories
of approaches. As Deep Learning is gaining ground over classical
machine learning and is beginning to be used in critical applied
settings, it is important to assess systematically how well they
respond to the kind of challenges their classical counterparts
have struggled with in the past two decades. The purpose of
this paper is to study the behavior of deep learning systems
in settings that have previously been deemed challenging to
classical machine learning systems to find out whether the depth
of the systems is an asset in such settings. The results in both
artificial and real-world image datasets (MNIST Fashion, CIFAR-
10) show that these settings remain mostly challenging for Deep
Learning systems and that deeper architectures seem to help with
structural concept complexity but not with overlap challenges in
simple artificial domains. Data scarcity is not overcome by deeper
layers, either. In the real-world image domains, where overfitting
is a greater concern than in the artificial domains, the advantage
of deeper architectures is less obvious: while it is observed in
certain cases, it is quickly cancelled as models get deeper and
perform worse than their shallower counterparts.

Index Terms—class imbalance, structural concept complexity,
class overlap, deep architectures

I. INTRODUCTION

This paper presents an in-depth analysis of the impact of
structural concept complexity, class overlap and data scarcity
on class imbalanced domains in the context of deeper and
deeper learning architectures. It is well-known that deep
architectures have led to successful applications of machine
learning in domains such as Computer Vision [/1f], [2[], Natural
Language and Speech Processing [3]], [4] as well as Graph
Learning [5]-[7]]. Items in such domains can be decomposed
in a hierarchical manner and different levels of the hierarchy
can be learned by different layers of the Deep learning
System which are then combined to assess the identity of
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the item whose parts they represent [8], [9]. Despite the
indisputable power of deep architectures, they are susceptible
to the presence of imbalance among classes, leading to bias
toward majority observations. This has given rise to dedicated
solutions that make deep models skew-insensitive, via such
approaches as instance-based oversampling [[10], [11]], gener-
ative models [12]], [13]], loss function adaptation [14], [15],
or experience replay [16], [17]. In learning from imbalanced
data with classical models the issue of challenging domain
characteristics, such as instance-level difficulties, play a crucial
role [18]]. Imbalance ratio is not the sole source of learning
difficulty and various other factors embedded in the nature of
data are negatively impacting the training procedure [[19].

Research goal. The question raised in this paper is whether, in
addition to their role in representational learning, deep layers
are also beneficial to the handling of challenging domain
characteristics. We are interested in whether increasing the
depth of a neural network can help mitigate the challenge
caused by class imbalances and their aggravation due to
structural concept complexity, class overlap, and data scarcity.

Contributions. In order to address this question, we revisit the
simple artificial domains of two early class imbalance studies
[201], [21] that reduce the issues to the bare minimum, thus,
allowing us to ignore, for a moment, the uncontrollable effects
at play in real-world domains as well any representational
challenges. These experiments allow us to observe how effec-
tive deep models are at capturing domain complexities other
than their representational complexity. Because real-world
domains, however, are inherently more complex and ultimately
more interesting, we repeat our experiments on a number
of image classification problems derived from the MNIST
Fashion and CIFAR-10 domains to see if the conclusions
drawn from the artificial domains hold in real-world domains,
or whether other phenomena should be considered.

In our study on artificial domains, we test Feedforward



Multi-Layer Perceptron (MLP) of increasing depth. In the
image domain, we test a Convolutional Neural Network of
increasing depth outfitted with two MLP (or dense) layers. In
order to gain a deep understanding of the networks’ responses
to the challenges, we restrict this work to the simple binary
classification setting and ask the following three questions:

o RQ1: Does the depth of a model affect its performance on
classification problems of increasing structural concept
complexity, class imbalance, and data scarcityﬂ?

¢ RQ2: Does the depth of a model affect its performance
on problems of increasing class imbalance and overlap?

o RQ3: Does the depth of a model affect its performance on
problems with difficulties from RQ1 and RQ2 occurring
simultaneously?

The research questions are first addressed in the context of
artificial domains and then tested in an image classification
setting.

II. THE IMPACT OF DEPTH ON THE CLASS IMBALANCE
PROBLEM AS IT RELATES TO STRUCTURAL CONCEPT
COMPLEXITY AND DATA SCARCITY

Description of the Experimental Setup. This experiment is
designed in order to investigate issue raised in [20] for classical
models. In the formulation of the key question below, it is
assumed that a class represents a concept (e.g., dogs), that that
concept can be further divided into subconcepts (e.g., Poodles,
Huskies, Golden Retrievers, German Sheppards, etc.), and that
these subconcepts, while distinct from one another can be
mixed amongst subconcepts of the other class (e.g., Huskies
or German Sheppards could be represented by subconcepts
intertwined between different subconcepts of wolves since
various subtypes of wolves and dogs may look very similar
to one another and yet quite different from others). The main
question asked here is:

RQ1: Do increases in the number of hidden layers of deep
learning networks help mitigate the harmful effects of a)
increases in the number and mixing level of class subcon-
cepts; b) decreases in these subconcepts’ size; and c) overall
decreases in training set size on the class imbalance problem?

Domains. To create a family of domains appropriate to answer
the question, we followed the approach proposed in [20] to
generate domains that vary according to three dimensions:
overall size of the data set (s), structural concept complexity
(c), and degree of balance between the classes (b). The family
of domains created by this approach was shown to reflect
some of the main challenges surrounding the class imbalance
problem and was, therefore, deemed relevant to apply in the
case of the deep learning approaches under consideration in
this work.

125 domains were generated as follows: each domain is
uni-dimensional with inputs in the [0, 1] range associated
with class 1 (+) or O (-). The [0, 1] input range is divided

IThese data characteristics will be clearly defined in the next section

into sub-intervals of the same size, each associated with
class value 0 or 1. Contiguous intervals have opposite class
values. The complexity level, c, can take values from 1 to
5. Depending on its value, different numbers of sub-intervals
are created. An example of a backbone model is shown in
Figure [T} The backbone in the figure can be understood as

Complexity (c) = 3, positive (+) = Class 1, negative (-) = Class 2
+ - + - + - + -
0 125 .25 375 5 .625 .75 875 1

Fig. (1) Domain backbone of Complexity 3. In this one-
dimensional family of domains, the complexity of the task
increases as the number of alternating sub-concepts of each
class increases.

representing a two-class domain where each class is composed
of 4 subconcepts that are mixed amongst themselves. Maybe,
for example, the data located between 0 and .125 represents
the subspecies of dogs A which is very closely related to the
subspecies of wolves A located between .125 and .25, while
the location between .25 and .375 represents subspecies of
dogs B, while the location between .375 and .5 represents
subspecies of wolves B; and so on.

The value of ¢ is used to determine the number of sub-
clusters present in the backbone that ranges within [0,1]. The
number of subclusters is calculated as 2¢ and the width of
each of these sub-sections is calculated as % As illustrated in
Figure|l] the distribution of Class 1 and Class 0 is determined
by assigning them regular, alternating sub-intervals. This is
done regardless of the size of the training set or its degree of
imbalance. Once the backbone is generated based on the value
of c, actual data points are generated within each sub-interval
by generating points at random using a uniform distribution.
The number of points sampled from each interval depends on
the size of the domain as well as on its degree of balance.

Our investigation revolves around two dataset sizes, which
we will refer to as sizes 1 and 5 (or s=1 and s=5), according to
[20]. In [20], prior to considering the balance level, b, the total

number of examples in the size 1 experiments is calculated

as (% X 2) where each sub-interval contains
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examples. In the size 5 experiment, the dataset holds a total
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each of the sub-intervals.

Once the basic number of instances per sub-interval is
determined, we decrease that number for class 0, the minority
class, according to the degree of balance, b. Meanwhile, the
number of instances in the Class 1 sub-intervals representing
the majority class remain the same as discussed in the previous
paragraph. The number of instancesolgglonging to the Class 0
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of 5 to the degree of balance in our experiment. When b=5,
the number of instances in each of the sub-intervals is the
same and the data set is perfectly balanced. This states that
the value of b is inversely proportional to the disparity or the
degree of imbalance between the classes.

Train/Test regimen. We conducted two separate series of
experiments 1) 10 Fold Stratified Cross-Validation approach
and 2) Balanced Testing approach. For the Stratified Cross-
Validation approach we observed that, in certain scenarios
when the degree of balance is low, in each folds the testing
set holds a very smaller number of examples belonging to
Class 0. This makes it difficult to assess the performance of
the models. To overcome this problem we used a technique
which we call the balanced testing approach by forming a
testing dataset containing 1000 examples in each of the sub-
clusters of the proposed backbone. This not only provides an
unbiased testing framework, but also provides a wide variety
of data to test on. This approach, therefore, helps understand
the actual potential of the classification models. We report the
Balanced Testing results in the paper and include the stratified
cross-validated results in the supplementary material section.
Although we calculated our results based on a variety
of metrics, we decided to report the geometric mean (G-
Mean) after noticing that other metrics such as the F1-measure
and the balanced average all lead to the same conclusions.
These results are available upon request. Given the imbalanced
nature of our datasets, we understandably opted against the
micro average reporting regimen. The macro and the weighted
regimen on the other hand gave us the same results given that
our balanced testing approach uses as many instances of the
minority and majority class for testing. A formal explanation
of why this is happening is presented in the supplementary
material. The same train/test regimen was used for all the
experiments presented in this paper.
Models and their parameters. The experiments for this
section, as well as for those of sections III and IV are
conducted on five different depth of Feedforward Networks or
Multi-Layer Perceptron (MLP) to show how the linear effect
of increasing the depth of MLPs affects classification. Each of
the MLP models are termed Model-x where x stands for the
number of hidden layers and takes a value between 1 and 5.
We start from the shallowest model (Model-1) and reach up to
the deepest model with 5 hidden layers (Model-5). For each
of the networks, we report the optimal results recorded after
experimenting with 2, 4, 8, and 16 Hidden Units (HU) in each
layer. We trained each of the MLP networks for 300 epochs,
with a learning rate of 0.001, using the Adam optimizer.
Results. The results for this experiment are reported in Figures
[2] and [3] which report the results obtained for sizes s=1
and s=5, respectively. Each figure reports 5 sets of barplots
labeled from (a) to (e) that each show the G-Mean obtained
at a different depth, going from one hidden layer (plot (a))
to 5 (plot (e)). Within each plot, 5 clusters of bars are

shown. The cluster of bars labeled cl represents the easiest
(linearly separable) problem with a single concept/subconcept
per class; the second, c2, represents the second easiest with
two (alternating) subconcepts per class, until c5, the most
complex with 16 (alternating) subconcepts per class. Within
each cluster are 5 bars (not always visible if their value is
0). The bar furthest to the left represents the smallest degree
of balance (or highest degree of imbalance) b=1; while the
rightmost bar represents the balanced situation b=5. Figure
[2) reports the results obtained for datasets of small size (s=1),
while Figure [3|reports the results obtained for datasets of large
size (s=5).

Our first major observation, which serves as a prelude to
the main question we seek to answer in this section, is that
like in the classical classifier case, as the degrees of domain
complexity and class imbalances increase, the performance of
the classifiers decreases. This is seen in each subplot, but we
choose to illustrate it on Figure [2| (¢c) which is representative
of the tendency we observe. In that subplot, the cl cluster
generally obtains a high G-Mean value (around .7 or .8 for
the two leftmost (most imbalanced) bars), with the rightmost
bar obtaining a perfect value of 1. The c2 cluster has only
3 bars showing since at this level of complexity, the two
most imbalanced levels, b=1 and b=2, obtain a G-Mean of
0. The highest values reached by the rightmost bars at this
level of complexity is only of .7. The situation continues to
deteriorate as the level of complexity increases. Figure 3] shows
the corresponding graphs for size s=5. By looking at subplot
(c), we see clearly that a larger sample size is helpful since
decent G-Means are obtained for both degrees of complexity
cl and c2, which was not the case for s=1. It is only at level
of complexity c3, that the performance starts deteriorating in
the same kind of fashion as it did for s=1.

Our second major observation regards the number of layers
used in our networks and thus answers our main question.
What we observe is that as we add more layers, the model
obtains better and better performance. Indeed, comparing, for
example, Figure 2] (a) to Figure Pfe), we see that while in
Figure [2fa), at complexity level cl, only balance levels b=4
and b=5 managed to obtain G-mean results close to 1, such
results were obtained for all levels of imbalances for cl in
Figure Eke). In fact, the two most balanced levels, b=4 and
b=5, for c2 in Figure Eke) are also close to 1 whereas, they
did not exceed .7 in [2[a). The improvement is even more
dramatic for large overall sample size s=5, in Figure [3| where
all levels of imbalances for concept complexities c1 and c2 are
perfectly handled and concept complexity c3 is moderately-
to-well handled depending on the balance level of the data.
Despite the improvement observed with the addition of layers,
it is important to note that 5 layers are nowhere near able
to handle complexity levels c4 and c5, let alone when the
imbalance is high (e.g., b=1, 2 or 3) or when the data is scarce
(s=1). This suggests that MLP Networks’ depth alone may not
be sufficient to handle class imbalances when the sample size
is small, the concept complexity high, and the data highly
imbalanced. It may not be sufficient in all cases, even when
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Fig. (2) MLP generated Macro G-Mean Scores by doing Balanced Testing for Size 1: (a) Model 1, (b) Model 2, (c) Model
3, (d) Model 4, and (e) Model 5. These plots show that, in sparse data conditions, as the structural complexity of the problem
increases, so does the impact of the class imbalance problem. Deeper layers are able to help but do not overcome the problem

in the more complex and imbalanced domains.
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Fig. (3) MLP generated Macro G-Mean Scores by doing Balanced Testing for Size 5: (a) Model 1, (b) Model 2, (c) Model 3,
(d) Model 4, and (e) Model 5. These plots show results similar to those obtained for size=1, but the issues are less pronounced,
which suggests that large data sets along with deep models mitigate the issues caused by concept complexity in class imbalance
settings. Nonetheless, deep layers are not necessary able to fully overcome the problem.

(@) (b) (©
Fig. (4) Instances of Overlapped Domain: (a) Overlap 3, (b)
Overlap 5, and (c) Overlap 9

the sample size is high.

The results obtained using stratified cross-validation (the
results for Model 1 and 5 are presented as supplementary
material and the rest is available upon request) show the same
pattern though in an exaggerated manner since the testing
set contains fewer and fewer minority examples as the class
imbalance increases, as discussed previously.

III. THE IMPACT OF DEPTH ON THE CLASS IMBALANCE
PROBLEM AS IT RELATES TO CLASS OVERLAP

Description of the Experimental Setup. This experiment is
designed in order to investigate issue raised in [21]] for classical
models. The main question asked here is:

RQ2: Do increases in the number of hidden layers of deep
learning networks help mitigate the harmful effects of class
overlaps on the class imbalance problem?

To answer this question, we generate datasets with different
degrees of overlapping distribution. In this context, class
overlap takes the shape displayed in Figure 4| where class
overlaps of different degrees were created by moving the
means of each class closer and closer to each other.

We conducted the analysis of Feedforward MLP networks of
different depth on 10 different overlapped distributions with
different degree of imbalance generated as described in the
next subsection.

Domains. In order to create overlapping domains, we followed
the approach proposed by [21]. The most complex dataset
is such that the two classes overlap completely and the
easiest one is completely separable. Eight other domains were
generated in between these two extremes, some instances of
which are illustrated in Figure ] (though in reality, the domain
is 5-dimensional rather than 2-dimensional). The 10 different
distributions are entitled Overlap 1 to Overlap 10. These distri-
butions are generated by following a 5-Dimensional Gaussian
Distribution with a Standard Deviation of 1. Initially, for

2Note that the experiments in the previous section also dealt with overlap,
but the overlap considered there was highly structured in that within the
region of overlap, the overlapping subconcepts occupied distinct regions. In
this section, we consider overlap where in the overlapping region, the two
classes do not occupy distinct sub-regions. We distinguish the two phenomena
by calling the first one “structural concept complexity” (or simply “concept
complexity”) and the second, “overlap”.
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Fig. (5) MLP generated Macro G-Mean Scores by doing
Balanced Testing on the Overlapped Datasets: (a) Model 1,
(b) Model 5. The graphs show that increasing the depth of
the network is not particularly useful, except, minimally, in
Overlap 1 where the distributions are fully overlapped and the
problem, therefore, not fully meaningful.

Overlap 1 (representing the highest level of overlap) the mean
for each class is the same, at 0.5. It is then incremented by 1,
step-wise, up to nine times to obtain the 9 other distributions.
Each of these distributions, itself, contains 12 separate datasets
differing in the amount of minority instances. The total amount
of data is kept at 10,000 in each of the sets by assigning
the quantity of minority samples as 1%, 2.5%, 5%, 10%,
15%, 20%, 25%, 30%, 35%, 40%, 45%, and 50%. With 50%
minority samples in a dataset, we have a balanced set of
examples (5000 in the majority and 5000 in the minority).
Similar to the testing process proposed for the experiments
in the previous section, we conducted the evaluation based
on 10 Fold stratified cross-validation and Balanced Testing. A
total of 10 balanced test sets are designed by following the
distribution of Overlap 1 to Overlap 10. Each of the class in
the testing set is given a total of 2000 examples to maintain the
balance. For consistency, we continue reporting the Balanced
Testing results, but the results obtained on the cross-validation
experiments show similar patterns (results for Models 1 and 5
are presented in the supplementary section).

Results. The results obtained in the overlap experiments on
the balanced testing set are reported in Figure [5] Due to space
constraints and because the results do not change significantly
from layer to layer except in the case of Overlap 1 (when
the two classes overlap completely), we only display the
results obtained with one hidden layer and those obtained with
five hidden layers. In more detail, each subplot represents
a different number of hidden layers: 1 (subplot (a)) and
5 (subplot (b)). Within each subplot, each cluster of bars
represents the results obtained at a different overlap level

(from Overlap 1 to Overlap 10). Within each cluster, there are
10 bars, each representing the 12 different imbalance levels
previously discussed and ordered from most imbalanced (1%
minority) to completely balanced (50% minority).

As before, the first major observation serves as a prelude to
the main question we seek to answer in this section. The ob-
servation regards the effect of overlaps of the kind considered
here on the class imbalance problem. Like in the classical case,
our results show that, at least for overlap levels 1 to 3, class
overlap is very detrimental to MLP Networks and worsens
when combined with increasing degrees of class imbalance
(Figure 5). By class overlap 4, however, the effect is minimal
and it disappears completely starting with class overlap 5. It
is interesting to map these results to the plots in Figure {4
where Figure [](a) shows the significant overlap encountered
in overlap 3 and Figure [|b) shows the present, but not as
significant overlap in overlap 5. It is remarkable that the MLP
Networks actually do so well when encountering overlap level
3 and do perfectly well, irrespective of imbalanced levels in
overlap level 5.

The second major result concerns the main question raised
in this section, namely, the effect of increasing the depth
of the network architecture. Overall, what we found is that
increasing the depth of the networks has minimal effect in the
case of overlap. In more detail, the results in Figure E] show
that for overlap level 1, when the two classes are completely
overlapped, an increase in depth is beneficial as we see bars
that did not appear in the first cluster of subplot (a) now
appear (i.e., achieve non-zero G-Mean) and increase in height
in subplots (b) to (e) (with only (e) shown here). Given that
the two distributions are completely overlapped, though, it is
not clear that what the deeper networks learn is particularly
meaningful. More significantly, for all the other overlap levels,
the increase in depth has no or only a minimal effect.

IV. THE IMPACT OF DEPTH ON THE COMBINED EFFECTS
OF CLASS IMBALANCE AND OVERLAPPING AS IT RELATES
TO REAL WORLD PROBLEMS

While the last two sections sought to study the problems
of structural concept complexity and overlap separately, the
purpose of this section is to study the two problems simulta-
neously, in the way they are expected to occur in real-world
problems.

Description of the Experimental Setup. Our goal is now

to integrate the issues of structural concept complexity, class

overlap and class imbalance together. We use the same back-

bone as the one used in Section II, but in contrast with the

experiments of that section, we allow distinct sub-regions of

the data to overlap, and consider different degrees of overlap.
The main question asked here is:

RQ3: Do increases in the number of hidden layers of deep
learning networks help mitigate the harmful effects of learning
difficulties from RQI and RQ2 occurring simultaneously?

Domains. To generate the integrated domains, we considered
a backbone with moderate level of concept complexity (c =



2) and size = 5. To make the experiment manageable, the
size and concept complexity are kept constant and only the
balance level, b, and overlapping degree, v, are modified. In
these domains, we incorporate overlaps between each sub-
concept of the backbone by generating Gaussian distributions
centered in the middle of each sub-interval. This time, and
unlike in Section III of the paper, the degree of overlap
between subconcepts is increased by increasing the variance
of each distribution. We concentrate on 5 different variation
of overlaps (vl, v2, v3, v4, v5) represented in Figure E] that
is arranged in order, starting from low overlap (v1) to high
overlap (v5). Each of these distributions are divided into 5

levels of b (as we did previously) by generating (1220

b
examples in each minority subconcept and a constant nuanber
of 1250 examples in the majority subconcepts. We constructed
a testing set by following the balanced testing approach used
previously and generating 2000 instances for each class (and,
more specifically, 1000 instances in each subconcept).

Results. The results are displayed in Figure[7]for c2, s=5 and b
and v varying between 1 and 5. The same network architecture
was used as in the previous sections and each plot represents
a different network depth. Within each plot, each cluseter of
bars represents a different overlap level, going from no overlap
(vl) on the left to highly overlapped (v5) on the right. Within
each cluster, as before, b varies from least balanced (bl) to
fully balanced (b5).

The results suggest that combining overlap and imbalance in
a moderately complex domain is detrimental to classification
performance, but that increasing the number of hidden layers
is beneficial, but only up to a certain depth. Indeed, while there
is clear improvement from Figure [/| (a) to (b) and then again
(b) to (c), the improvement is minimal for (c) to (d) and the
move from (d) to (e) causes more performance deterioration
than improvement (see, for example the results for vl and v4
in Figure [7] (e)).

V. THE IMPACT OF DEPTH ON THE CLASS IMBALANCE
PROBLEM IN IMAGE DOMAINS

Description of the Experimental Setup. The experiments
described in the previous three sections were an attempt to
characterize the role of neural networks’ depth on the class
imbalance problem affected by a variety of characteristics.
We found that increasing the depth of a neural network is a
useful way to improve classification results in class imbalance
settings, but that it is not a panacea. Indeed as structural
concept complexity, class overlap degree of imbalance and
data scarcity increase, increasing the depth of the network is
insufficient to improve classification and, as seen in the last set
of experiments, may stop helping or even start deteriorating the
performance. In this section, we seek to understand whether
the results we have obtained on the artificial domains map to
real world conditions or whether other factors that were not
considered in our artificial data experiments are at play.

We consider two image domains to see how the conclusions
drawn from the artificial domains’ experiments translate to

realistic domains and whether additional considerations need
to be taken. For these experiments, two benchmark datasets
are considered: Fashion—MNISTE] and CIFARl(ﬂ Once again,
we considered 5 balance levels (imbalance ratios) [level]:
0.5 (0) [b=5], 0.3 (3.33) [b=4], 0.15 (6.66) [b=3], 0.05 (20)
[b=2], 0.025 (40) [b=1]. We created the minority classes of
levels b=4..1 by randomly undersampling the second class
(considered the minority class) of each binary domain.

Domains. Binary domains were selected using a combination
of visual inspection of binary T-SNE plots and cross-validation
experiments. The aim of the selection was to identify five
binary domains with increasing levels of complexity: starting
from an easy domain where points appear mostly linearly
separable, to a moderate domain characterized by the structural
concept complexity and overlapping phenomena, to more
extreme and difficult scenarios that suffer from both issues
simultaneously.

In order to select the domains, we sampled 500 images from
each class and exhaustively generated plots for all pairwise
combinations of classes. After visually pre-selecting the most
relevant domains in each category, we performed experiments
to confirm the complexity of the selected scenarios and rank
them accordingly. In particular, we adopted the average G-
Mean performance achieved using 2x10-fold stratified cross-
Validatiorﬂ on the binary settings with different model archi-
tectures (from 1 up to 5 convolutional layers) using balanced
data. The selected domains ordered by increasing level of
complexity are shown in Figure [§] and 9]

Models and their parameters. The model architecture con-
sidered in this set ofexperiments is a Convolutional Network
with an increasing number of convolutional layers (filters):
1 (8), 2 (8-16), 3 (8-16-32), 4 (8-16-32-64), 5 (8-16-32-64-
64). Two dense layers are featured at the end of each model
architecture.

Results. The results obtained on MNIST Fashion can be found
in Figure [§] while those obtained on CIFAR-10 can be found
in Figure 9] Both figures are organized in the same fashion as
Figures E] and E] in the artificial domains. In other words, each
subplot(a) to (e) represent the results obtained with increasing
depth going from 1 to 5, respectively; within each subplot,
clusters of bars show a different degree of difficulty which
can be visualized in the plots of Figures[I0]and [IT| for MNIST
Fashion and CIFAR-10, respectively; and within each cluster
of bars, from left to right, the height of the bar represents
the G-Mean performance obtained from the least balanced
data set (2.5%minority) to the perfectly balanced data set
(50%minority). While the format of the results follows that
of the artificial structural concept complexity results, it is
important to note, that, in fact, overlap is also considered.
This is because, in the real-world image domains considered,
both the notions of overlap and structural concept complexity

3https://github.com/zalandoresearch/fashion- mnist

4https://www.cs.toronto.edu/~kriz/cifar.html

32x10-fold stratified cross-validation is used to ensure stable means and
standard deviations in the results.
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are mixed as they were in the experiments of section IV.
This is evident in Figures [§] and O] where subclusters can
be seen in some of the overlapping regions and overlap due
to high variance and/or closely located subcluster means is
simultaneously present. The presence of both phenomena is
particularly visible in Figure [§] (d) and (e) and Figure [9] (b)-
(e). In this respect, this experiment is best modeled by the
experiment on artificial data from Section IV.

Our first major observation, which once again serves as a
prelude to our main question, is that, like in the case of our
concept complexity experiments on artificial domains, as the
degrees of domain complexity and class imbalances increase,
the performance of the classifiers decreases. For example, in
the MNIST Fashion data, in Figure [I0] (a), for concept com-
plexities c1 (3, 7) or c2 (8, 2), there is virtually no difference

between the performance obtained on the completely balanced
or most imbalanced data set (except for c2 (8, 2) at balance
level b=2 (Minority class 5%), but this results seems to be
a random aberration). For concept complexity c4 (6, 4) and
c5 (2, 6), however, there is a difference of around 70% in
G-Mean between balance level b=1 and b=5. Because of the
higher degree of complexity of all the domains in the CIFAR-
10 experiments as observed in the graphs of Figure 0] the
difference between simpler and more complex domains is not
as well marked as it is in the MNIST Fashion datasets as can
be seen in Figure [T1] Nonetheless, we can observe a clear
difference between the domain corresponding to the simplest
complexity level cl (6, 8) and all the others. For the simplest
domain, cl (6, 8), the difference in G-Mean between balance
levels b=1 and b= 5 for one hidden layer is 12% whereas
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for all the other more complex domains c2 (1, 2) - ¢5 (2, 3)
(except ¢3 (4, 5), for some reason), they hover around 30%.

Our second major observation, which relates to the main
question in the paper, concerns the number of layers used in
our networks. The pattern, in this case, is less clear than it
was in the artificial domains, though it ressembles, somewhat,
the results obtained in Section IV. In the most extreme cases
such as in MNIST Fashion’s concept complexities c4 (6, 4)
or c5 (2, 6) and degree of balance b=1, but even in some
other cases such as concept complexity c2 (8, 2) and balance
level b=2, we notice a pattern where the addition of one or
two layers helps improve the G-Mean. Adding more than
2 layers, however, hurts the performance. In other MNIST
Fashion cases as well as in the case of the CIFAR-10 data, the
results are closer to what we observe in the artificial domains
concerned with overlap alone: additional layers do not help.
In fact, as we add more layers, there are many cases where
the performance decreases significantly. In the rare cases in
both MNIST Fashion and the CIFAR-10 datasets where the
addition of layer helps, it does so only slightly.

The difference between our artificial and realistic domain
observations, we believe, is related to the fact that while
increasing layers may help learn more complex boundaries
between classes, it also causes the systems to overfit the
data. Because of the simplicity of the artificial domains, the
overfitting issue may not affect the performance of the deep
networks on these domains while it dominates the perfor-
mance of the deep networks in the real image domains. In
these domains, any benefit brought upon by deeper layers
is overshadowed by the amount of overfitting that it also

causes. In fact, this can be seen as a classical case of the bias
and variance dilemma where, the decrease in bias obtained
through deeper networks, is also responsible for an increase
in variance. Further investigation, however, is necessary to
establish a formal explanation of the observed disparity.

CNN and MLP Layer Embedding Analysis. In this section,
we examine the representations learned by the convolutional
(CNN) and dense (MLP) layers of the network used on the
real world domains in order to understand how they are
impacted by concept complexity, class overlap and imbalance.
To achieve this, we focus on a ‘hard’ classification problem
( concept complexity c5, or class 2 versus class 6) from the
MNIST Fashion dataset.

To undertake this analysis, for each dataset, we train CNNs
with 1, 3 and 5 convolution blocks (as discussed in Section
with a balanced class setup (b=5) and an extreme imbalanced
class setup (2.5% imbalance level, or b=1). In order to provide
clear picture of the efficacy of the learned model, we extract
representations from an independent balanced test set from
each model for visualization. The representations are recorded
after the final convolutional block (CNN) and after the final
fully connected layer (MLP). We utilize T-SNE [22]] as the
dimension reduction technique to plot the data and learned
representation in 2 dimensions.

The results of this analysis are shown in Figure |12 where vi-
sual inspection of the plots illustrates that whilst increasing the
number of convolutional blocks can improve the separability
and compactness of the representations learned on balanced,
complex and non-complex data, it negatively impacts the
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Fig. (12) These plots illustrate the representation learned on the MNIST Fashion for classes 2 versus 6. The plot on the
top row shows the T-SNE embedding of the original data. This reveals that the classification problem is complex due to the
presence of class overlap and sub-concepts. In the subsequent rows, the first and second columns show the T-SNE plots for
the representations learned after the last CNN block on the balanced (first column) and imbalanced (second column) data. The
third and fourth columns show the T-SNE plots for the representations learned after the last fully connected layers for balanced
(third column) and imbalanced (fourth column). Row-wise, the plot represent the results of CNNs with 1, 3, and 5 CNN blocks.
These plots illustrate that adding more CNN blocks on the balanced data improves separability of the classes. However, whilst
3 blocks in the imbalanced case appears to slightly improve separability, 5 blocks exacerbates the class overlap.

representation learned when training on imbalanced data. It is
particularly noteworthy that the representations learned with
five convolutions blocks for the easy imbalanced classifica-
tion problem (class 3 versus 7) causes class overlap where
previously there was non

VI. CONCLUSIONS AND FUTURE WORK

Summary of the Study. The purpose of this work was to
investigate the response of neural networks of increasing depth
to well-known harmful data challenges such as the combina-
tion of class imbalances, structural concept complexity, data
scarcity, and class overlap. The study was conducted on a
large number of artificial domains displaying combinations of
different challenges expressed at various degrees as well as on
two image datasets very commonly used in the deep learning
community. The architectures investigated were feed-forward
multi-layer perceptrons (MLP) in the artificial domains as
well as combinations of both MLP and convolutional neural

A detailed figure showing what happens in a simple domain is available
upon request.

networks in the real-world domains. The combination of
convolutional and dense (MLP) layers was necessary in the
real-world domains since representational learning as well as
classification boundary learning had to be conducted simulta-
neously. Conversely, the artificial domains were designed so
as not to require substantial representational learning so that
the study could focus on the class boundary learning ability
of the MLP type of deep architectures.

Discussion of the Results. Although data challenges such as
class imbalances, long tail distributions, data scarcity and so
on have previously been recognized in the deep learning com-
munity [23]], the focus there has been primarily on developing
methods to improve performance, through resampling, cost
adjustment and new loss functions, rather than understanding
how and why deep models are impacted. This is the first
systematic study of deep learning architectures’ ability to learn
complex class boundaries under non-optimal settings. Our
results show that like their classical counterparts, deep learning
systems suffer from class imbalances, structural concept com-
plexity, data scarcity, and class overlaps. This is not a complete



surprise, but our study showed the interaction between these
different challenges in great detail thus shedding lights on
certain details such as the fact that structural concept com-
plexity is more challenging to deep learning architectures than
relatively large overlaps. More revealing, however, was the
interaction between the different data challenges and the depth
of the learning systems. While structural concept complexity
and class imbalances are quite detrimental to the performance
of deep architectures, especially in cases of data scarcity,
the addition of extra layers clearly helped overcome some
of that difficulty. Conversely, the addition of extra layers in
overlapping domains was practically ineffective, although not
detrimental. When both effects were combined, depth helped
at first but seemed to cause harm as it increased too much. This
effect was shown slightly in a family of artificial domains that
mixed the two characteristics, but it was displayed very clearly
in the study on real image domains. There, it was found that as
the domain complexity (of both structural concept complexity
and overlap) increased, adding extra layers was frequently
detrimental to the performance of the system, except in some
cases where one or two extra layers (but not five!) could help a
bit. This is an interesting results which, we believe, illustrates
the tradeoff between bias and variance in the deep learning
setting: while adding layers helps the networks capture the
complexity of the boundaries, thus reducing the bias term, the
effect of that addition is so detrimental to the variance term
that any gains made on the bias term are cancelled out by
the variance term. This is not necessarily the case in all real-
world domains, however, as suggested by [24] who show that
in the context of Facial action recognition, the use of very deep
networks appears beneficial. This suggests that either those
domains present characteristics quite different from the image
domains we used and/or that the authors’ use of regularisers
may helped improve the performance of the deep architectures.

Future Work. There are many avenues for future work. On
the one hand, we would like to conduct systematic studies
of other issues such as multiclass classification. We will
also create a different series of artificial domains to study,
more carefully, the impact of the data challenges considered
here on Convolutional Networks. We also plan to extend our
study to the domain characteristics responsible for adversarial
examples, in a careful framework similar to the one used here.
In a second avenue of research, we plan to study systematically
the application of existing methods from both the classical
machine learning community (under-sampling the majority
class or over-sampling the minority class) and the Deep
learning community (using cost-sensitive learning as well as
regularisers) that address the data challenges discussed in this
work. Finally, the keen understanding of the characteristics
that cause performance loss that we have gained here will be
used to design tailored methods that can address these losses
in the particular setting of deep learning.
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VII. SUPPLEMENTAL MATERIAL

A. The equivalence of macro and weighted averages in the
Balanced Setting experiments

To formulate an explanation, considering 7+, f, 7—, and
f~ as true positive, false positive, true negative, and false
negative we calculate the sensitivity, S, and specificity, Sp, for
class 0 (S, 5p°) and class 1 (S*, Sp') as;

- +
0 _ T 1_ T
S_T*+f+S_T++f* M
+ —
0 T 1 T
= — e — 2
W T @

Based on the obtained expressions, the Geometric Mean for
class 0 (GO) and class 1 (Gl) can be mathematically defined
as;

0 .+
¢ \/(T‘+f+)-(7++f‘) ©

(Tt+f7)-(m+ 1)
Therefore, the macro average Geometric Mean can be
written as;

“4)

mac __Al . (0 }7' 1
G —2G+2G 5

The weighted average involves a calculation concentrating
on the number of examples present in the training set for each
class. If we consider the training set as X, then, X represents
the total number of instances that belong to class 0 and X;
is that of class 1, such that, |X| = Xy + X;. The weighted
average can then be denoted as;

Xo X3

G"=_— -G+ —=-G' (6)
| X| X1

On careful analysis, we find that the expression G° and G*!
are similar. Therefore, G™*¢ will be equal to G%' such that
G%! = G% = G'. Similarly, we can also conclude G% as
G°!. Hence, we are getting G™%¢ = Gv.

B. Stratified CV Experiments

In this section, we present the performance of deep (with
5 hidden layers) and shallow (with 1 hidden layer) MLP
models that we obtained after applying 10 Fold Stratified
Cross Validation on the Backbone and Overlapped Domains.
Figure [13] and Figure [14] illustrates the results obtained on
the Backbone framework of different sizes whereas, Figure
[I3] shows the results obtained on the Overlapped Datasets.

C. Results on Image Domains

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

0 0

Cl1 C2 C3 C4 C5 Cl1 C2 C3 C4 C5

(a) Model 1 (b) Model 5
Fig. (13) MLP generated Macro G-Mean Scores by doing
10-fold Stratified Cross Validation for Size 1: (a) Model 1
and (b) Model 5.

Cl1 C2 C3 C4 C5

Cl1 C2C3 C4C5

(a) Model 1 (b) Model 5

Fig. (14) MLP generated Macro G-Mean Scores by doing
10-fold Stratified Cross Validation for Size 5: (a) Model 1
and (b) Model 5.

TABLE (I) Distribution of rank of model performance on
MNIST Fashion as a function of depth. These results indicated
that on average there is a slight preference for shallower model
on the highly imbalanced data.

Sum of Rank
Model Depth | Balanced 0.3 0.15 0.05 0.025
1 12.0 150 13.0 21.0 13.0
2 9.0 10.0 9.0 17.0 10.0
3 7.0 6.0 14.0 9.0 12.0
4 18.0 16.0 12.0 13.0 17.0
5 22.0 18.0 20.0 9.0 22.0
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Fig. (15) MLP generated Macro G-Mean Scores by doing 10-Fold Stratified Cross Validation on the Overlapped Datasets:

(a) Model 1 and (b) Model 5.
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Fig. (16) These plots illustrate the representation learned on the MNIST Fashion for classes 3 versus 7. The plot on the top
row shows the T-SNE embedding of the original data. This reveals that this is a classification problem with low complexity due
to the presence of a single linearly separable concepts. In the remaining rows, the first and second columns show the T-SNE
plots for the representations learned after the last CNN block on the balanced (first column) and imbalanced (second column)
data. The third and fourth columns show the T-SNE plots for the representations learned after the last fully connected layers
for balanced (third column) and imbalanced (fourth column). Row-wise, the plot represent the results of CNNs with 1, 3, and
5 CNN blocks. These plots illustrate when data is imbalanced, increasing the number of CNN blocks to causes the classes to
become overlapping in the learned representation. Thus, adding extra layers to an network training on imbalanced data can,
in fact, make the learning problem more difficult.
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