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Abstract—Cybersecurity Knowledge Graphs (CKGs) help in
aggregating information about cyber-events. CKGs combined
with reasoning and querying systems such as SPARQL enable
security researchers to look up information about past cyber-
events that is helpful in understanding future cyber-events or
drawing similarity with a known cyber-event recorded in a
CKG. CKGs have assertions in the form of semantic triples. The
triples describe a relationship between a subject and object, both
of which are cybersecurity entities. The quality of information
present in the CKG depends on the data source. Since data
sources can have varying degrees of reliability, we need a
score that should help us benchmark the veracity of the CKG
assertions. Verifying the information asserted in the CKG is a
challenging task. In this paper, we describe a novel method that
associates a score with the semantic triples asserted in the CKG
using deep learning. We use semantic triples that we know are
correct, in a supervised machine learning algorithm that produces
the output for each relationship. In particular, we use Graph
Convolutional Neural Networks (GCN) on a dataset of CKGs
that can be used to ascertain the scores for each semantic triple.

Index Terms—Graph Embedding, Deep Learning, Cybersecu-
rity, Artificial Intelligence, Representation Learning

I. INTRODUCTION

Cyber Threat Intelligence (CTI) helps security researchers
prevent, detect, and post facto analyze cyber-attacks. Recently,
Cybersecurity Knowledge Graphs (CKGs) have been used
to represent CTI [1]–[3]. CKGs can contain data from a
variety of sources, both structured and unstructured. Structured
sources are often maintained by reputed organizations that
maintain and update information present in their systems [4]–
[6]. However, there is another body of research that utilizes
natural language processing techniques to extract data from
unstructured open-source text specifically for CTI representa-
tion. In this body of work, the source of the data is open-
source text that can come from security bulletins of software
organizations, technical reports from cybersecurity organiza-
tions, social media posts, tweets, and sometimes even the dark
web. It becomes difficult to ascertain the quality of information
present in these disparate sources. When data is extracted from
these sources, semantic triples are formed that are asserted to a
CKG [7]. The quality of the graph is dependant on the quality
of the NLP pipeline that is doing the extraction. Even state of
the art systems are nowhere near perfect in extracting entities
or relationships in complex domains like cybersecurity, For

example, in previous work our group has done, the accuracy
of relationship extraction ranged from 80%s for well behaved
text sources to as low as 50% for some relationships in text
collected from OSINT sources [8]. So the extracted graph
will contain incorrect relationships. If the source of the data
unfortunately turns out to be dubious, the CKG will also
contain information that is incorrect. Security researchers,
who use CKGs to query information relating to recorded
cyber-incidents, will receive answers that are incorrect [3].
Identifying such incorrect assertions in a CKG is the focus
of this work. Very recent research has shown that “fake but
plausible” threat intelligence can be created by suitably trained
large language models [1]. Addressing this is outside the scope
of this paper, since the assertions in such graphs are quite
possibly correct in general, but are not right for that particular
instance of data.

Asserting extracted CTI information from open-source text
comes with another risk. If the schema of the CKG does not
have appropriate classes to record the time when the data was
asserted, we can be left with outdated information that are
no longer useful. A recent report suggests that as much as
90% security officers are presented with outdated CTI that is
too old to be of any use [9]. For example, if a report from
2015 says updating Adobe Acrobat Reader in your system will
mitigate a certain type of malware attack the information may
not pass the test of time. In 2021, we may need some other
form of patch on the same software to build adequate defence
against malware attacks. If security officers are relying on old
information, it would be appropriate to reduce the confidence
of the conclusion they reach from that information. However, it
becomes difficult to do the same if the time-related information
is missing from the CKG. In our paper, we discuss a GCN
model to process a CKG that has no time-specific information
to reach a confidence score for the semantic triples that form
the CKG.

In our paper, we discuss a Graph Neural Network-based
model that will help us generate scores for the specific
relationships that exist between pairs of entities in a CKG. We
use a supervised approach, where we use known triples that are
correct, as the ‘labels’. The relationships for all the entities that
do not belong in the ‘label’ are also updated simultaneously.
Each relationship in the graph has a score, that gets updated
after receiving the supervision from the ‘label’. We want to



use this updated score to filter out the relationships that are
possibly incorrect due to being outdated, or simply because
they were from a data source that had incorrect information.
This will help us preserve the relationships that are still correct,
and discard the relationships that are not.

We organize the paper as follows. In Section II, we discuss
some of the relevant papers in this area. In Section III, we
will discuss our model’s architecture and specifications. We
will discuss the results in Section IV, and finally conclude in
V.

II. RELATED WORK

In this section we discuss some of the works published that
are related to our problem. Here we provide some background
information along with the relevant papers for some of the key
concepts of our paper.

A. CyberSecurity Knowledge Graphs

Recently there has been a significant body of research
that focuses on representing CTI in CKGs. A semantic triple
is a building block of a CKG. Zareen et al. [2], in their
paper, discussed an ontology UCO that represents CTI. This
ontology is based on Structured Threat Intelligence Exchange
(STIX) [6], as the classes and relationship mentioned in STIX
have been included in UCO. Piplai et al. [7] modified this
ontology and used it to represent CTI from After Action
Reports. This paper also discusses a pipeline that extracts
malware specific semantic triples from unstructured text, using
named entity recognizers and relationship extractors. This
ontology has been adapted in subsequent research for different
purposes. For instance, this CKG has been modified [10]
to represent malware behavior and the enriched CKG has
been applied in a Reinforcement Learning algorithm [11].
There has been more research on processing open-source
unstructured text for cybersecurity related information [12],
[13]. To extract cybersecurity entities, NER models specific to
cybersecurity have been built. Dasgupta et al. [14] concluded
that a combination of BERT embeddings with Bidirectional
LSTMs is the best for Cyber NERs. Recently, attention based
methods are being popularized for cyber entitity extraction
[15]. This forms the foundation of the semantic triples that
are asserted in the CKG. Often machine learning algorithms
are used to establish a relationship between pairs of entities.
TransE, TransH, TransD [16] models are used for relationship
extraction. In these models vector embeddings are used to
infer the relationship between pairs of entities. Pingle et al. [8]
developed a neural network based relationship extractor that
works as a classifier to establish relationship between pairs of
entities. Recently, more ontologies are being created for CTI
representation [17].

B. Data Poisoning and Fake CTI

Malicious alteration of Machine Learning datasets, can
lead to false conclusions drawn by the models using these
datasets. Some of the works related to data poisoning [18]–
[21] talk about the use changing the training data so that

the machine learning models perform poorly on the actual
test data. In the domain of computer vision, there has been
considerable research on ‘backdoor attacks’. Some specific
triggers on images in the training set poison the model, such
that adversaries are able to direct the model to undesired
outputs [22].

CKGs, that are formed from unstructured open-source text,
are not immune to data poisoning attacks. Extracting data from
sources like social media posts, can prove to be risky if they
contain misinformation about cybersecurity. Data poisoning
can lead to machine learning models misclassify malicious
code as benign data. External indicators have proved to be
useful to validate the model that is susceptible data poisoning
[23]. Khurana et al. [24] discuss a model that uses reddit
features to build a model that identifies poisoned samples in
the training set. Xiao et al. [25] discuss a feature extraction
algorithm that has a defensive mechanism against poisoning
attacks. Recently, Transformer-based architectures have proved
to be beneficial in generating fake text that is realistic enough
to be confused as real text by domain experts. Particularly,
Ranade et al. [1] used GPT-2 to generate fake CTI for
cybersecurity. These CTI, when processed and asserted in a
CKG, will contain incorrect information.

C. Graph Neural Networks

Graph Neural Networks (or Graph Convolutional Neural
Networks, GCNs) generalize convolutional neural networks
typically meant for image and audio data to data represented
in non-Euclidean domains, such as graphs, for robust feature
learning. Spectral GCN define an approximation of convolu-
tional neural networks for graphs using spectral graph theory.
Defferrard et al. [26] define a formulation of CNNs using the
Chebyshev expansion of the graph Laplacian. Bruna et al. [27]
show that for low-dimensional graphs it is possible to learn
convolutional layers with a number of parameters independent
of the input size, resulting in efficient deep architectures. Kipf
et al. [28] propose a convolutional architecture via a first-order
approximation.

On the other hand, non-spectral GCNs operate on the graph
directly and apply convolution or weighted average to the
neighboring nodes, as shown by Duvenaud et al. [29] and
Hamilton et al. [30]. Recent developments have increased the
capabilities and expressive power of Graph Neural Networks.
There are many practical applications in areas such as antibac-
terial discovery fake news detection [31], physics simulations
[32] etc.

Researchers have also deployed GNNs in recommender
system. PinSage [33] applies GNNs to the pin-board bipartite
graph in Pinterest and Pixie [34] uses the Pixie Random
Walk algorithm for Pinterest Object graph to generate rec-
ommendations. Monti et al. [35] and Berg et al. [36] model
recommender systems as matrix completion and design GNNs
for representation learning on user-item bipartite graphs. Wu
et al. [37] use GNNs on user/item structure graphs to learn
user/item representations. Wang et al. [38] design GNNs for
heterogeneous KGs with regularization to avoid overfitting.



TABLE I: Modified UCO Classes and Relationships

Type List

Classes

Software, Exploit-Target,
Malware, Indicator,
Vulnerability,
Course-of-Action,
Tool, Attack-Pattern,
Campaign, Filename,
Hash, IP Addresses

Relationships

attributedTo, indicates,
hasProduct,
mitigates, hasVulnerability,
uses

III. METHODOLOGY

In this section, we discuss our neural model and the
knowledge graphs that we used. In our previous research we
discussed a pipeline to generate CKGs from malware After
Action Reports. We reuse the same mechanism to generate
our CKGs for this paper. We then use the generated CKGs
for the GCN model that produces scores for each relationship
existing between entity pairs. These scores help us identify the
credibility of each relationship that can exist between every
pair of entities. We now discuss each component in detail.

A. CKG

Piplai et al. [7] described a pipeline to extract entities and
relationships for cybersecurity. The CKG schema was based
on UCO 2.0 [2]. Most of the entity-classes and relationship-
classes used in STIX [6] was used to form UCO 2.0,
since STIX is an industry standard for exchanging threat-
intelligence.

In Table I, we can see the classes and relationships used
to represent malware-specific information from After Action
Reports. This can be used to represent the same information
from any technical report about malware that comprises un-
structured text.

A customized Named Entity Recognizer (NER) called the
Malware Entity Extractor (MEE) was used to extract cyber-
entities. The MEE comprised of Conditional Random Fields
(CRF) and Regular expressions. CRF was used to extract
entities that require contextual information to make a classifi-
cation, and Regular Expressions were used to extract entities
that can be inferred from the structural composition, like IP-
Addresses, Filenames, Hashes, etc.

Word embeddings for pairs of extracted entities were passed
to neural network-based relationship extractor, that establishes
the correct relationship (if any) existing between the pair. This
results in a semantic triple that are asserted in the CKGs. 474
After Action Reports were used to create the training set for
the models (NER and Relationship Extractor).

We take a subset of the CKGs that were created by the
aforementioned pipeline. We take 80% of the CKGs for
training.

B. Model

The problem statement of our paper is to find out scores
between 0 and 1 to represent each relationship in a CKG.
The higher the score the more credible or trustworthy the
relationship is.

Let us consider that we have a set of entities E and a
set of relationships R. Each semantic triple in the CKG is
represented as K = {Eh, r, Et}, where Eh represents the
head-entity, Et represents the tail-entity, and r represents the
relationship between them, such that r ∈ R.

We represent each input CKG in the form of a matrix K,
where
K = {0, 1}|E|×|E|×|R|

Here |E| denotes the number of entities in K and |R|
denotes the number of relationships. It is a symmetric matrix,
where each row denotes if the particular relationship exists
or not for the entity pair. For example if K(i, j, k) = 1,
it means Rk exists between Ei and Ej . If it is 0, then the
relationship Rk does not exist between entities Ei and Ej .
After successful training, K(i, :, :) can be interpreted as an
embedding vector representing Ei that tells us how much
credible all the relationships are with respect to all the other
entities in the CKG, for the entity Ei. For example if a
Malware ‘Solarwinds hack’ uses an Attack-Pattern ‘clicks
an icon’, we have to index these entities ‘Solarwinds hack’,
‘clicks an icon’, and the relationship ‘uses’. Supposedly, the
indexes come out to be E3, E7, and R2, respectively, then
K(3, 7, 2) becomes 1.

The input to the system is a CKG that is represented by
K consisting of partially correct information. We use a CKG
that holds the correct entities and relationships in place that
we denote by K∗. The GCN is a function approximator, f ,
that produces another CKG K ′ as output such that
K ′ = [0, 1]|E|×|E|×|R| and
K ′ = f(K)
In this case, K ′(i, j, k) is a probabilistic value between

0 and 1 that tells us how important the relationship Rk is
between entity-pairs Ei and Ej .

We use K∗ as the target. As discussed before, each K∗(i, :
, :) gives us the ideal representation of entity Ei. The neural
network f produces an output K ′ and K ′(i, :, :) represents
the predicted representation of the same entity Ei. We define a
loss function L such that it calculates the dissimilarity between
the predicted representations of all the entities and the target
representations of all the entities. The cumulative loss function
is defined as follows.

Loss =
∑|E|

i=1 L(K
∗(i, :, :),K ′(i, :, :))

The construction of K∗ does not require an entire CKG
that has been rectified by human annotators. The purpose of
our research is to update the probabilistic values that signify
the ‘trust’ scores of the relationships of our CKG. In order to
make our algorithm scale well, we cannot place a requirement



Fig. 1: High level architecture diagram for our GCN model. The input to the GCN is a CKG with incorrect information
highlighted in red. The GCN produces an output that contains probabilistic scores for all the relationships in the CKG. The
scores can be interpreted as how much we ‘trust’ each relationship.

on a completely correct CKG for training. If we do not have a
complete CKG to be used as label, and we have partial triples
that talk about the same malware we generate a CKG on our
own in the following way.

For supervision, let us consider we have a set of triples
Tp. In the original graph we have a set of triples Ts. Each
triple t ∈ Tp can be represented by Ph, Pr, Pt corresponding
to the head-entity, relationship, and the tail-entity. Similarly,
each triple t ∈ Ts can be represented by Sh, Sr, St. We iterate
through all the triples in Tp, and check if the head of any triple
in Tp overlaps with any of the tail nodes of the triples in Ts.
If that node is Tp(i)h, we remove all triples from Ts, where
Tp(i)h is a head node. After that we add all triples from Tp

to Ts, that have Tp(i)h as a head node. We remove them from
Tp. We repeat this for all the remaining nodes in Tp untill it is
empty. We discard nodes that have no overlap with |E| which
is the set of entities in K. The key motivation for doing so is
that Tp can come from a source that talks about some specific
details of a cyber-attack. We want to update the knowledge
graph for those specific details of the cyber-attack, but we also
want to preserve the semantic triples that talk about the other
aspects of the cyber-attack that have been collected from other
CTI sources that is represented by Ts. For example, consider
a malware ‘Dark Caracal’ that uses another malware ‘xRAT’.
The entire CKG that has information related to ‘Dark Caracal’
and ‘xRAT’ is Ts. Suppose, a new report comes that has
updated information about ‘xRAT’. We want to create a new
CKG that retains the information about ‘Dark Caracal’, but
updates the information about ‘xRAT’. A possible critique of
this method could be removal of all knowledge about ‘xRAT’

from Ts that is not covered in Tp. It should be noted here that a
missing triple would not mean that after training, the scores of
the relationships belonging to the removed triples will be low.
The GCN model changes the scores based on subgraphs and
it is a self-correcting system. With more CTI being available
about ‘xRAT’ it will be possible to change the scores of the
relationships from the discarded triples, if they happen to be
correct. We can see the algorithm in Algorithm 1.

Algorithm 1 Algorithm to create K∗ from partial sub-graphs

Ns ← |Ts|
Np ← |Tp|
while Np ̸= 0 do

Ph, Pr, Pt ← Tp(Np)
while Ns ̸= 0 do
Sh, Sr, St ← Ts(Ns)
C ← ∅
A← ∅
if Ph equals St then

C ← Ts(i) ∀i ∈ Ns s.t. Ts(i)h = Ph

A← Tp(i) ∀i ∈ Np s.t. Tp(i)h = Ph

end if
Ts ← Ts − C +A
Tp ← Tp −A
Np ← |Tp| − 1

end while
Ns ← |Ts| − 1

end while
return Ts



Fig. 2: Neural Network architecture for GCN

The GCN used in our paper is based on the principle
multi-label classification. Further, our network incorporates a
fixed threshold for the output scores - a probabilistic measure
between 0 and 1.0. Our multi-label graph convolutional neural
network gives as an output, an array of independent probabil-
ities of a relationship existing between the given two entities,
with one or more relations possibly being true. More details
of the GCN architecture can be seen in Figure 2.

Let us consider a knowledge graph comprising triplets of the
format (h,l,t). When the 2 entities ’h’ and ’t’ of a knowledge
graph triplet (h,l,t) is passed into our GCN, an array of
independent probabilities is given as an output for the value
of the relationship ’l’.

The GCN model utilises 2 essential parameters - the relation
vocabulary and entity vocabulary, which are the number of
relationships and entities in our knowledge graph (KG) re-
spectively. We define an embedding as a transformation of
the knowledge graph entities to their vector representations.
Further, we define the length of the transformed vector as
the embedding dimension. There are two optional parameters
that define our model, the first one states is the embedding
dimensions of our entities and the second is a hyperparameter
used to determine the dimensions of the second and third dense
layers of our network architecture.

Our network architecture comprises of 8 hidden layers - the
embedding layer, the concatenate layer, 3 dense layers and
3 dropout layers. The first two dense layers use a Rectified
Linear Unit (ReLU) activation function while Dense Layer 3
incorporates a sigmoid activation function, since we want to
use a multi-label approach to have our output probabilities
independent of each other. The embedding layer is used to
transform the two entities of each KG triple into their respec-
tive embeddings (vector representations) and the concatenate
layer takes as an input, the algebraic sum of the 2 entity vectors
’h’ and ’t’. It should be noted that the embedding layers for
both entities share the same biases and weights along with L2
normalisation (Euclidean distance). Finally, the three dropout
layers are used to suppress overfitting.

Figure 1 describes the main architecture of our system
with an example. A CKG is passed to the GCN with some
incorrect information. The incorrect information is highlighted
with a red box. The entities ‘connect to the Service Page’ and
‘clicks an icon’ are incorrect. Both these entities are related
to the malware entity ‘Solarwinds Hack’. The GCN is trained
with labels that correspond to semantic triples that are known
to be correct. The desired output of our system is not the
removal of these entities, but placing probabilistic scores to the
relationships held by these incorrect entitites that deem them
to be less useful that the other relationships in the CKG. As
described above GCN uses convolution layers that uses spatial
information to extract repeated features. These process of
repeated feature extraction that is performed through 8 hidden
layers work on the sub-matrices. Each of these sub-matrices
represent the features derived from the interconnections of the
set of entities represented by the sub-matrices, which basically
represents a sub-graph. Repeated feature extraction on various
sub-graphs that contain each entity results in the embedding
vector for each entity that is represented by each row of the
output matrix K[i].

IV. EXPERIMENTS AND RESULTS

We implement the GCN using Keras and Tensorflow 2.0.
Keras is a python-based library that is executable on Tensor-
flow and Theano (https://keras.io). All models were trained
using Keras deep learning API in TensorFlow - on a Google
Colab instance with an NVIDIA Tesla T4 GPU and up to
12GB RAM/128GB disk space. To create the training set,
we take two approaches. The first approach is deliberately
changing some entities and relationships from a correct dataset
to incorrect ones randomly chosen from our list of entities
and relationships. For example if we have a semantic triple
that says a Malware ‘Pegasus’ uses Exploit-Target ‘Android
OS’, we can choose to change ‘Android OS’ to ‘Windows’.
This entity ‘Windows’ is another Exploit-Target that we have
in our list of entities, for all CKGs. We can also change the
relationship uses to any randomly chosen relationship, say,



(a) CKG populated from an After Action Report about Pegasus
published in 2018

(b) CKG modified by GCN after being trained with new information

Fig. 3: Comparison of CKGs about a malware Pegasus before
and after training

hasVulnerability. We make this change for 15% of the entities
and relationships in one graph. This forms noisy CKGs that
form K, as an input to our CKG. We retain the unchanged
CKG to form the label K∗.

The second approach is generating K∗ from updated
CTI.For example, we may have a CKG K, that comes from
a particular CTI source describing a cyber-attack. We come
across a more recent CTI that describes the same cyber-attack.
We use the algorithm described as Algorithm 1, to create a new
K∗ to be used as labels. For any CKG K constructed from
fake CTI sources, we also use the same approach to form K∗.
We do this wherever possible in our dataset.

We evaluate the results across three parameters : Hits@k,
Precision and Recall. For Hits@k, after 50 epochs of training,
h and t of a triple in the test data are given to the GCN as
input, and we receive another CKG, say, K ′ as an output with
modified scores for all the relationships that exist between the

TABLE II: Scores for our GCN model

Model Hits@1 Precision Recall F-1

GCN 0.98 0.986 0.964 0.975

entities. If we look into K(i, j, :) we get the output an array
of probabilities for all the relationships that exists between
entity Ei and entity Ej . The relationship with the highest
probability between 1 and 0 is chosen and is matched with the
relationship in K∗(i, j, :) which signifies the true relationship.
We use the aforementioned metrics to obtain the scores. We
can see the scores in Table II. Given the small number of
positive labels for relationships, as compared to the negative
labels, we avoid using metrics like Accuracy since their values
exceed 0.99 for all experimental settings. This is because for
most entity pairs, there is no relationship. The scores are high,
due to the small number of training samples for CKGs. Most
of the evaluations are correct, because we randomly replace
correct entities/relationships with incorrect ones. Some of them
may be obvious,and that leads to high scores. It is difficult to
identify incorrect relationships that have been asserted from
sophisticated fake CTI. We may need more robust models in
future to deal with the incorrect assertions from fake CTIs that
are realistic.

For example, in Figure 3 for the given entities ‘Pegasus’ and
‘iOS’, the predicted relationship output array is as follows

• hasProduct : 0.31
• mitigates : 0.54
• hasVulnerability : 0.36
• uses : 0.82
• modifies : 0.51

Since the predicate ‘uses’ has the highest probability, the
predicted triplet is ‘Pegasus - uses - iOS’, which is compared
to the true triplet ‘Pegasus - uses - iOS’, thus evaluating to
a true prediction. All the test data is used and results are
averaged for evaluation.

In Figure 3, we see two CKGs. One of the CKGs (Fig 3a) is
asserted with triples extracted from an older report on Pegasus.
We see a relatively larger number of triples in this graph
that talks about entities like ‘memory corruption’, ‘Facebook’,
and ‘Gmail’. Recently, there was another report on Pegasus,
specifically talking about how Pegasus used ‘zero-touch’ to
get installed in people’s smartphones. This recent version of
Pegasus uses a vulnerability in iPhones. Specifically, an old
vulnerability in iMessage is used for this attack. This version
of Pegasus received a lot of media coverage, and that led to 5
tech reports about Pegasus in our training set for extraction.

If we look at Figure 3b, we see some of the relationships
between ‘Pegasus’ and entities derived from older reports
have been discarded. This was done by placing a threshold
of 0.5 for the top relationship to be retained. It should also be
noted that the relationships related to ‘iOS’, specifically ‘zero-
click’, ‘iMessage’ had an increase in the relationship scores we
receive after passing the original CKG through the GCN. This



says that those relationships pertaining to ‘iOS’ and the recent
CTIs available for ‘Pegasus’ are to be trusted more, because
their probabilistic scores have increased. As we mentioned in
Section I, we want to retain information that are new, and we
want to score the triples relating to new information higher
than triples relating to outdated CTI. Since recent reports about
‘Pegasus’ talk about the iPhone hack, information related to
this receive a higher score. The scores for older relationships
are lowered. Adaptive thresholding can help us retain more or
less of the older relationships depending upon the use-case.

V. CONCLUSION AND FUTURE WORK

We discuss a GCN based algorithm that scores semantic
triples in a CKG. These scores are high for correct and useful
information and are low for outdated and incorrect informa-
tion. Our work provides a new approach to automatically
correct CKGs that may contain wrong information. With the
recent developments in ML based automatic CKG generation,
it becomes likely that some of the relationships that are
asserted are incorrect. This is because even state-of-the-art ML
systems are far from being a 100% accurate, and even less so
on unseen data. This problem becomes even more challenging
in cybersecurity because we come across tech reports about
novel attacks and zero-days frequently. ML or NLP based
techniques are likely to fail in extracting data that contains
new malware-specific information . As CKGs grow in size,
it will become impossible for human fact-checkers to correct
the information present in them. Our method can be applied
in cleaning up CKGs that contain information that have been
misclassified by ML algorithms.

Apart from the problems of ML algorithms underperform-
ing, we also run into the risk of retaining information in
CKGs that are old. This problem is even more acute in
cybersecurity as mentioned in Section I. Our method can
be used to quantify the relationships in the CKG such that
older relationships receive lower score, and newer information
receives a higher score. Thresholding on the scores can lead
to the retention of only new information. We demonstrate this
capability in Figure 3. We also experimented on fake CTI
that are trivial, and our model was successful in identifying
them. However, detecting fake information is still challenging.
Recent developments with Transformer architectures in neural
networks made it possible to generate fake CTI that are
difficult to identify even by human experts. In future, our
research would be on identifying ‘human-like’ CTI with more
sophisticated models.

REFERENCES

[1] Priyanka Ranade, Aritran Piplai, Sudip Mittal, Anupam Joshi, and Tim
Finin. Generating fake cyber threat intelligence using transformer-based
models. In International Joint Conference on Neural Networks (IJCNN).
IEEE, July 2021.

[2] Zareen Syed, Ankur Padia, Tim Finin, Lisa Mathews, and Anupam Joshi.
Uco: A unified cybersecurity ontology. In Workshops at the thirtieth
AAAI conference on artificial intelligence, 2016.

[3] Sudip Mittal, Anupam Joshi, and Tim Finin. Cyber-all-intel: An ai for
security related threat intelligence. UMBC Faculty Collection, 2019.

[4] Gaurav Sood. virustotal: R client for the virustotal api, 2017. R package
version 0.2.1.

[5] External Data Source. Virusshare dataset, 2018.
[6] Oasis group. Stix 2.0 documentation. https://oasis-open.github.io/cti-

documentation/stix/examples.html, May 2013.
[7] Aritran Piplai, Sudip Mittal, Anupam Joshi, Tim Finin, James Holt, and

Richard Zak. Creating cybersecurity knowledge graphs from malware
after action reports. IEEE Access, 8:211691–211703, 2020.

[8] Aditya Pingle, Aritran Piplai, Sudip Mittal, Anupam Joshi, James Holt,
and Richard Zak. Relext: Relation extraction using deep learning ap-
proaches for cybersecurity knowledge graph improvement. Proceedings
of the 2019 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, 2019.

[9] Duncan Riley. Survey finds CISOs are relying on outdated, report-based
threat intelligence, 2021.

[10] Aritran Piplai, Sudip Mittal, Mahmoud Abdelsalam, Maanak Gupta,
Anupam Joshi, and Tim Finin. Knowledge enrichment by fusing
representations for malware threat intelligence and behavior. In 2020
IEEE International Conference on Intelligence and Security Informatics
(ISI), pages 1–6. IEEE, 2020.

[11] Aritran Piplai, Priyanka Ranade, Anantaa Kotal, Sudip Mittal,
Sandeep Nair Narayanan, and Anupam Joshi. Using knowledge graphs
and reinforcement learning for malware analysis. In 2020 IEEE
International Conference on Big Data (Big Data), pages 2626–2633.
IEEE, 2020.

[12] Sudip Mittal, Prajit Das, Varish Mulwad, Anupam Joshi, and Tim Finin.
Cybertwitter: Using twitter to generate alerts for cybersecurity threats
and vulnerabilities. Proceedings of the 2019 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining, 2016.

[13] Sudip Mittal, Anupam Joshi, and Tim Finin. Thinking, fast and
slow: Combining vector spaces and knowledge graphs. arXiv preprint
arXiv:1708.03310, 2017.

[14] Soham Dasgupta, Aritran Piplai, Anantaa Kotal, and Anupam Joshi. A
Comparative Study of Deep Learning based Named Entity Recognition
Algorithms for Cybersecurity. In IEEE International Conference on Big
Data 2020. IEEE, December 2020.

[15] Injy Sarhan and Marco Spruit. Open-cykg: An open cyber threat
intelligence knowledge graph. Knowledge-Based Systems, page 107524,
2021.

[16] Xu LIANG. Summary of translate model for knowledge graph embed-
ding. https://towardsdatascience.com/summary-of-translate-model-for-
knowledge-graph-embedding-29042be64273.

[17] Nidhi Rastogi, Sharmishtha Dutta, Mohammed J Zaki, Alex Gittens, and
Charu Aggarwal. Malont: An ontology for malware threat intelligence.
In International Workshop on Deployable Machine Learning for Security
Defense, pages 28–44. Springer, 2020.

[18] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and
J. Doug Tygar. Can machine learning be secure? In ACM Symposium
on Information, computer and communications security, pages 16–25,
2006.

[19] Benjamin Rubinstein, Blaine Nelson, Ling Huang, Anthony Joseph,
Shing-hon Lau, Satish Rao, Nina Taft, and J. Doug Tygar. Antidote:
understanding and defending against poisoning of anomaly detectors.
In ACM SIGCOMM Conference on Internet Measurement, pages 1–14,
2009.

[20] Marius Kloft and Pavel Laskov. Online anomaly detection under
adversarial impact. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, pages 405–412.
JMLR Workshop and Conference Proceedings, 2010.

[21] Marius Kloft and Pavel Laskov. Security analysis of online cen-
troid anomaly detection. The Journal of Machine Learning Research,
13(1):3681–3724, 2012.

[22] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash.
Hidden trigger backdoor attacks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 11957–11965, 2020.

[23] Thabo Mahlangu, Sinethemba January, Thulani Mashiane, Moses
Dlamini, Sipho Ngobeni, and Nkqubela Ruxwana. Data poisoning:
Achilles heel of cyber threat intelligence systems. In Proceedings of
the ICCWS 2019 14th International Conference on Cyber Warfare and
Security: ICCWS, 2019.

[24] Nitika Khurana, Sudip Mittal, Aritran Piplai, and Anupam Joshi. Pre-
venting poisoning attacks on ai based threat intelligence systems. In
2019 IEEE 29th International Workshop on Machine Learning for Signal
Processing (MLSP), pages 1–6. IEEE, 2019.

[25] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia
Eckert, and Fabio Roli. Is feature selection secure against training



data poisoning? In international conference on machine learning, pages
1689–1698. PMLR, 2015.
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