arXiv:2111.03396v1 [cs.CR] 5 Nov 2021

FedLess: Secure and Scalable Federated Learning
Using Serverless Computing

Andreas Grafberger®, Mohak Chadha*, Anshul Jindal*, Jianfeng Gu*, Michael Gerndt*
*Chair of Computer Architecture and Parallel Systems, Technische Universitidt Miinchen
Garching (near Munich), Germany
Email: {andreas.grafberger, mohak.chadha, anshul.jindal, jianfeng.gu}@tum.de, gerndt@in.tum.de

Abstract—The traditional cloud-centric approach for Deep
Learning (DL) requires training data to be collected and pro-
cessed at a central server which is often challenging in privacy-
sensitive domains like healthcare. Towards this, a new learning
paradigm called Federated Learning (FL) has been proposed that
brings the potential of DL to these domains while addressing
privacy and data ownership issues. FL enables remote clients
to learn a shared ML model while keeping the data local.
However, conventional FL systems face several challenges such
as scalability, complex infrastructure management, and wasted
compute and incurred costs due to idle clients. These challenges of
FL systems closely align with the core problems that serverless
computing and Function-as-a-Service (FaaS) platforms aim to
solve. These include rapid scalability, no infrastructure man-
agement, automatic scaling to zero for idle clients, and a pay-
per-use billing model. To this end, we present a novel system
and framework for serverless FL, called FedLess. Our system
supports multiple commercial and self-hosted FaaS providers and
can be deployed in the cloud, on-premise in institutional data
centers, and on edge devices. To the best of our knowledge, we
are the first to enable FL across a large fabric of heterogeneous
FaaS providers while providing important features like security
and Differential Privacy. We demonstrate with comprehensive
experiments that the successful training of DNNs for different
tasks across up to 200 client functions and more is easily possible
using our system. Furthermore, we demonstrate the practical
viability of our methodology by comparing it against a traditional
FL system and show that it can be cheaper and more resource-
efficient.

Index Terms—Function-as-a-service (FaaS), serverless comput-
ing, federated learning, deep learning

I. INTRODUCTION

Heterogeneous remote edge devices or siloed data centers
such as mobile phones or hospitals generate manifolds of data
each day [1]]. Using deep learning, the data generated by these
devices and institutions can be used to enable smart appli-
cations [2]. In the conventional deep learning [3|] approach,
all the raw training data is collected and stored on a central
server. However, increasing privacy concerns of data holders
and recent legislation on data protection and privacy such as
the European General Data Protection Regulation (GDPR) [4]]
prevent the transmission of data to a centralized location,
thus making it impossible to train DNNs on data stored and
processed in different locations. Towards this, a new paradigm
for distributed ML training called Federated Learning (FL) [5]]
has been introduced. FL enables the collaborative training
of ML models and addresses the fundamental problems of
privacy and ownership of data. In FL, remote clients learn a

shared model by optimizing its parameters on their local data
and sending back the updated parameters. These local model
updates are then aggregated to form the new, updated shared
model. Clients in FL can be mobile, edge devices, institutions
operating their own data centers, or Virtual Machines managed
by Infrastructure-as-a-Service (IaaS) providers [6]. In this
paper, we argue that both components in a traditional FL
system, i.e., clients and server, can immensely benefit from
a new computing paradigm called serverless computing.

In serverless computing, developers do not have to man-
age infrastructure themselves but completely hand over this
responsibility to a Function-as-a-Service Platform [7]. Several
open-source and commercial FaaS platforms such as Open-
Whisk [8], OpenFaaS [9], AWS Lambda [10], and Google
Cloud Functions (GCF) [11] are currently available. Applica-
tions are developed as small units of code, called functions that
are independently packaged and uploaded to a FaaS platform
and executed on event triggers such as HTTP requests. In
the context of serverless, FL clients are functions deployed
on a FaaS platform that are capable of calculating the shared
model updates. A connected group of different FaaS platforms
is referred to as a FaaS fabric [[12].

On the client-side, using FaaS technologies can lead to
improvements in resource-efficiency and cost. For instance,
a common practice in FL is to only select a small fraction
of available clients for each training round. Increasing client
parallelism is only beneficial up to a certain point with
diminishing returns when more clients are included in each
training round [3], [13]]. As a result, most clients wait until they
are selected in a later round and stay idle, leading to wastage of
resources and incurred costs if the clients use an laaS provider.
The idle times are further enhanced due to the potential
heterogeneity in clients’ computing capabilities or local dataset
size (§I-B). On the FL server-side, one common challenge
is to efficiently handle sudden bursts of compute-intensive
workloads whenever clients report their local updates for
aggregation [[13[]. In addition to wasted compute or scalability
challenges, requiring all data holders to manage the complex
infrastructure for their clients can be an enormous burden.
These challenges of current FL systems closely align with the
core problems that serverless technologies and FaaS platforms
aim to solve. These include rapid scalability during request
bursts, automatic scaling to zero when resources are unused,
and an attractive pricing and development model [7]].

Towards efficient, scalable, and enabling ease-of-use for FL,

Faa$ Platform

Function Free (> 10
Invocations Instance ?

Cold Start New
instance

<events> I

(@Execute Handler method

Instance
Execution Environment

Function
handler </>

—

Fig. 1: Workflow demonstrating functioning of the FaaS
paradigm.

our key contributions are:

o We present a novel system and framework called Fed-
Less[] to perform FL on a heterogeneous fabric of FaaS
platforms with support for arbitrary DNN models using
Tensorflow [14], proper authentication and authorization
of clients, and a privacy-protecting training mechanism.

e FedLess supports four major commercial FaaS platforms,
i.e., AWS Lambda, GCF, Azure Functions [15] and
IBM Cloud Functions [16f, and two major open-source
platforms, i.e., OpenWhisk [8] and OpenFaaS [9]. We
provide examples and helper functions to run FL client
functions on all these platforms.

o We demonstrate with extensive experiments the features
and scalability of FedLess on three popular FL. benchmark
datasets using different DNN models.

o We compare FedLess with an optimized reimplementation
of an existing FaaS based FL system [12] and demon-
strate that our system is significantly faster.

o We practically demonstrate the viability of FedLess by
comparing it with a traditional IaaS based FL system
using Flower [[17] with respect to performance and cost.

The rest of this paper is structured as follows. §II] provides
a background on FaaS and FL. In the previous work on
serverless ML, FL, and other FL frameworks are described.
describes our system and framework FedLess. In §V]
our experimental setup is described, while presents our
experimental results. Finally, concludes the paper and
presents an outlook.

II. BACKGROUND
A. Function-as-a-Service (FaaS)

Due to its simplicity, client-friendly cost model, and au-
tomatic scaling, FaaS is emerging as a preferred cloud-
based programming paradigm. It has gained popularity and
widespread adoption in different application domains such as
linear algebra [18]] and heterogeneous computing [19], [20],
[21]. An overview of the functioning of the FaaS paradigm is
shown in Figure 1. In FaaS, the user implements fine-grained
functions that are executed in response to event triggers or
HTTP requests (@). On function invocation, the FaaS plat-
form is responsible for providing resources to the function and
its isolation in ephemeral, stateless containers. These contain-
ers are commonly referred to as function instances [22f, [23]]

Uhttps://github.com/andreas-grafberger/fedless

— Server

/)
N Server Aggregates Parameter £
> (-] Updates for New Global Model N

Fig. 2: General synchronous training workflow in FL.

and contain the function’s language-specific runtime environ-
ment. For commercial FaaS platforms, the function instances
are launched on the FaaS platforms’ traditional Infrastructure-
as-a-Service Virtual Machines as described in [24]], [25]]. The
runtime is responsible for relaying the invocation events,
context information, and responses between the FaaS platform
and the function. On the first invocation of a function, the FaaS
platform creates a new function instance, i.e., cold start [26]
and runs its handler method to process the event (€)-@).
When the handler returns a response or exits (@), the function
instance remains active for a specific duration to handle
successive events. The FaaS platform can create concurrent
function instances to handle multiple events or requests on-
demand. When the number of requests decreases, the FaaS
platform automatically scales down the number of active
function instances. For commercial FaaS platforms, users are
billed based on the execution time of the functions measured
in 100ms or 1ms intervals, i.e., pay-per-use. Moreover, most
commercial FaaS platforms limit the maximum execution time
and memory a function can have. For instance, with AWS
Lambda, these limits are 15 minutes and 10GB, respectively.
However, due to the rapid development in FaaS, these limits
might disappear or be relaxed soon [27].

B. Federated Learning (FL)

FL describes a new learning paradigm for data holders to
collaboratively train an ML model while keeping their data
private. A typical FL system has two main entities, i.e., clients
and a central server. Depending on the FL category, i.e., cross-
device or cross-silo, the clients in FL can range from mobile,
edge devices to machines running in cloud data centers [6]]. In
cross-device setting, the number of clients can be significantly
large with limited network and compute capabilities, while in
cross-silo setting, there are few clients, all with abundant com-
puting resources. Figure [2] describes the general synchronous
training workflow for both FL categories. At the start of
each round (0), the server sends the current (at the start
randomly initialized) global model to all the clients. Following
this, each client improves the shared model by optimizing it
on its local dataset and sends back only the updated model
parameters (@). Finally, the local model updates from all
participating clients are collected and aggregated (€)). The
server usually does not possess its own dataset and is primarily
responsible for organizing the training and deciding which
clients contribute in a new round. The default implementation

in FedLess uses the FedAvg [5]] algorithm for aggregating the
model parameters. In contrast to traditional distributed ML,
the training data present on clients in FL is non-IID, i.e., one
client’s dataset is not representative of the full data distribution
across all clients, and unbalanced, i.e., a small number of
clients can have large local datasets while other clients can
contain only a few records.

III. RELATED WORK

Serverless Machine Learning. The majority of the pre-
vious works [28]], [29], [30] in this domain have focused
on distributed ML training using FaaS functions. Siren [28]],
allows users to train ML models in the cloud using fine-
grained functions, thereby removing the burden of non-trivial
cluster provisioning and management from the developers.
Furthermore, it enables asynchronous distributed training and
features an algorithm based on Deep Reinforcement Learning
that continuously tunes the number of functions and their
memory to optimize performance and cost. In contrast to Siren,
Cirrus [29]] supports complete end-to-end ML workflows
including data preprocessing and hyperparameter tuning. It
provides a lightweight worker runtime for the cloud functions
that support various ML models. Jiang et al. [30] analyze
the cost-performance trade-offs between Infrastructure-as-a-
Service (IaaS) and FaaS for distributed ML. Towards this, they
developed LambdaML, which supports different distributed
ML variants such as synchronous vs. asynchronous training,
purely FaaS-based, or a hybrid (FaaS/IaaS) training approach.
In contrast to previous works, FedLess differs in several ways.
First, although FL and distributed ML share some similarities,
they have key fundamental differences. For instance, data in
FL is private to the client and not accessible by the central
server. Furthermore, in distributed ML, workers are rarely
idle, whereas, in FL, usually not all workers participate in
a round of training. To this end, we designed FedLess from
the ground up, keeping FL in mind. Second, none of the
tools mentioned above are vendor-agnostic and support only
one FaaS platform, i.e., AWS Lambda. In contrast, FedLess
supports clients distributed across all major commercial and
open-source FaaS platforms. Third, none of the tools consider
security aspects for function invocations and model training.
On the other hand, FedLess supports cloud-agnostic function
authentication/authorization. Finally, FedLess is built on top of
Tensorflow [31], which allows easy integration and usage for
developers. In contrast, Siren features a runtime based on a
pruned version of MXNet [32], while Cirrus does not support
any DL framework.

Federated Learning Frameworks. There exists several
open-source frameworks for FL such as PySyft [33]], Ten-
sorflow Federated (TFF) [34|, Flower [17|], FedML [35],
PaddleFL [36], and Fate [37]. Although many of these frame-
works provide implementations for different FL algorithms
and privacy mechanisms by default, none of them have been
developed to be used in a serverless context. Moreover, they re-
quire all participating clients to rely on specific communication
protocols such as gRPC. As a result, for maximum flexibility
and to optimize our implementation for the serverless use-case,
we do not use them.

Auth Server
0 e

FedLess Control Plane
Kubernetes Cluster |

Client Database
MongoDB

“ FedLess Functions |
OpenWhisk Cluster |

5\, Fedless Controller
iS5 stateful Process H
? q Client Registry
Client Invoker
— Data/ Model Transfer
FL Strate
£

Fig. 3: FedLess System Architecture.

“ Aggregator Function
OpenWhisk Function

Serverless Federated Learning. To the best of our knowl-
edge, we are the only ones to have tried FaaS for FL. In
our previous work [[12f], we presented FedKeeper, a tool to
facilitate FL. of ML models across a fabric of heterogeneous
FaaS platforms. However, FedKeeper lacks crucial features
that are required by FL systems in practice. For instance,
it only supports relatively small models, does not provide
support for security or a privacy protection mechanism, and
is not optimized for performance. In this paper, we present
a new system, FedLess that addresses the drawbacks present
in FedKeeper. Moreover, FedLess is designed to be modular
and can be easily extended to support additional data sources,
models, and optimization algorithms.

IV. FEDLESS

FedLess is a system and framework to perform FL on a
heterogeneous fabric of FaaS platforms. In this section, we
first describe the overall architecture of FedLess. Following
this, we present an overview of its implementation, describe
its security features, the mechanism for privacy-preserving
training of clients, and performance optimizations that improve
scalability and reliability in detail. Finally, we describe the
workflow for training clients using FedLess.

A. System Design

Figure [3] gives an overview of the different components of
FedLess. In the serverless context, we refer to an FL client
as the associated client function, i.e., the function deployed
on a FaaS platform that calculates the local model updates.
A client administrator is the person who is responsible for
managing and deploying the function and is usually also the
data holder. The FL training process and the registration of
clients are managed by the FL administrator (FL admin).

FedLess supports both cross-silo and cross-device FL use-
cases (§II-B). In the cross-silo setting, client functions would
belong to a few institutions and either run in on-premise data
centers with self-hosted FaaS platforms or on the cloud. In
the latter, client functions would run on edge devices with
lightweight FaaS platforms such as faasd (OpenFaaS) [38]].
All clients are externally deployed functions that are callable
through an HTTP interface. By default, FedLess supports four
commercial and two open-source FaaS platforms. We provide

scripts for deploying client functions on these FaaS platforms.
Apart from setting up optional parameters, such as request
limits, no further action is required from the user.

The central component in FedLess is the control plane which
comprises of the Parameter Server, the Client Database, an
OpenWhisk cluster to run the Aggregator Function, and the
FedLess Controller. The controller comprises of a Client Reg-
istry, Client Invoker, and the FL Strategy. The default FL strat-
egy implemented in our system is the FedAvg algorithm [5].
Due to its ease-of-use, reliability, replication support, and secu-
rity features, we chose MongoDB [39] as our parameter server.
Moreover, we make use of MongoDB’s GridFS specification
to support models larger than the document size limit, i.e.,
16MB. The global model architecture and its hyperparameters
are also stored in the parameter server. The Client Database is
also a MongoDB instance that serves as a persistent registry
for the client functions, their hyperparameters, and dataset
locations, along with any additional information supplied by
the client administrator during sign-up. The Controller is a
lightweight process that manages and monitors the entire
training cycle. It is responsible for selecting the clients that
participate in each round, invoking them and the aggregator.
The client registry component in the controller interacts with
the client database for managing the clients. The aggregator
is a FaaS function that is invoked by the controller after all
clients that participated in a training round have finished. It
aggregates the updated client model parameters according to
the FL strategy.

New FL strategies other than FedAvg can easily be im-
plemented by modifying how the controller samples clients
for each round and writing a custom aggregator function,
taking the one provided as a blueprint. Having the parameter
server physically close to the aggregation process is a crucial
advantage of our approach due to minimized networking
overhead, as is also presented in [30]. Although we deploy
the aggregator function using OpenWhisk as shown in Fig 3]
it can be easily deployed using another FaaS platform. The
Auth Server is an external entity responsible for authentication
and is described in detail in

B. Implementation Overview

The FedLess framework was implemented using Python3
and also includes a command line tool to orchestrate the entire
FL training process. It relies on Tensorflow [|14] and Keras [40]]
to support arbitrary DNN models. Our framework provides:

o Low-level, easily exchangeable implementations for se-
rialization methods, helper functions for tasks related to
security and general optimizations, as well as classes for
easy database access and interaction with the parameter
server.

« Functions and decorators to abstract away differences of
supported FaaS platforms, in turn, unifying the imple-
mentation of client functions.

« Extensive example implementations of client and aggre-
gation functions that serve as easily modifiable blueprints.

« Custom data types and models using the Pydantic [41]
library, which ensures that all clients and the FL server
rely on the same data formats and schemata.

C. Security

Since the clients in FL belong to separate institutions and
networks and have to expose their functionality to the public
internet to be accessible by the FL server, it is significantly
important that only authenticated and authorized entities can
invoke client functions. The security features in FedLess are
described in the following four aspects.

1) Function Ownership: In FedLess, all participating in-
stitutions and users that manage one or multiple clients are
responsible for deploying the client functions themselves. This
is because data holders have complete control over what
happens with their data. Moreover, this approach provides
greater flexibility for institutions to adjust their complete end-
to-end local training workflows. In addition, full oversight on
security and access control is essential, especially for domains
such as healthcare [42] with special legal regulations for the
data. Clients deployed on different FaaS platforms can directly
use the authentication system provided by FedLess (§IV-C2).
However, since data holders are free to use different FaaS
platforms, they can require additional, platform-specific au-
thentication secrets. A data holder could, for example, deploy a
client function with OpenWhisk and specify an API token that
has to be supplied by FedLess with every request. Our system
supports additional API tokens in client invocation requests.
We provide several examples for writing client functions using
our framework for multiple FaaS platforms.

2) Authentication and Authorization: In a centralized FL
system, like FedLess, multiple security interests come together.
For instance, data holders require that only the central FL
server they integrate with can call their client functions.
This means that the central server has to authenticate itself
and possess proper authorization. At the same time, before
being added to the list of valid client functions for an FL
training session, data holders have to identify themselves to
the FL server and provide appropriate proof. As a result, we
need to support authentication, authorization, and integration
with external identity providers through protocols like OAuth
2.0 [43]] and SAML 2.0 [44]. Integration with external identity
providers enables easy and direct support for identity providers
already used by academic institutions and enterprises. Towards
this, we use AWS Cognito [45]]. It is a service that provides all
the required features, has been used in large-scale production
systems, and has a convenient pricing structure that scales with
the size of the system. Furthermore, it does not restrict FedLess
to a specific cloud provider’s ecosystem since the interaction
with Cognito is the same for all the clients.

The authentication and authorization system is based on
JSON Web Tokens [46] (JWTs) attached to all HTTP requests
between the FL server and the clients. Client administrators
manually register through a web interface with a Cognito
User Pool, offering sign-up via external identity providers.
Once they submit their registration request, a central FL
server administrator checks the validity of the registration
information and confirms it. After the registration process,
all necessary information for the client function to check the
authenticity and permissions of requests by the FL server
is then communicated to the client administrator via a web

interface. This includes the public key of the key-pair used to
sign the authentication headers, the FL server’s client-id, and
required authorization scopes. At the start of each training
round, the FL server uses its credentials to fetch a token
from Cognito with sufficient privileges to invoke all client
functions. For each new request, all clients first check if the
token supplied with the request by the FL server was signed by
the trusted Cognito User Pool and has the proper authorization.

3) Parameter Server Access: The different client functions
need to access the parameter server without compromising
security and privacy. For instance, one client function should
not be able to read the result of another client or modify the
global parameters. To this end, the FL server creates temporary
users in the parameter server for each client function that
can only read the shared global model and write back results
without access to other clients. In every request to a client,
the FL server attaches the credentials with which the client
can retrieve the global model and write back its results to the
parameter server. Furthermore, because the credentials given
to the client function belong to a custom user, the access to
the parameter server could be easily revoked for individual
client functions. Our parameter server, i.e., MongoDB (§IV-A)
allows the definition of such custom users and role policies.

4) General Security Features: The Open Web Application
Security Project [47] represents the top ten issues that are
widely accepted to be most common and critical in software
applications. While most security concerns depend on the sys-
tem and function implementation details and lie in the hands
of the data holders, we counter some of the most common
vulnerabilities with our system design and implementation
in FedLess. First, since all function requests use HTTP, we
can easily enforce all communication to use Transport Layer
Security (TLS) to encrypt the exchanged data. Second, to
protect against insecure serialization and injection attacks, we
advise data holders to use the model schemata provided in our
framework implemented using the Pydantic [41] library.
Third, we provide examples and demonstrate how to isolate
all authentication and authorization by using separate functions
as suggested by [48].

D. Privacy

The two main concerns in an FL system in which not
all participants can be trusted are poisoning and inference
attacks [49], [50]. As a result, several strategies to protect the
privacy of clients for FL. have been proposed. These include
Secure Multiparty Computation (SMC) (51|, Homomorphic
Encryption (HE) [52]], and Differential Privacy (DP) [53], [54].
While SMC and HE involve encrypting the client updates, DP
involves adding Gaussian noise to them. Due to its reliable
privacy guarantees at the cost of degraded prediction accuracy,
it is a common practice to combine DP with SMC or HE
methods [6]], [51]. This is because due to encryption, less
noise would have to be added to the client updates. However,
a drawback of these encryption-based approaches is that they
require a large amount of memory and have significant com-
putational and networking costs [52f, [S5]], [56]. This makes
them unsuitable for most FL applications [57]. For FaaS, using

these methods leads to function timeouts due to fixed limits
(§-A). As a result, we do not employ secure aggregation in
our system. By default, FedLess supports Local Differential
Privacy 58], [[59], [60] (LDP). LDP is a form of record-level
privacy [61]] in which the client functions add noise to their
parameters before uploading them to the parameter server.

We use the Tensorflow Privacy [62], [63[] library that
provides DP versions of popular optimization algorithms that
are also compatible with Keras. A minor caveat of using
LDP with ephemeral serverless functions is keeping track
of past invocations to a client function through an external
storage system. Subsequent invocations of the client function
degrade the privacy guarantees [59]. As a result, data holders
would want to prohibit requests by the FL server after a
specific privacy budget has been exhausted. For this, they
would need to store their state between requests. All of this,
combined with our reference implementation of using DP
optimizers with client functions, makes it easy for data holders
to slightly modify their client function code to benefit from
DP and provide proven privacy guarantees for their user data.
Investigating the use of other secure aggregation methods such
as Additive Masking [57] which require complex interaction
between clients, is of our interest in the future.

E. Performance Optimizations

1) Global namespace caching: Due to the ephemeral, state-
less nature of FaaS functions, they need to load and prepro-
cess the dataset, compile and instantiate the model on every
invocation. This overhead becomes significantly large for large
local datasets and models. To mitigate this, we exploit that all
cloud providers and FaaS frameworks retain global variables
in the function instances between invocations. Towards this,
we implement a custom Python caching decorator that, after
the first function invocation, stores the output of the Python
function in an in-memory LRU cache. All subsequent calls to
the function return the cached result. Note that the cached
result is only available until the duration of the function
instance (§II-A).

2) Running average model aggregation: In a naive imple-
mentation of FedAvg, the aggregator function has to load all
model updates in memory for the aggregation. However, due
to the limitations on the amount of memory configurable for
FaaS functions (on most commercial FaaS providers,
this approach is not feasible. To this end, we implement a
running average mode in the aggregator function. This is done
by loading the client updates from the parameter server only
in small batches. After a batch is loaded, we use it to update
the current average global model parameters and free up the
memory occupied by the processed batch.

3) Federated Evaluation: The aggregator function can eval-
uate the updated global model after each round if a global test
exists. However, in FL, since this is rare, we also support
client-side evaluation as in [64]]. Each client can be invoked
independently to run the global model on a local test set and
return the evaluation metrics. The metrics can then be aggre-
gated by the controller. Moreover, independent selection of
clients for training and evaluation between rounds minimizes
function cold starts.

() Fedless i
H Control Plane !

Calculate Local Update
(Optional) Add DP Noise

i . 4
Parameter Server o Load Global Model ?

MongoDB Client #1

Calculate and Upload
new Global Model

@ Upload Client Update
Invoke Clients : 3
@ for Evaluation ?? H % Client #2
o : .
rrrrrr > “ Faa$ Function i : : °

' Client Database
MongoDB

eee- s5} FedLess Controller.
[Y} Stateful Process i

— Parameter Exchange § Param. Serv.
¢ Cognito Auth Token

)]
f Client #N
(-
pAL I
ials m | Auth Server p,va"daiemk,e"?
I AWS Cognito

Fig. 4: FedLess workflow for a complete FL round.

---» Request / Action

F. Putting It All Together

The workflow for training multiple clients using FedLess in
a single FL round is presented in Figure 4| First, the FL admin
(§IV=A) selects the model to be trained, the registered client
functions that will participate in the training, and hyperparam-
eters such as the number of clients per round (@)). Following
this, the training is started by the FL admin. The FedLess
controller first requests a new invocation token from the Auth
Server using the credentials configured by the FL admin (@)).
Using this token along with the credentials to access the
parameter server, the controller invokes the clients it selected
for this round (€)). The clients involved in an FL training
round are selected randomly by the controller. To ensure that
the invocation is valid, the clients validate the signature and
authorization of the token using the public key from the Auth
Server (@). The clients then use the supplied parameter server
credentials to load the latest global model (@). Following
this, the clients load their local datasets and perform the
local training, optionally using LDP (@). Once the clients
have finished training, they again use their credentials to
upload their parameters to the parameter server (@). The
FedLess controller waits until all clients are either finished,
reached a configured timeout, or failed. It then starts the model
aggregation by invoking the aggregator function (@)). The
aggregator loads the client results from the parameter server,
aggregates the parameters, and stores the new global model
(@). Finally, the controller starts the evaluation (@). If a
global test set exists, then the evaluation was already done in
the aggregator. If not, a new selection of clients is invoked
for evaluation in which they load the updated model and
evaluate on their test set (§IV-E3). The controller aggregates
the returned metrics and resumes the training process from
(@) if a configured accuracy threshold is not reached.

V. EXPERIMENTAL SETUP

In this section, we describe the datasets and DNN model
architectures we used for evaluating FedLess. Furthermore, we
describe the distribution and configuration of client functions
across the different FaaS platforms.

A. Datasets

MNIST: The MNIST Handwritten Image Database [65]]
comprises 70,000 images of handwritten digits with ten classes

corresponding to the respective digits. We use all 10,000 test
images of the dataset to evaluate the global model after each
training round centrally. To simulate a non-IID setting as in
[S]I, [12], we sort the 60,000 images in the training set by
label, split them into 200 shards of 300 images each, and
distribute the shards to the clients. This dataset represents an
image classification task.

We also perform experiments on more realistic datasets
from the LEAF benchmarking framework [66]. The datasets
chosen are described below and are by nature non-IID. For
both datasets, we use the same preprocessing steps as in [60]].

Shakespeare: This dataset contains sentences from the The
Complete Works of William Shakespeare [67)], partitioned by
the speaker and play. In total, it contains 4,226,158 utterances
of length 80 by 1,129 different users, with on-average ~ 3,700
for each. The task of this dataset is to predict the next character
in a sentence given the previous 80.

FEMNIST: It is a modification of the EMNIST [68] dataset
and contains over 800,000 images of digits and characters
partitioned by the writer. In total, it contains contributions
from 3,550 writers with ~ 226 images from each on average.
Similar to MNIST, the task of this dataset is to classify images.

In our experiments, we serve all datasets using an nginx [|69]]
store with each dataset partition being available at a separate
URL and assign it to one client.

B. Model Architectures and Hyperparameters

MNIST: We use the same CNN as in [12], consisting
of 2 convolutional layers with kernels of size 5x5, a fully
connected layer with 512 neurons, and the output layer with
ten neurons. The network uses ReLU as the sole activation
function and the categorical-cross-entropy loss function. In
total, the model has 582,026 trainable parameters, which
amount to 2.3 MB of memory when serialized. We use a batch
size of 10 as in [12] with five local epochs for each client.
Because we experienced faster convergence with momentum-
based optimization methods, we used Adam as the optimizer.

Shakespeare: Similar to [[66]], we use an LSTM [70]. First,
the characters in sequences of length 80 are each embedded
in an eight-dimensional space, followed by two LSTM layers,
each comprising 256 units. In the end, the output layer has the
same size as the vocabulary and a softmax activation function.
Like [66], we optimize the model using standard Stochastic
Gradient Descent with a learning rate of 0.8 and use the
categorical cross-entropy as the loss function. The LSTM has
818,402 trainable parameters, which take ~ 3MB in serialized
form. Due to long training times of LSTMS, and limitations
with function timeouts in current FaaS providers (§II-A), we
use a batch size of 32 with one local epoch.

FEMNIST: As in [66], we use a large CNN model with
two convolutional layers, each followed by a max-pooling
layer, followed by a fully-connected layer of size 2048 before
resulting in the output layer of size 62. The final model size
comes down to 6,603,710 trainable parameters, ~ 26.4MB
when serialized. Similar to MNIST, we use a batch size of
10 with five local epochs and Adam as the optimizer. For
both MNIST and FEMNIST, we use the default values for the
learning rate.

Vanilla 4

10000

=== Batch (1)
Batch (20)

7500

5000 ¢

2500

Process Memory (MB)

Client Updates Processed (%)

Fig. 5: Decreased memory footprint of our aggregator im-
plementation. Results are generated in a simulation with 200
client updates of the FEMNIST model.

To calculate a global test accuracy and loss for FEMNIST
and Shakespeare, we use the reported test set evaluation met-
rics from the clients and calculate a weighted average based

on the test set cardinalities from the clients (§IV-E3J§IV-F).

C. Serverless client functions configuration and distribution

To host our parameter server, we used a virtual machine
(VM) with 40vCPUs and 177GB RAM on the LRZ compute
cloud [71]. On the same VM, we ran an OpenWhisk cluster
on top of Kubernetes. All client functions are configured with
a memory limit of 204 8MB, and functions using public cloud
providers are deployed in the same region, i.e., Frankfurt,
Germany. Only the memory limit for functions on Azure could
not be directly configured since it uses dynamic memory
allocation with a maximum memory value of 1.5GB per
function. We set the memory limit for the aggregation function
of FedLess to 4096MB (§IV-A).

For all the three datasets (§V-A) we ran experiments with
200 clients in total and varied the number of clients sampled in
each training round. For MNIST and FEMNIST, we deployed
170 Google Cloud Functions (GCF), 10 AWS Lambda func-
tions, 10 IBM Cloud Functions, 5 OpenWhisk functions on an
on-premise cluster, and 5 Azure Functions. Training LSTMs
using a large number of simultaneous client functions up to
convergence is out of our cloud budget. As a result, for the
Shakespeare experiments, we only use up to 25 simultaneous
clients.

VI. EXPERIMENTAL RESULTS

We repeat all our experiments five times and follow best
practices while presenting our results [72].

A. Analyzing FedLess Performance

As described in §IV-E2] due to the limitations on the amount
of memory configurable for a FaaS function, using a standard
FaaS function for the aggregation would not be possible for
large-scale scenarios. Figure [5] demonstrates the behaviour of
our modified FedAvg implementation in a simulated setting.
Aggregating the parameters of 200 clients for the FEMNIST
CNN (§V-B) would require more than 6GB of memory for the
vanilla FedAvg implementation. In contrast, using batches of
20 updates, our batched running average calculation requires
slightly more than 2GB of memory. Note that the overhead
created by our implemented security features (§IV-C4) is

FEMNIST

55t g, 40 g:um_-zs
K] & & B 100
2 50 e 2 200
1 4 20 4201
525 5 5
c i} i}
& & ~
0 0 0
95% 98% 99% 40% 45% 50% 0% 75% 19%
— ‘ ‘ — ‘ ‘ — 4000
2 20007 m o5 z 0 bt I 5
& B 100 & 10000 £ 25 & A 00
] 1000 | 200 £ £ 2000 200
=] =] =3
2 2 5000 | 2
L @ i)
E £ E
& & =
95% 98% 99% 40% 45% 50% 0% 75% 19%

Target Test Accuracy Target Test Accuracy Target Test Accuracy

Fig. 6: Convergence speed of FedLess for different datasets
and numbers of clients per round. Each dataset is shown in a
separate column.

FEMNIST Shakespeare
T T T T T T
P e et —a
075 F e] o
g f g ,-"“'
‘5 0.50 [{ Clients per Round j § oal A]
2 i’ 25] / Clients per Round
- =]
2 i ——= 100 1 3z 10
& 0.25 ; & I'
i 200 02 L -—= 25
0.00 b L . v . "
0 50 100 0 50 100

Communication Round

Fig. 7: FedLess test accuracies over time for FEMNIST and
Shakespeare.

Communication Round

minimal. The actual token validation and checking takes only
a few milliseconds in our client functions. Moreover, after a
client fetches the token from the Cognito server, we cache it in
the function instance’s memory, requiring no further requests
(NIE-A).

The number of training rounds and the overall time taken
by FedLess to reach a specific target accuracy for the three
datasets is shown in Figure [6] Results are shown for different
numbers of clients involved in each round. For MNIST, we
observe that increasing the number of clients involved in each
round did not significantly influence the overall number of
required rounds. Using a higher number of clients per round
did speed up training in terms of required rounds and time
for reaching accuracies less than 99%. However, for higher
accuracies, the difference is not that evident. Similarly, for
Shakespeare, we observe that more clients per round lead
to faster convergence only with respect to communication
rounds. This behavior is also visible from Figure [/| and can
be attributed to the remarkable variance in the execution time
of each client in this dataset due to the non-IID distribution
(§I-B). As a result, using more clients per round increases
the chance of waiting longer for stragglers, increasing the
overall time until a certain accuracy is reached. For the
FEMNIST dataset, using more clients per round leads to
slower convergence in both dimensions, i.e., communication
rounds and time to reach the target accuracy. This can be
attributed to the large variance in the average reported test set
accuracy as shown in Figure [/| Using fewer clients in each
round for evaluation leads to a larger variance in the average
evaluation metrics. The overall training behavior for different

100 Clients per Round

200 Clients per Round

10 Clients per Round

25 Clients per Round

25 Clients per Round

200 Clients per Round

T
Straggler

“Straggler

LavANUA s ar raydav i Aty

Time (s)

élragglcr
100 | === Clients
— Round

—+— Aggregation
50 q

—

L L

i
sE T F 0o ~== Clients F
2 y 777 Round) 2 —— Round
E 50 03 — Agg. +Eval. { H E 400 - —-— Aggregation
= 3 —:— Clients H =
| 3
= 25F % -E‘\. " = 200 FAEYHEAEY sl
\ b R NRY FE VRPN TNy
0 L o Lo n L
50 100 0 50 100 0 50 100 0
Communication Round Communication Round Communication Round
(a) MNIST. (b) Shakespeare.

50

100

Communication Round

0 50
Communication Round

(c) FEMNIST.

100 0

20 40

Communication Round

Fig. 8: Mean required time for different steps in FedLess for the different datasets. Straggler shows the runtime of the slowest
client. If present, Agg. + Eval. shows the runtime of the aggregator function that also performs evaluation (§|1'V_:F[).

- Model Download
Training
B Model Upload

Duration (s)

MNIST

FEMNIST

Shakespeare

Fig. 9: Time distributions for FedLess client functions. Num-
bers are based on one client function and multiple training
rounds for all three datasets.

numbers of clients is approximately the same, showing no
significant difference in using more clients per round for our
chosen hyperparameters.

Figure [8] shows how long the different actors in our system
take over the course of the training for the different datasets.
Across all experiments, the total round time is mainly de-
termined by the slowest client of each round, the straggler.
In each training round, vanilla FedAvg waits for each client
to finish or reach a timeout. As a result, only one straggler
can drastically increase the total round time. For MNIST,
increasing the number of clients from 100 to 200 per round
does not impact their execution time, as shown in Figure [8a]
The aggregator function becomes slightly slower since it has to
load and aggregate results of more clients, slightly increasing
the overall round time. Based on these findings, we see that
for small local datasets and small model sizes, FedLess scales
relatively easily. A crucial benefit of our system is that longer
round times due to stragglers have almost zero influence on
the overall costs since client functions are only billed for their
actual runtime and not the time they wait for a new round.
Similarly, for the Shakespeare dataset, increasing the number
of clients from 10 to 25 did not impact the execution time of
the clients, as shown in Figure [8b] However, sampling more
clients increases the chance of including clients that take a long
time to finish. Thus, the overall round time increases. Note that
the time required for aggregation or client-side evaluation is
negligible for this dataset compared to the time it requires
to wait for stragglers. Using an FL strategy that accounts for
stragglers [73] is of our interest in the future but out of scope
for this work.

For the FEMNIST dataset with the large CNN model
(§V-B), increasing the number of clients per round from 100

—_
=]

............

100 F

I
n
T

W
(=)

LDP i
Default]

Test Accuracy

1
Round Duration (s)

w
r l"wn-‘l"’
by

0

" | - L 11
50 10
Communication Round

50
Communication Round

1]
100

Fig. 10: Test accuracies and increased round durations for
MNIST when using FedLess with LDP across 200 client
functions with 25 clients per round.

to 200 almost doubles the total time per round. Unlike the
other two datasets, we observe an increase in the execution
time of both the aggregator and the clients. The increase in
the aggregator’s runtime can be attributed to the networking
overhead of loading 200 x 26MB of parameters and calcu-
lating the aggregated model using a running average. The
reason for the increase in the mean execution time of the
clients can be seen from Figure [0} While the clients training
on Shakespeare and MNIST spend most of their time on actual
model training and very little on loading or writing parameters
from and to the parameter server, FEMNIST clients spend a
significant portion of their execution time writing back their
results to the parameter server. Since the parameter download
time is much less than the upload time and shows little
variability, we can confidently say that the overall networking
capabilities of the clients are not the problem. Therefore, the
ability of MongoDB’s GridFS specification to handle multiple
simultaneous uploads of large models is the root cause for the
increase in the mean execution time of clients. Investigating
the use of another high-performance parameter server with
role-based access control rules (§IV-C3)) is part of future work.
For all datasets, the time for initial rounds is high due to cold
starts associated with FaaS functions (§II-A).

B. Local Differential Privacy

To demonstrate that it is feasible to use LDP with our
system, we train a model on MNIST with 200 client func-
tions (§V-B] §V-C). We use 25 clients per round, five local
epochs, and a batch size of five. After a grid search for
the hyperparameters specific to the Adam-DP optimizer in
the TF-Privacy library, we use a noise multiplier and L2-clip
norm of 1.0, and ten microbatches. The results with LDP as
compared to a default MNIST run are shown in Figure [I0]

FL Round Duration (s)

Clients FedKeeper FedLess

25 18.4+£9.6 12.3+4.6
50 17.9+11.5 12.8+4.2
75 19.0+£12.2 14.0+3.8

TABLE I: FL Round durations of FedKeeper and FedLess
for varying numbers of clients. FedKeeper clients in these
experiments already made use of our caching mechanism.

= ;
425 F :

Function Duration (s)

=2
b

350 F 3

FedLess FedKeeper (Opt.) FedKeeper (Orig.)

Fig. 11: Client execution times for FedKeeper and FedLess on
MNIST without cold-starts.

Due to budget constraints, we do not train the LDP model
until convergence but demonstrate that it is possible to use
LDP with our system and different supported cloud providers.
The significant decrease in test set accuracy reached by our
model using LDP in 100 rounds as compared to without can
be attributed to the addition of Gaussian noise to the model
parameters. However, the same approach might not work for
all model sizes directly due to the slower training using DP
optimizers. Due to the function execution time limits (§I-A)
on most commercial FaaS providers, training larger models
such as LSTMs with LDP will often lead to a function timeout.
One could mitigate this problem by only training on a certain
number of batches instead of whole epochs or using a smaller
microbatch size.

C. Comparison with Fedkeeper

To see how well FedLess performs compared to Fed-
Keeper [|12], we re-implemented FedKeeper with our FedLess
components. Our implementation works almost identical to
the original implementation. However, it uses the modular
components we implemented for FedLess, and we introduced
performance improvements like caching.

We deploy 100 client functions with 2048MB memory for
both systems on GCF. We only use one cloud provider to
minimize the impact of performance variations between FaaS
platforms. We use an on-premise OpenWhisk cluster for the
aggregation for both systems and invoker functions for Fed-
Keeper (§V-C). While in FedLess the FL client functions are
directly invoked by the client invoker in the FedLess controller
(§IV-A), Fedkeeper uses a separate component called invoker
functions which are responsible for invoking the FL clients via
an HTTP request. The invoker functions are FaaS functions
configured with a memory limit of 256MB. We compare both
systems using the MNIST dataset and model (§V-A] §V-B) for
25, 50, and 75 clients per round.

25 Clients 75 Clients

= A=

0 —"'P ;I 1 4 —h 1 1 =i
0.9 0.98 0.99 0.9 0.98 0.99

Target Accuracy

Total Client Cost (USD)
T

Target Accuracy

Fig. 12: Total client costs of FaaS and IaaS to reach a target
accuracy on MNIST. Boxplots visualize rough upper and lower
bounds depending on the IaaS and FaaS provider’s compute
capabilities.

Table [I| shows the round duration for both the systems.
We observe that FedLess is always significantly faster than
FedKeeper with less variability in the round times. The large
variance in the round times of FedKeeper can be attributed
to the cold starts of the invoker functions and their varying
runtimes. We re-ran these experiments and exchanged one
client function of FedKeeper with the original, unoptimized
version without caching. The different client execution times
are shown in Figure [TT] Caching the model architecture and
local dataset in-memory of the function instance reduces
the median client execution time from 4.46 seconds to 3.83
seconds, a speed-up of roughly 14%. Only the optimized client
functions of FedKeeper are slightly faster than the FedLess
clients, whose median execution time is 4.21 seconds. The
additional time in the FedLess clients is spent on communi-
cating with the parameter server directly instead of through
the invoker functions, which is slightly faster. These results
clearly show that FedLess is faster and imposes much fewer
hardware requirements due to eliminating invoker functions.

D. Comparing laaS and Faa$ for FL

To compare how our system performs compared to a tradi-
tional, non-FaaS based FL system, we implemented a baseline
system using the open-source FL framework Flower [|17]]. We
chose Flower since it was easy to modify, extend, and integrate
into our existing experimentation pipeline. Furthermore, it
provides baseline implementations for various FL strategies.
For our experiments, we use the default FedAvg implemen-
tation. For the communication between the central server and
the clients Flower uses gRPC. To support invoking a large
number of clients in parallel, we had to modify the current
Flower implementation. For our TaaS based experiments, we
use cgroups to simulate compute instances similar to general-
purpose instances of public cloud providers (e.g. m4.large on
AWS EC2 [74], n2-standard-2 on Google Cloud Compute
Engine [75]]) on the LRZ compute cloud [[76]]. This is also
similar to the setup used in [29] (mostly 2 CPUs, 8GB RAM),
and similar to some workloads in [30]. We deploy all Flower
clients in separate Docker containers that can each use two
vCPUs and 8GB memory. Like in [30] our central server for
Flower has CPUs and RAM similar to a c5.4xlarge instance
on AWS EC2, i.e., 16 vCPU cores and 32 GB RAM [74]. For
a fair comparison, we deploy the client functions for FedLess

25 Clients

w

B ros

P

. A .
0.75 0.8 0.85
Target Accuracy

Total Client Cost (USD)
) w IS

L
0.7

Fig. 13: Total client costs of FaaS and IaaS to reach a target
accuracy on FEMNIST.

on the same hardware using OpenFaaS. OpenFaaS allows us
to limit each client function to 2 vCPU cores and 2GB of
memory. As a result, the FedLess client functions have the
same processing power as the Flower clients. We compare
both systems using the MNIST and FEMNIST datasets with
100 clients using the same models and hyperparameters as

described in

Since both systems use FedAvg and the same hyperpa-
rameters, we are primarily interested in timing and pricing
differences. Due to the ephemeral, stateless nature of FaaS
based systems, we observe that Flower is faster than FedLess
in all experiments. The relative difference depends on the
dataset used. To assess this difference, we use the geometric
mean to calculate the mean training round times for FedLess
and Flower, as proposed in [[/7]. The mean training round
times for FedLess are on average 1.77x as long for FEMNIST
compared to Flower, whereas they take 1.6x as long for
MNIST. However, a key advantage of our system is that
client functions that are already finished in a round do not
cost anything while waiting and can be scaled to zero. In
traditional FL systems, like the one we implemented with
Flower, clients simply turn idle while waiting for further
requests, accumulating cost, or blocking hardware resources.

To understand the differences between FaaS/IaaS for FL in
terms of cost, we created pricing estimates for MNIST and
FEMNIST, based on the results of our previous experiments.
We base these calculations on the assumption that all clients
run on Google Cloud, both for IaaS and FaaS-based training.
The compute resources we used for the Flower clients are
similar to n2-standard-2 VM instances in both vCPUs and
memory [78]]. For the FedLess clients, we use the execution
time presented in experiments from (MNIST),
(FEMNIST). Since the Fedless clients use the same parameter
server, hyperparameters, and local datasets, the comparison is
fair. For FedLess and Flower, we calculate the mean estimated
cost of the training runs for both datasets. To not get results
skewed by implementation differences, we assume FedLess
and Flower take an equal number of rounds to reach a
particular target accuracy. In addition, for both FaaS functions
and [aaS VMs, we ignore additional costs like disk space,
costs for cloud buckets, costs to set up and deploy clients, and
free-tiers. All prices are calculated for the us—centrall
region. For our experiments, we only calculate direct costs.
For Google Cloud Functions, these are GB-seconds and GHz-
seconds [79], invocations and networking costs, and for VMs,

they are instance runtime and networking costs.

Since we can only provide estimates, we do not calculate
point estimates for the pricing but compute broader bounds.
Towards this, we do not only take individual client functions
execution time and total training time from the FedLess/Flower
experiments but additionally include in our calculations how
costs would change if the FedLess client functions took 2 x and
3% as long, and the Flower clients only took 0.5 x as long. For
the MNIST dataset, the total training costs for both systems
until certain target accuracies are reached for different numbers
of clients per round is shown in Figure [I2] We see that overall,
the clients’ costs are smaller with our FaaS-based approach for
the shown settings. Especially further into the training, pricing
differences are amplified. However, the cost benefits of using
FedLess are larger for a smaller number of clients sampled
per round. This is intuitive since the more clients are used
per round, the less compute time is wasted in the IaaS based
approach. Comparing the results for 25 clients per round for
MNIST and FEMNIST in Figures [12] and [13] we observe that
although FedLess is still less expensive, the relative difference
becomes smaller for larger model sizes. The networking cost
due to uploading the updated model is the same for FaaS and
TaaS and is responsible for a significant portion of the overall
cost. Based on our experiments, we gather first evidence that
a FaaS-based FL approach is more cost-efficient for settings
where only a fraction of active clients participate in a round.
Investigating these trade-offs in detail is part of our future
work.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel system and framework
for serverless FL called FedLess. FedLess enables FL across a
large fabric of heterogeneous FaaS providers while providing
important features such as authentication, authorization, and
differential privacy. We demonstrated with comprehensive
experiments the features and scalability of our system. In
comparison with a traditional IaaS based FL system, we
demonstrated the practical viability of our system and showed
that, albeit being slower, it can be cheaper and more resource-
efficient.

In the future, we plan to investigate the benefits of switching
from our current hybrid system design to a fully event-driven
system using message queues and publish-subscribe systems
such as Rabbitmq. It also remains to be seen how well
our FaaS-based approach works for even larger datasets and
models. Although the conventional client heterogeneity in FL
is less of a problem in FaaS as compared to traditional IaaS
based approaches since idle clients do not cost anything and
can scale to zero, we plan to investigate efficient FL. using
FaaS, which accounts for clients’ heterogeneous compute
requirements or dataset sizes.

VIII. ACKNOWLEDGEMENT AND REPRODUCIBILITY

This work was supported by the funding of the German Fed-
eral Ministry of Education and Research (BMBF) in the scope
of the Software Campus program. Google Cloud credits in this

work were provided by the Google Cloud Research Credits
program with the award number NH93G06K20KDXH9U.
All code artifacts related to this work are available aZ]

[1]

[2]
[3]
[4]
[5]

[7]

[8]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

M. Chiang and T. Zhang, “Fog and iot: An overview of research
opportunities,” IEEE Internet of things journal, vol. 3, no. 6, pp. 854—
864, 2016.

Nvidia Clara, “NVIDIA Clara — NVIDIA Developer,” 2020. [Online].
Available: https://developer.nvidia.com/blog/federated-learning-clara/
Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436-444, 2015.

2018 reform of EU data protection rules.
https://eur-lex.europa.eu/eli/reg/2016/679/0j

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273—
1282.

P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis,
A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings,
R. G. L. D’Oliveira, S. E. Rouayheb, D. Evans, J. Gardner, Z. Garrett,
A. Gascon, B. Ghazi, P. B. Gibbons, M. Gruteser, Z. Harchaoui, C. He,
L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi, G. Joshi,
M. Khodak, J. Kone¢ny, A. Korolova, F. Koushanfar, S. Koyejo,
T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R. Nock, A. Ozgiir, R. Pagh,
M. Raykova, H. Qi, D. Ramage, R. Raskar, D. Song, W. Song, S. U.
Stich, Z. Sun, A. T. Suresh, F. Trameér, P. Vepakomma, J. Wang,
L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H. Yu, and S. Zhao, “Advances
and Open Problems in Federated Learning,” p. 16, dec 2019. [Online].
Available: http://arxiv.org/abs/1912.04977

[Online]. Available:

S. Allen, B. Browning, L. Calcote, A. Chaudhry, D. Davis,
L. Fourie, A. Gulli, Y. Haviv, D. Krook, O. Nissan-Messing,
C. Munns, K. Owens, M. Peek, C. Zhang, and C. A,

“CNCF WG-Serverless Whitepaper v1.0,” CNCF, Tech. Rep., 2018.
[Online]. Available: https://github.com/cncf/wg-serverless/blob/master/
whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf]
The Apache Foundation, “Apache OpenWhisk is a serverless,
open source cloud platform,” 2018. [Online]. Available: https:
/lopenwhisk.apache.org/

OpenFaa$, “OpenFaaS - Serverless Functions Made Simple,” 2019. [On-
line]. Available: https://www.openfaas.com/https://docs.openfaas.com/
Aws, “AWS Lambda — Serverless Compute - Amazon Web Services,”
2020. [Online]. Available: https://aws.amazon.com/lambda/

Google Cloud, “Cloud Functions — Google Cloud,” 2020. [Online].
Available: https://cloud.google.com/functions/

M. Chadha, A. Jindal, and M. Gerndt, “Towards Federated Learning
Using FaaS Fabric,” in Proceedings of the 2020 Sixth International
Workshop on Serverless Computing, ser. WoSC’20. New York,
NY, USA: Association for Computing Machinery, 2020, pp. 49-54.
[Online]. Available: https://doi.org/10.1145/3429880.3430100

K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Kone¢ny, S. Mazzocchi, H. B. McMahan, T. V.
Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards federated
learning at scale: System design,” 2019.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A system
for large-scale machine learning,” in Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2016, vol. 10, no. July, 2016, pp. 265-283. [Online]. Available:
https://www.usenix.org/system/files/conference/osdi16/0sdil6- liu.pdf
M. Azure, “Azure Functions Serverless Compute — Microsoft Azure,”
2021. [Online]. Available: https://azure.microsoft.com/en-us/services/
functions/

“IBM Cloud Functions — IBM.” [Online]. Available: https://www.ibm.
com/cloud/functions

D. J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet, N. D. Lane,
P. P. B. de Gusmao, and N. D. Lane, “Flower: A Friendly Federated
Learning Research Framework,” arXiv, pp. 1-22, jul 2020. [Online].
Available: http://arxiv.org/abs/2007.14390

Zhttps://github.com/andreas-grafberger/fedless

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

(35]

V. Shankar, K. Krauth, K. Vodrahalli, Q. Pu, B. Recht, 1. Stoica,
J. Ragan-Kelley, E. Jonas, and S. Venkataraman, “Serverless linear
algebra,” in Proceedings of the 11th ACM Symposium on Cloud
Computing, ser. SoCC °20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 281-295. [Online]. Available:
https://doi-org.eaccess.ub.tum.de/10.1145/3419111.3421287

A. Jindal, M. Gerndt, M. Chadha, V. Podolskiy, and P. Chen, “Function
delivery network: Extending serverless computing for heterogeneous
platforms,” Software: Practice and Experience, vol. 51, no. 9, pp.
1936-1963, 2021. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1002/spe.2966

A. Jindal, M. Chadha, M. Gerndt, J. Frielinghaus, V. Podolskiy, and
P. Chen, “Poster: Function delivery network: Extending serverless to
heterogeneous computing,” in 2021 IEEE 41st International Conference
on Distributed Computing Systems (ICDCS), 2021, pp. 1128-1129.

A. Jindal, J. Frielinghaus, M. Chadha, and M. Gerndt, “Courier:
Delivering serverless functions within heterogeneous faas deployments,”
in 2021 IEEE/ACM 14th International Conference on Utility and Cloud
Computing (UCC’21), ser. UCC ’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3468737.3494097

L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking
behind the curtains of serverless platforms,” in 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18), 2018, pp. 133-146.

A. Jindal, M. Chadha, S. Benedict, and M. Gerndt, “Estimating
the capacities of function-as-a-service functions,” in Proceedings of
the 14th IEEE/ACM International Conference on Utility and Cloud
Computing Companion, ser. UCC ’21 Companion. New York, NY,
USA: Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3492323.3495628

M. Chadha, A. Jindal, and M. Gerndt, “Architecture-specific perfor-
mance optimization of compute-intensive faas functions,” arXiv preprint
arXiv:2107.10008, 2021.

M. Kiener, M. Chadha, and M. Gerndt, “Towards demystifying
intra-function parallelism in serverless computing,” arXiv preprint
arXiv:2110.12090, 2021.

A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and
V. Sukhomlinov, “Agile cold starts for scalable serverless,” in //th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19).
Renton, WA: USENIX Association, Jul. 2019. [Online]. Available:
https://www.usenix.org/conference/hotcloud 19/presentation/mohan

G. C. Fox, V. Ishakian, V. Muthusamy, and A. Slominski,
“Status of Serverless Computing and Function-as-a-Service(FaaS)
in Industry and Research,” aug 2017. [Online]. Available: http:
/larxiv.org/abs/1708.08028

H. Wang, D. Niu, and B. Li, “Distributed Machine Learning with
a Serverless Architecture,” in Proceedings - IEEE INFOCOM, vol.
2019-April. Institute of Electrical and Electronics Engineers Inc.,
apr 2019, pp. 1288-1296. [Online]. Available: https://doi.org/10.1109/
INFOCOM.2019.8737391

J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz, “Cirrus: A
Serverless Framework for End-To-end ML Workflows,” in SoCC 2019 -
Proceedings of the ACM Symposium on Cloud Computing. Association
for Computing Machinery, nov 2019, pp. 13-24.

J. Jiang, S. Gan, Y. Liu, F. Wang, G. Alonso, A. Klimovic, A. Singla,
W. Wu, and C. Zhang, “Towards Demystifying Serverless Machine
Learning Training,” vol. 15, no. 21, may 2021. [Online]. Available:
http://dx.doi.org/10.1145/3448016.3459240

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in /2th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), 2016, pp. 265-283.
T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” 2015.
“OpenMined/PySyft: A library for answering questions using data you
cannot see.” [Online]. Available: jhttps://github.com/OpenMined/PySyft
K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. K. Kone¢ny, S. Mazzocchi, H. B. Mcmahan,
T. V. Overveldt, D. Petrou, D. Ramage, and J. Roselander, “TensorFlow
Federated,” 2020. [Online]. Available: https://www.tensorflow.org/
federated

C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang,
P. Vepakomma, A. Singh, H. Qiu, X. Zhu, J. Wang, L. Shen, P. Zhao,
Y. Kang, Y. Liu, R. Raskar, Q. Yang, M. Annavaram, and S. Avestimehr,
“FedML: A Research Library and Benchmark for Federated Machine
Learning,” 2020. [Online]. Available: https://fedml.ai.

https://developer.nvidia.com/blog/federated-learning-clara/
https://eur-lex.europa.eu/eli/reg/2016/679/oj
http://arxiv.org/abs/1912.04977
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://www.openfaas.com/ https://docs.openfaas.com/
https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://doi.org/10.1145/3429880.3430100
https://www.usenix.org/system/files/conference/osdi16/osdi16-liu.pdf
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
http://arxiv.org/abs/2007.14390
https://doi-org.eaccess.ub.tum.de/10.1145/3419111.3421287
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2966
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2966
https://doi.org/10.1145/3468737.3494097
https://doi.org/10.1145/3492323.3495628
https://www.usenix.org/conference/hotcloud19/presentation/mohan
http://arxiv.org/abs/1708.08028
http://arxiv.org/abs/1708.08028
https://doi.org/10.1109/INFOCOM.2019.8737391
https://doi.org/10.1109/INFOCOM.2019.8737391
http://dx.doi.org/10.1145/3448016.3459240
https://github.com/OpenMined/PySyft
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated
https://fedml.ai.

[36

[37]
[38]

[39]
[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

“PaddlePaddle/PaddleFL: Federated Deep Learning in PaddlePaddle.”
[Online]. Available: https://github.com/PaddlePaddle/PaddleFL

“Fate.” [Online]. Available: https://fate.fedai.org/

“faasd - OpenFaaS.” [Online]. Available: https://docs.openfaas.com/
deployment/faasd/

MongoDB Inc., “The most popular database for modern apps —
MongoDB,” 2021. [Online]. Available: https://www.mongodb.com/

F. Chollet and Others, “Keras: the Python deep learning API,” 2020.
[Online]. Available: https://keras.io/

“pydantic.” [Online]. Available: https://pydantic-docs.helpmanual.io/

Z. Xu, F. Yu, J. Xiong, and X. Chen, “Helios: Heterogeneity-Aware
Federated Learning with Dynamically Balanced Collaboration,” arXiv,
dec 2019. [Online]. Available: http://arxiv.org/abs/1912.01684

D. Hardt, “The OAuth 2.0 Authorization Framework,” Internet Requests
for Comments, RFC Editor, RFC 6749, oct 2012. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6749.txt

S. Cantor, J. Kemp, R. Philpott, E. Maler, and E. Goodman,
“Assertions and Protocol for the OASIS Security Assertion Markup
Language (SAML),” OASIS Open, Tech. Rep. November, 2005.
[Online]. Available: http://www.oasis-open.org/committees/documents.
php?wg_abbrev=security

AWS, “Amazon Cognito - Simple and Secure User Sign Up &
Sign In — Amazon Web Services (AWS),” 2020. [Online]. Available:
https://aws.amazon.com/cognito/

M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),”
Internet Requests for Comments, RFC Editor, RFC 7519, may 2015.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc7519.txt

“OWASP Top Ten Web Application Security Risks — OWASP.”
[Online]. Available: https://owasp.org/www-project-top-ten/

J. Michener, “Security issues with functions as a service,” IT Profes-
sional, vol. 22, no. 5, pp. 24-31, sep 2020.

L. Lyu, H. Yu, J. Zhao, and Q. Yang, “Threats to Federated Learning:
A Survey,” in Federated Learning - Privacy and Incentive, ser. Lecture
Notes in Computer Science, Q. Yang, L. Fan, and H. Yu, Eds.
Springer, Cham, 2020, vol. 12500, pp. 3-16. [Online]. Available:
https://doi.org/10.1007/978-3-030-63076-8_1

D. Enthoven and Z. Al-Ars, An Overview of Federated Deep
Learning Privacy Attacks and Defensive Strategies. Cham: Springer
International Publishing, 2021, pp. 173-196. [Online]. Available:
https://doi.org/10.1007/978-3-030-70604-3_8

S. Truex, T. Steinke, N. Baracaldo, H. Ludwig, Y. Zhou, A. Anwar,
and R. Zhang, “A hybrid approach to privacy-preserving federated
learning,” in Proceedings of the ACM Conference on Computer and
Communications Security. Association for Computing Machinery, dec
2019, pp. 1-11. [Online]. Available: https://arxiv.org/abs/1812.03224v2
L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
Preserving Deep Learning via Additively Homomorphic Encryption,”
IEEE Transactions on Information Forensics and Security, vol. 13, no. 5,
pp. 1333-1345, may 2018.

C. Dwork, “Differential Privacy: A Survey of Results,” in Theory and
Applications of Models of Computation. Springer Berlin Heidelberg,
apr 2008, pp. 1-19. [Online]. Available: https://link.springer.com/
chapter/10.1007/978-3-540-79228-4_1

C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Foundations and Trends in Theoretical Computer Science,
vol. 9, no. 3-4, pp. 211407, 2014.

C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu,
“BatchCrypt: Efficient homomorphic encryption for cross-silo federated
learning,” in Proceedings of the 2020 USENIX Annual Technical
Conference, ATC 2020, 2020, pp. 493-506. [Online]. Available:
https://www.usenix.org/conference/atc20/presentation/zhang-chengliang
H. Zhu, R. Wang, Y. Jin, K. Liang, and J. Ning, “Distributed Additive
Encryption and Quantization for Privacy Preserving Federated Deep
Learning,” nov 2020. [Online]. Available: http://arxiv.org/abs/2011.
12623

K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure
aggregation for privacy-preserving machine learning,” in Proceedings
of the ACM Conference on Computer and Communications Security.
New York, NY, USA: Association for Computing Machinery, oct
2017, pp. 1175-1191. [Online]. Available: |https://dl.acm.org/doi/10.
1145/3133956.3133982

V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha,
and G. Srivastava, “A survey on security and privacy of federated
learning,” Future Generation Computer Systems, vol. 115, pp. 619-640,
feb 2021.

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]
[70]
[71]

[72]

[73]

[74]

[75]

[76]

(771

(78]

[79]

M. Kim, O. Giinlii, and R. F. Schaefer, “Federated Learning with
Local Differential Privacy: Trade-offs between Privacy, Utility, and
Communication,” feb 2021. [Online]. Available: http://arxiv.org/abs/
2102.04737

K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin,
T. Q. Quek, and H. Vincent Poor, “Federated Learning with Differential
Privacy: Algorithms and Performance Analysis,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 3454-3469, 2020.

L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in Proceedings -
IEEE Symposium on Security and Privacy, vol. 2019-May. Institute
of Electrical and Electronics Engineers Inc., may 2019, pp. 691-706.
[Online]. Available: http://arxiv.org/abs/1805.04049

H. B. McMahan, G. Andrew, U. Erlingsson, S. Chien, I. Mironov,
N. Papernot, and P. Kairouz, “A General Approach to Adding
Differential Privacy to Iterative Training Procedures,” arXiv, dec 2018.
[Online]. Available: http://arxiv.org/abs/1812.06210

T. community, “tensorflow/privacy: Library for training machine
learning models with privacy for training data,” 2020. [Online].
Available: https://github.com/tensorflow/privacy

S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Kone¢ny, H. B. McMahan,
V. Smith, and A. Talwalkar, “LEAF: A Benchmark for Federated
Settings,” in Workshop on Federated Learning for Data Privacy
and Confidentiality, NeurIPS, 2018, pp. 1-9. [Online]. Available:
http://arxiv.org/abs/1812.01097

Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Kone¢ny, H. B. McMahan,
V. Smith, and A. Talwalkar, “LEAF: A Benchmark for Federated
Settings,” in Workshop on Federated Learning for Data Privacy
and Confidentiality, NeurIPS, 2018, pp. 1-9. [Online]. Available:
http://arxiv.org/abs/1812.01097

“The Complete Works of William Shakespeare by William Shakespeare -
Free Ebook.” [Online]. Available: http://www.gutenberg.org/ebooks/100
G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EMNIST:
an extension of MNIST to handwritten letters,” feb 2017. [Online].
Auvailable: http://arxiv.org/abs/1702.05373

“NGINX — High Performance Load Balancer, Web Server, & Reverse
Proxy.” [Online]. Available: https://www.nginx.com/

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

LRZ Compute Cloud, |https://doku.Irz.de/display/PUBLIC/Compute+
Cloud, accessed on 09/24/2020.

A. V. Papadopoulos, L. Versluis, A. Bauer, N. Herbst, J. v. Kistowski,
A. Ali-Eldin, C. L. Abad, J. N. Amaral, P. Tima, and A. Iosup,
“Methodological principles for reproducible performance evaluation in
cloud computing,” IEEE Transactions on Software Engineering, vol. 47,
no. 8, pp. 1528-1543, 2021.

Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online
federated learning for edge devices with non-iid data,” in 2020 IEEE
International Conference on Big Data (Big Data). 1EEE, 2020, pp.
15-24.

“Amazon EC2 - Amazon Web Services.”
http://aws.amazon.com/ec2/.

Google, “Machine types — Compute Engine Documentation — Google
Cloud,” 2019. [Online]. Available: https://cloud.google.com/compute/
docs/machine-types

“Compute Cloud - Leibniz-Rechenzentrum (LRZ) Dokumentation.”
[Online]. Available: |https://doku.lrz.de/display/PUBLIC/Compute+
Cloud

T. Hoefler and R. Belli, “Scientific benchmarking of parallel computing
systems: Twelve ways to tell the masses when reporting performance
results,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’15. New York, NY, USA: Association for Computing Machinery,
2015. [Online]. Available: https://doi.org/10.1145/2807591.2807644
“VM instances pricing — Compute Engine: Virtual Machines
(VMs).” [Online]. Available: https://cloud.google.com/compute/
vm-instance- pricing

Google Cloud Functions Pricing, https:/cloud.google.com/functions/
pricing, accessed 09/24/2020.

[Online]. Available:

https://github.com/PaddlePaddle/PaddleFL
https://fate.fedai.org/
https://docs.openfaas.com/deployment/faasd/
https://docs.openfaas.com/deployment/faasd/
https://www.mongodb.com/
https://keras.io/
https://pydantic-docs.helpmanual.io/
http://arxiv.org/abs/1912.01684
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.oasis-open.org/committees/documents.php?wg_abbrev=security
http://www.oasis-open.org/committees/documents.php?wg_abbrev=security
https://aws.amazon.com/cognito/
http://www.rfc-editor.org/rfc/rfc7519.txt
https://owasp.org/www-project-top-ten/
https://doi.org/10.1007/978-3-030-63076-8_1
https://doi.org/10.1007/978-3-030-70604-3_8
https://arxiv.org/abs/1812.03224v2
https://link.springer.com/chapter/10.1007/978-3-540-79228-4_1
https://link.springer.com/chapter/10.1007/978-3-540-79228-4_1
https://www.usenix.org/conference/atc20/presentation/zhang-chengliang
http://arxiv.org/abs/2011.12623
http://arxiv.org/abs/2011.12623
https://dl.acm.org/doi/10.1145/3133956.3133982
https://dl.acm.org/doi/10.1145/3133956.3133982
http://arxiv.org/abs/2102.04737
http://arxiv.org/abs/2102.04737
http://arxiv.org/abs/1805.04049
http://arxiv.org/abs/1812.06210
https://github.com/tensorflow/privacy
http://arxiv.org/abs/1812.01097
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1812.01097
http://www.gutenberg.org/ebooks/100
http://arxiv.org/abs/1702.05373
https://www.nginx.com/
https://doku.lrz.de/display/PUBLIC/Compute+Cloud
https://doku.lrz.de/display/PUBLIC/Compute+Cloud
http://aws.amazon.com/ec2/
https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/machine-types
https://doku.lrz.de/display/PUBLIC/Compute+Cloud
https://doku.lrz.de/display/PUBLIC/Compute+Cloud
https://doi.org/10.1145/2807591.2807644
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/functions/pricing
https://cloud.google.com/functions/pricing

