
EFFGAN: Ensembles of fine-tuned federated GANs
1st Ebba Ekblom

RISE Research Institutes of Sweden
ebba.ekblom@ri.se

2nd Edvin Listo Zec
RISE Research Institutes of Sweden
edvin.listo.zec@ri.se

3rd Olof Mogren
RISE Research Institutes of Sweden

olof.mogren@ri.se

Abstract—Decentralized machine learning tackles the problem
of learning useful models when data is distributed among
several clients. The most prevalent decentralized setting today
is federated learning (FL), where a central server orchestrates
the learning among clients. In this work, we contribute to the
relatively understudied sub-field of generative modelling in the
FL framework.

We study the task of how to train generative adversarial net-
works (GANs) when training data is heterogeneously distributed
(non-iid) over clients and cannot be shared. Our objective is
to train a generator that is able to sample from the collective
data distribution centrally, while the client data never leaves the
clients and user privacy is respected. We show using standard
benchmark image datasets that existing approaches fail in this
setting, experiencing so-called client drift when the local number
of epochs becomes to large and local parameters drift too far
away in parameter space. To tackle this challenge, we propose
a novel approach named EFFGAN: Ensembles of fine-tuned
federated GANs. Being an ensemble of local expert generators,
EFFGAN is able to learn the data distribution over all clients
and mitigate client drift. It is able to train with a large number
of local epochs, making it more communication efficient than
previous works.

Index Terms—generative adversarial networks, federated
learning

I. INTRODUCTION

Phones and tablets have increasingly been getting more
powerful in the last decades. Today, they carry strong sensors
such as cameras, microphones and GPS. People around the
world frequently carry these devices wherever they go, and
as such, these devices contain a lot of data. This data, due to
the nature of how it is collected, is very private and cannot
be shared or collected centrally. Meanwhile, it still could be
leveraged and greatly improve user applications. It is in this
setting that federated learning [1] has become a paradigm
shift for distributed machine learning. Federated learning is
a framework for machine learning using decentralized data,
allowing the training data to remain at the clients. Yet the
data from many clients can be used in training the resulting
machine learning model. Since federated averaging (FEDAVG)
was introduced in [1], the amount of research on it has
increased at a fast pace. Problems such as heterogeneous
client data, heterogeneous systems, privacy, fairness and many
more are active research areas. At the same time, most of the
current work focuses on mainly on supervised tasks, such as
classification. Much less has been done in the realm of self-
supervised and unsupervised learning [2].

In this work, we study unsupervised learning in the form
of generative adversarial networks (GANs) [3] in a distributed

setting. We investigate the application of federated learning
to GANs, and conclude that while existing federated learning
strategies for them work well when training data is identically
and independently distributed (iid), they fail to produce robust
models when training data is heterogeneous (non-iid).

GANs are unsupervised generative models where two neural
networks, a generator and a discriminator, compete in a two-
player minimax game. They were proposed as a powerful
approach to modelling complex and high-dimensional data
distributions. Since the inception of GANs, a number of
issues have been identified and addressed leading to more
recent versions which suffer less from problems such as mode
collapse, convergence failure, and instability during training.
However, the decentralized setting of GANs, where data is
distributed among a number of clients, has received much less
attention in the literature. A decentralized GAN would allow
for more powerful generative models trained on data from
devices such as smartphones and tablets while at the same
time respecting the privacy of users’ data, as it does not need
to be collected centrally. Meanwhile, training these models
decentralized brings forth a lot of challenges. GANs are usu-
ally data-hungry, requiring a lot of data to perform well. Even
when data is sufficient, instability issues are frequent even in
central training. Further, data collected in the real world using
devices such as phones and tablets is naturally non-iid. Label
distribution skew and covariate shift are common distributional
shifts that need to be addressed.

Therefore, in this paper, we investigate the question of
how to learn a data distribution over decentralized data in
a non-iid setting. We provide an experimental evaluation
where data from standard benchmark datasets (MNIST and
FashionMNIST) are heterogeneously distributed over a set
of clients, where certain classes of objects occur only on
subsets of the clients. Finally, we propose a novel solution
for distributed training of generative adversarial networks in
the setting of heterogeneous data. In this setting, training local
models on each client results in models that overfit to the local
datasets, and a model trained using vanilla federated learning
(FedGAN [4]) on the same data results in an aggregate model
which fails to produce convincing samples due to a too large
number of local epochs, i.e. client drift. Our proposed solution,
EFFGAN: Ensembles of fine-tuned federated GANs mitigates
both issues. By building an ensemble of fine-tuned generators
it provides results that outperform previous works. We find
that EFFGAN robustly handles heterogeneous data settings
and requires substantially less communication compared to the

ar
X

iv
:2

20
6.

11
68

2v
2

 [
cs

.L
G

]
 3

1
O

ct
 2

02
2

server

ensembleclient2

1. Federated averaging 2. Local fine-tuning 3. Ensembling

client1

clientk Dk

D2

D2

...

client2

client1

clientk Dk

D2

D2

...

client2

client1

clientk

... modelk

aggregated model

server

Fig. 1: Schematic of the EFFGAN training protocol. The solution leverages the combination of federated learning with local
fine-tuning and ensembling to produce a generative model trained on decentralized private data.

baseline.
In summary, our main contributions are
1) We scale up previous work, and increase the number of

clients from 5 to 100.
2) We show that distributed GAN training in non-iid data

settings suffers from client drift, i.e. the parameters of
the locally trained models drift apart, resulting in a bad
aggregated global model.

3) We show that FEDAVG possesses good transfer learning
capabilities in the GAN setting, even though it suffers
from client drift.

4) Using these insights, we propose EFFGAN, an ensemble
that consists of fine-tuned generators trained from FE-
DAVG which mitigates client drift and achieves better
FID score as compared to previous works in non-iid
data settings.

Our goal is to learn a model that can be used centrally to
generate as real data as possible. Thus, the final model will be
used at the server and not at the clients (which is typically the
goal in FL). This is useful for organizations such as hospitals
and financial institutions, where acquiring data can be time-
consuming and expensive, and where sharing data is hard or
prohibited. A generative model which can be sampled from
can thus facilitate many such problems.

II. RELATED WORK

The work in this paper is related to federated learning, gen-
erative adversarial networks and ensemble models. Federated
learning was proposed for communication efficient distributed
learning [1]. The algorithm, called federated averaging, runs
parallel stochastic gradient descent for a number of communi-
cation rounds on a subset of all the clients. After each round,
the updated client models are sent to a central server where
they are averaged and communicated back. Most work on
federated learning has been focused on the supervised setting
where clients have labeled data [2].

Federated GANs. Up until recently, semi-supervised and
unsupervised methods have been lacking in the federated
learning literature. We contribute to this area of research in

this work by studying GANs [3] in a distributed setup, which
are trained unsupervised without any need of labels.

For iid data settings, MD-GAN [5] is a solution based on a
single generator at the server with distributed discriminators.
The generator communicates generated data to all participating
clients, which is a communication-intensive operation and not
scalable to many clients.

Non-iid data is tackled in [6], where the discriminators
are distributed and the server keeps a central generator, just
as for MD-GAN. Here, the generator is updated using the
most forgiving discriminator (i.e. the largest loss). Augenstein
et al. [7] propose a similar federated GAN, with only one
central generator and several distributed discriminators. The
difference is that the discriminator update is based on selecting
a subset of clients. Both these works suffer from large com-
munication overhead, as the central generator needs to send
data to each participating client each communication round.

FedGAN [4] is a GAN trained across distributed clients
with non-iid data. The generator in FedGAN does not provide
the same bottleneck effect, as each client has its own local
generator and discriminator which are updated with federated
averaging through the central server. FeGAN [8] is a similar
solution, which also uses federated averaging on the generator
and the discriminator. Here, the authors however aggregate
models using Kullback-Leibler weighting, which uses a soft-
max on the KL divergence score of each client. Each model
wk from client k is assigned a weight

αk =
e−sk∑
i e
−si

, (1)

where sk is the pre-computed KL score of client k. FeGAN
further utilizes balanced sampling every communication round,
i.e. sampling clients with balanced datasets and more samples.
However, this breaks some privacy concerns as clients need
to disclose information about their data distributions to the
central server.

Gossip GAN [9] is a completely decentralized approach,
where there is no central server available and where the clients
communicate in a peer-to-peer network.

Ensembles of deep nets. Ensembles of deep neural net-
works have been studied in a non-federated setup. Deep
ensembles were introduced by [10], where an ensemble of
deep neural networks is trained by randomly initializing a
number of different models. In [11], the authors demonstrate
the stability and diversity of randomly initialized models. In
[12], the authors propose an (non-distributed) ensemble of
GANs with different initializations to learn a distribution over
images. MAD-GAN [13] is another solution that tackles mode-
collapse, where several generators are trained together with a
multi-class discriminator.

Inspired by these previous works, in this paper we propose
to build an ensemble of fine-tuned federated generators,
illustrated in figure 1. We emphasize that our goal is to learn
to generate realistic data at the central server, and not at the
clients. Thus, our method is communication efficient and does
not require more computational power from the clients, as the
full ensemble is never sent out to the clients. Our proposed
solution is robust with respect to mode collapse, client drift and
heterogeneous data. In the work of FedGAN [4], the authors
only considered 5 clients in their experiments. In this work,
we scale this up and show that our solution works for 100
participating clients.

III. METHOD

In GAN training, two neural networks compete in a two-
player minimax game. The goal of the generator G(z; θg) is to
learn a distribution pg(x) over data x, by mapping input noise
z ∼ pz(z) to real samples x. Meanwhile, the discriminator
D(x; θD) is trained to discriminate between real samples x
and generated samples G(z). The optimization problem can
thus be formulated as

min
G

max
D

Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))].

(2)
In federated learning, the data on the clients is considered

sensitive and cannot be shared. Instead, a central server
orchestrates the learning among clients by sending out a copy
of a global model that is trained on each client’s data. The new,
updated models are then sent back to the central server where
they are aggregated into a new global model. This procedure
is repeated for a number of communication rounds until some
stopping criteria is met. Let K be the number of clients, w the
global model parameters, x a data sample, pk the local data
distribution for client k and `k the loss function for client k.
The optimization problem can then be described as

min
w∈Rd

1

K

K∑
k=1

Ex∼pk
[`k(w; x)] . (3)

As a baseline, we compare our method to FedGAN [4]. For
FedGAN, the generator and discriminator are locally trained
for a number of local epochs, optimizing equation (2). Then,
equation (3) is optimized using FEDAVG, both for G and D.
That is, every local discriminator and generator is trained using
SGD on the local datasets, and then every communication
round the parameters are averaged to produce global models.

A. EFFGAN: Ensembles of fine-tuned federated GANs

In this work, we instead propose to build an ensemble of
client generators Gm for m = 1, 2, . . . ,M in order to learn the
data distribution over all clients, where M ≤ K. The ensemble
thus consists of M locally fine-tuned local models of the last
achieved global generator using FEDAVG. More specifically,
after FEDAVG has finished, fine-tuning on the local clients
is done. Then, the M number of fine-tuned generators are
sent to the central server, and the data generation process is
performed using all M generators. Since the generation of the
data happens at the central server, no extra computation is
needed at the clients. An illustration of EFFGAN is shown in
figure 1. In summary our proposed method works as follows.

1) Train a global generator using FEDAVG (as in FedGAN).
2) Fine-tune the global model achieved from 1) on M

randomly selected clients for E number of epochs and
send them back to the central server.

3) At the server, sample a fine-tuned generator Gm: m ∼
U(0,M).

4) Sample a data point x from generator Gm: x ∼ pmg (x).
5) Repeat 3-4 until sufficient data has been generated.

In our experimental setup, we will investigate how the number
of fine-tuned generators M affect the performance of EFF-
GAN, see figure 9.

B. Note on privacy

As for most federated learning methods, our proposed
EFFGAN requires model information to be sent from clients
to the central server during training. This is a potential privacy
risk, as recent work has shown that it is possible to reconstruct
training data using gradients [14]. Meanwhile, EFFGAN can
be combined with existing works such as differential privacy
[15], in order to achieve stronger privacy for the clients. This
is an interesting field of research but out of scope of this paper,
and we leave further studies of this topic for future work.

IV. EXPERIMENTAL SETUP

All experiments were carried out using the DCGAN ar-
chitecture [16] trained on the FashionMNIST dataset [17]
and the MNIST dataset [18]. Meanwhile, we believe our
framework is compatible with any type of GAN. DCGAN
is a GAN architecture that consists of convolutional layers
in the generator and convolutional-transpose layers in the
discriminator. The input to the generator is a latent vector that
is sampled from the standard normal distribution z ∼ N (0, 1).
The DCGAN architecture was chosen for its simplicity and
because it is used widely in the literature. While there today
exist GANs that perform better for more complex datasets,
DCGAN has sufficient capacity for the purposes of this work.

FashionMNIST contains 70,000 28x28 gray-scale images of
Zalando clothing in 10 classes. It is split into 60,000 training
images and 10 000 test images. MNIST contains 70,000 28x28
gray-scale images of handwritten digits, and it is also split into
60,000 training samples and 10,000 test samples.

In experimental setup of this paper, we study three main
problems: heterogeneous data, client drift, and how the number

of fine-tuned generators affect the ensemble performance. In
order to study non-iid data, each client is assigned the same
number of data points from n distinct classes out of ten
existing ones in the dataset. We perform experiments for
varying n, comparing our method to the baseline. We also
perform experiments varying the local number of epochs E
to study the effect of client drift in the non-iid setting of
n = 2. Lastly, we run experiments to investigate how sensitive
EFFGAN is to the number of fine-tuned client generators M
that make up the ensemble.

In the beginning of each communication round, each client
receives a copy of the generator (G) and the discriminator (D).
Both G and D are then trained locally for E local epochs,
after which all local networks are aggregated using FEDAVG.
The models are trained using the Adam optimizer [19], with
a learning rate of η = 0.001 and β1 = 0.0, β2 = 0.9. For the
previous work of FedGAN [4], the authors considered K = 5
clients in their experiments. We scale up the experiments to
K = 100 clients and distribute 600 samples for each client.
A common way to increase efficiency in federated learning
is to randomly sample a fraction c of all clients in each
communication round. However, using too few clients poses
the risk of loss of performance. We thus perform experiments
investigating how this fraction affects the performance of our
method and compare it with the baseline.

Evaluation. We use the Fréchet Inception Distance (FID)
[20], [21] as our measure of performance, which compares
the distribution of generated samples with the distribution of
real ones that were used to train G. For FedGAN, the FID is
computed after aggregation of the local models each communi-
cation round. The performance of EFFGAN is measured after
the local fine-tuning, and the FID is based on data generated
from the M number of client generators.

Baselines. In our experiments, we compare EFFGAN to
two main baselines. The first baseline is the aforementioned
FedGAN [4]. Since EFFGAN consists of locally fine-tuned
generators, the second baseline we compare with is an ensem-
ble of locally trained generators, which did not participate in
federated learning. We can thus study to what extent FEDAVG
facilitates the training of the fine-tuned generators.

V. RESULTS

In this section we present the results of our work according
to the experimental setup.

A. Qualitative results

Figure 2 shows images generated by FedGAN and EFFGAN
side by side, both approaches trained on MNIST for a varying
number of local epochs. For both models, we save the best
performing model with respect to FID over all communication
rounds, and use that as our final model to generate data. We
can see that both solutions manage to solve the task well,
and generate plausible handwritten digits up to E = 5 local
epochs. For FedGAN, the generated images for E = 10 are
somewhat unclear and smudged, indicating problems of client
drift.

Figure 3 similarly shows images generated by FedGAN
and EFFGAN side by side, using FashionMNIST for training.
Here, the difference between the two methods becomes more
clear. While FedGAN generates images that are blurred and
grey with limited variability as the number of local epochs
increases, EFFGAN consistently outputs images that are clear
and with good variability. We note that EFFGAN is more
robust to a larger number of local epochs, generating more
realistic images up to E = 50. This makes EFFGAN more
communication efficient than FedGAN, as it can generate the
same (or better) images with less communication.

B. Non-iid data

Figure 5 shows a comparison of FID scores on FashionM-
NIST for the FedGAN baseline (blue), our proposed ensemble
of fine-tuned client models: EFFGAN (red), and an ensemble
of client models trained locally without any federated learning
(orange). All clients only have n = 2 distinct classes in
their datasets, making the problem non-iid. These are also
benchmarked against the lowest FID reached by a centrally
trained model, i.e. a model with access to the entire dataset.
In this experiment, EFFGAN is an ensemble of 20 randomly
chosen client generators. The results demonstrate that by using
an ensemble of fine-tuned generators to generate data we reach
a better FID as compared to both FedGAN and an ensemble of
locally trained generators, almost reaching the performance of
a centrally trained GAN. Note that a centrally trained GAN has
access to all data and does not solve the distributed learning
problem. These results suggest that using a generator trained
with FEDAVG serves as a good initialization for learning the
local client data distributions since EFFGAN outperforms an
ensemble of local models trained without communication.

Figure 6 shows the advantage of using the ensemble with a
varying degree of data heterogeneity, and especially so when
the data distribution is highly non-iid. For this experiment,
each client has at most n data classes present in its local
dataset, for n = 1, 2, . . . , 10. For lower values of n, there is
a major difference between the aggregated FedGAN and our
proposed ensemble EFFGAN. As expected, this gap closes as
the data distribution goes towards an iid data distribution. Most
notably, EFFGAN is not affected by the data heterogeneity
at all, and even performs on par with a centrally trained
model when each client dataset only has samples from n = 1
label. This behaviour ought to be affected by the number of
clients in the ensemble. As there are 10 classes in total in the
dataset, and this experiment is performed with 20 clients in
the ensemble, then we expect all classes to be represented by
the ensemble even when there is only one class of data in
the local datasets. That is, assuming that the local generators
diverge to generate data based on the local datasets, despite
the occasional aggregation during training.

C. Client drift

FEDAVG is known to become detrimental when client data
is distributed non-iid due to local models drifting far away
from each other in parameter space when training is performed

(a) FedGAN (b) EFFGAN

Fig. 2: Images generated by (a) FedGAN [4] and (b) our EFFGAN trained on the MNIST dataset. The rows correspond to
models trained with local epochs E = 1, 5, 10 (top to bottom).

(a) FedGAN
(b) EFFGAN

Fig. 3: Images generated by (a) FedGAN [4] and (b) our EFFGAN trained on the FashionMNIST dataset. The rows corresponds
to models trained with local epochs E = 1, 5, 10, 20, 50 (top to bottom).

Fig. 4: FID for EFFGAN (solid) and FedGAN (dashed) for different number of local epochs (E), trained on the FashionMNIST
dataset. Here it is clearly shown that FedGAN experiences client drift as E increases, whereas EFFGAN is mitigates this
problem.

Fig. 5: FID scores of different federated GAN architectures
during training.

Fig. 6: FID for varying heterogeneity, by varying the number
of classes n present in the local client datasets (higher n →
more iid). Dataset: MNIST.

with too man local epochs. This phenomenon is known as
client drift [1], [22].

To study the stability of our method, we investigate the
performance with respect to the number of local epochs E
each client performs every communication round. In figure 7
we observe results from this experiment for the non-iid data
setting for the MNIST dataset, where each client dataset only

TABLE I: The best FID score achieved by EFFGAN and
FedGAN for different number of local epochs.

FID
local epochs E EFFGAN FedGAN

1 19.8 20.4
5 18.7 42.1

10 19.9 53.3
20 21.7 64.7
50 22.0 72.1

Fig. 7: FID for EFFGAN (solid) and FedGAN (dashed line) for
different number of local epochs (E), trained on the MNIST
dataset.

contains n = 2 classes. The performance of the FedGAN
baseline is represented by the dashed lines, and the ensemble
of fine-tuned models (EFFGAN) is represented by solid lines.
Even though both FedGAN and EFFGAN seem to reach
similar scores for low values of E, we see that an increase in E
leads to faster convergence for EFFGAN. Furthermore, when
the number of local epochs increases to E = 10 FedGAN
starts to diverge, while EFFGAN remains stable.

In figure 4 we see the same experiment performed for
FashionMNIST. We note that for increasing E here, FedGAN
(dashed) performs much worse, experiencing client drift where
the clients converge to different solutions in parameter space
due to the heterogeneous data. This breaks FEDAVG, resulting
in performance degeneration. On the contrary, EFFGAN con-
verges faster in terms of communication rounds towards the
performance of a central GAN with an increase of E. More
notably, it does not suffer from client drift, which is presented
as solid lines in figure 4.

This is further presented in table I, where we report the best
FID score reached by each algorithm, for a different number of
local epochs. We observe here that EFFGAN reaches a better
FID score as compared to FedGAN in all experiments.

In figure 8 the lowest FID is recorded for a varying number
of clients used in communication. Here, FedGAN tends to
be lower for a larger amount of clients in communication.
Meanwhile, the FID of the ensemble is stable and works
well even when a small number of clients participate in each
communication round. This means that less communication is
needed for training EFFGAN as compared to FedGAN.

D. Effect of the number of models in ensemble

Despite having a fixed fraction of clients taking part in each
communication round, we can still fine-tune all clients in the
last round without reducing the efficiency of the algorithm
much. However, an ensemble consisting of quite a few models
may be unpractical and computationally unnecessary. Figure

Fig. 8: Varying number of clients sampled in each communi-
cation round, for the non-iid setting of n = 2 classes in each
client dataset.

Fig. 9: FID score vs the number of fine-tuned client generators
that make up the ensemble in EFFGAN, in the non-iid data
setting of n = 2 classes in each client dataset.

9 shows how the FID score on FashionMNIST is affected by
the number of client generators that make up the ensemble.
We see that the FID score decreases fast in the beginning,
and there is a lot to gain from adding more generators to
the ensemble. However, after the ensemble consists of 10
generators, diminishing returns is experienced. EFFGAN can
thus efficiently learn the data distribution without using a large
number of client models.

VI. DISCUSSION

Client drift. A main finding in our paper is that FedGAN is
sensitive to the number of local epochs used to train the gen-
erator and discriminator. This is presented in figure 4, where
we see that FedGAN (dashed) diverges as E increases, i.e.
suffering from client drift. This is especially observed for the
FashionMNIST dataset, which is a harder dataset distribution
to learn as compared to MNIST. Meanwhile, our proposed
method EFFGAN outperforms FedGAN in this regard and is

especially able to perform well even when the number of local
epochs is large. Whereas FedGAN suffers from client drift
for large E, EFFGAN does not, and in our experiments, it
can handle up to 50 local epochs during training. The reason
for this is that all fine-tuned members of the ensemble have
learnt their own respective data distribution well, so as long
as a sufficient number of clients participate in the ensemble,
EFFGAN learns to model the whole data distribution. This also
makes EFFGAN more communication efficient, as it does not
need to communicate with the central server as often. Figure
9 also shows that we do not need a high percentage of clients
to build the ensemble.

For MNIST, both FedGAN and EFFGAN can successfully
solve the problem and generate convincing synthetic samples.
However, when increasing the number of local epochs, EFF-
GAN converges faster as seen in figure 7, and we conclude that
EFFGAN requires substantially less communication. FedGAN
does start to drift for E = 10, which is avoided for EFFGAN.

Qualitative evaluation. In figure 2 and figure 3, we can
see by visual inspection that both FedGAN and EFFGAN
manage to generate good samples on the simple MNIST
dataset, and generate plausible handwritten digits for up to
5 local epochs. For a larger number of local epochs, the
output starts to produce images that are less clear. In these
figures it becomes evident that FedGAN does not handle
the more complex FashionMNIST dataset well, producing
increasingly grey and blurred images with low variability as
the number of local epochs grows. EFFGAN on the other hand,
produces convincing images for all explored numbers of local
epochs, for both datasets. This indicates that the client drift
that occurs in FedGAN, and which hinders the aggregation
from producing a meaningful and expressive resulting model,
does not occur in EFFGAN. We observe that MNIST is a
simpler problem, and that FedGAN is capable of solving it
with a sufficient amount of communication (local epochs at
most 5). Meanwhile, EFFGAN handles both datasets quite
well, regardless of the number of local epochs; thus EFF-
GAN requires substantially less communication overhead in
comparison. Analogously, in figure 7 we can see that both
approaches reach a similar FID score for MNIST after training
for E = 1 and E = 5, although as the number of local
epochs increases, EFFGAN increasingly starts to converge at
fewer communication rounds. For E = 10 local epochs we
start to observe client drift for FedGAN, whereas EFFGAN
mitigates this. Similar patterns can be seen in figure 4 for
FashionMNIST. Here it becomes clear that FedGAN suffers
from client drift when the number of local epochs is greater
than 1. This further strengthens the conclusion that EFFGAN
is less sensitive to the number of local epochs, and that it can
perform well with less communication.

Heterogeneous data. In figure 6, EFFGAN is compared
to FedGAN in the highly non-iid setting where each client
only has n classes present in its dataset, for varying n. We
see that FedGAN performs quite well for n > 2, where data
is not that heterogeneous, even beating a central GAN. This
can seem counter-intuitive, but is consistent with numbers

from previous work, as reported from [8]. This stems from
the fact that the aggregate global generator is based on more
data samples (the clients) as compared to the central model.
This is a great advantage of distributed training, enhancing the
learning procedure by using more diverse updates as compared
to central training.

Meanwhile, EFFGAN is robust with respect to n, and
outperforms FedGAN in the non-iid setting where n < 3. Even
in the case of n = 1, i.e. when there is only one class out of
ten in each client data set, EFFGAN manages to perform on
par with a centrally trained GAN. EFFGAN is also less prone
to mode collapse, i.e. only generating samples from certain
modes in the data. This is due to the ensemble consisting of
several fine-tuned models, each expert on their own local data
distribution.

Number of generators in ensemble. In figure 9, we show
how FID score changes as a function of the number of gener-
ators in the ensemble for the non-iid setting of n = 2. Using
very few fine-tuned generators will not be enough to capture
the whole data distribution, as each generator is fine-tuned on
its own local data. However, by only randomly sampling 10 out
of 100 clients, FID is improved a lot. The ensemble is robust
to increasing the number of generators, however diminishing
returns of FID is experienced when adding many more.

Transfer learning. In figure 5 we note that EFFGAN
outperforms both FedGAN and an ensemble of locally trained
generators (with no communication). This result indicates that
the generator in FedGAN achieved from FEDAVG serves as
a good initialization for transfer learning, as this is what is
fine-tuned for every ensemble member in EFFGAN. This even
holds true if FedGAN starts to degenerate due to client drift.

VII. CONCLUSIONS

In this work, we have proposed a novel method for learn-
ing a data distribution over decentralized client data using
an ensemble of fine-tuned federated GANs which we name
EFFGAN. Our main results show that using standard FEDAVG
for training GANs works when data is iid, but suffers from
client drift when data is non-iid. Our EFFGAN mitigates this
problem by generating data from an ensemble of locally fine-
tuned generators. First, we show in our experiments that client
drift can be avoided in this way, which enables training for a
large number of local epochs. This makes the proposed method
communication-efficient, as we do not need to communicate
with a central server often. Secondly, as long as we have a
sufficient number of client generators as a part of the ensemble
we are able to learn the full data distribution and achieve
a FID score close to a centrally trained model even in a
pathological non-iid data setting. Lastly, although FedGAN
diverges in the non-iid setting when trained for several local
epochs, we conclude that FEDAVG has good transfer learning
capabilities as this enables the local generators to fine-tune
and learn the local data distributions better as compared to
random initialization and no communication.

In this work, we experimented with non-iid data in the
form of label distribution skew. For future work, it would be

interesting to research other types of heterogeneity as well,
such as covariate shift and concept shift. Studies investigating
how the number of data samples per client dataset effect the
generated images also serve as interesting future experiments.

ACKNOWLEDGMENT

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[2] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” arXiv preprint
arXiv:1912.04977, 2019.

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[4] M. Rasouli, T. Sun, and R. Rajagopal, “Fedgan: Federated gen-
erative adversarial networks for distributed data,” arXiv preprint
arXiv:2006.07228, 2020.

[5] C. Hardy, E. Le Merrer, and B. Sericola, “Md-gan: Multi-discriminator
generative adversarial networks for distributed datasets,” in 2019 IEEE
international parallel and distributed processing symposium (IPDPS).
IEEE, 2019, pp. 866–877.

[6] R. Yonetani, T. Takahashi, A. Hashimoto, and Y. Ushiku, “Decentralized
learning of generative adversarial networks from non-iid data,” arXiv
preprint arXiv:1905.09684, 2019.

[7] S. Augenstein, H. B. McMahan, D. Ramage, S. Ramaswamy, P. Kairouz,
M. Chen, R. Mathews et al., “Generative models for effective ml on
private, decentralized datasets,” arXiv preprint arXiv:1911.06679, 2019.

[8] R. Guerraoui, A. Guirguis, A.-M. Kermarrec, and E. L. Merrer, “Fegan:
Scaling distributed gans,” in Proceedings of the 21st International
Middleware Conference, 2020, pp. 193–206.

[9] C. Hardy, E. Le Merrer, and B. Sericola, “Gossiping gans: Position
paper,” in Proceedings of the Second Workshop on Distributed Infras-
tructures for Deep Learning, 2018, pp. 25–28.

[10] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” Advances in
neural information processing systems, vol. 30, 2017.

[11] S. Fort, H. Hu, and B. Lakshminarayanan, “Deep ensembles: A loss
landscape perspective,” arXiv preprint arXiv:1912.02757, 2019.

[12] Y. Wang, L. Zhang, and J. Van De Weijer, “Ensembles of generative
adversarial networks,” arXiv preprint arXiv:1612.00991, 2016.

[13] A. Ghosh, V. Kulharia, V. P. Namboodiri, P. H. Torr, and P. K. Dokania,
“Multi-agent diverse generative adversarial networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018,
pp. 8513–8521.

[14] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
gradients-how easy is it to break privacy in federated learning?” Ad-
vances in Neural Information Processing Systems, vol. 33, pp. 16 937–
16 947, 2020.

[15] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” arXiv preprint arXiv:1712.07557,
2017.

[16] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[17] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[18] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[20] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local
nash equilibrium,” Advances in neural information processing systems,
vol. 30, 2017.

[21] M. Seitzer, “pytorch-fid: FID Score for PyTorch,” https://github.com/
mseitzer/pytorch-fid, August 2020, version 0.2.1.

https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid

[22] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and
A. T. Suresh, “Scaffold: Stochastic controlled averaging for on-device
federated learning.” 2019.

	I Introduction
	II Related work
	III Method
	III-A EFFGAN: Ensembles of fine-tuned federated GANs
	III-B Note on privacy

	IV Experimental setup
	V Results
	V-A Qualitative results
	V-B Non-iid data
	V-C Client drift
	V-D Effect of the number of models in ensemble

	VI Discussion
	VII Conclusions
	References

