
Informative Initialization and Kernel Selection
Improves t-SNE for Biological Sequences

Prakash Chourasia, Sarwan Ali, Murray Patterson*
Department of Computer Science, Georgia State University

Atlanta, GA, USA
{pchourasia1,sali85}@student.gsu.edu, mpatterson30@gsu.edu

Abstract—The t-distributed stochastic neighbor embedding (t-
SNE) is a method for interpreting high dimensional (HD) data
by mapping each point to a low dimensional (LD) space (usually
two-dimensional). It seeks to retain the structure of the data. An
important component of the t-SNE algorithm is the initialization
procedure, which begins with the random initialization of an
LD vector. Points in this initial vector are then updated to
minimize the loss function (the KL divergence) iteratively using
gradient descent. This leads comparable points to attract one
another while pushing dissimilar points apart. We believe that, by
default, these algorithms should employ some form of informative
initialization. Another essential component of the t-SNE is using
a kernel matrix, a similarity matrix comprising the pairwise
distances among the sequences. For t-SNE-based visualization,
the Gaussian kernel is employed by default in the literature.
However, we show that kernel selection can also play a crucial
role in the performance of t-SNE.

In this work, we assess the performance of t-SNE with various
alternative initialization methods and kernels, using four different
sets, out of which three are biological sequences (nucleotide,
protein, etc.) datasets obtained from various sources, such as
the well-known GISAID database for sequences of the SARS-
CoV-2 virus. We perform subjective and objective assessments
of these alternatives. We use the resulting t-SNE plots and k-
ary neighborhood agreement (k-ANA) to evaluate and compare
the proposed methods with the baselines. We show that by
using different techniques, such as informed initialization and
kernel matrix selection, that t-SNE performs significantly better.
Moreover, we show that t-SNE also takes fewer iterations to
converge faster with more intelligent initialization.

Index Terms—t-SNE, Visualization, Initialization, Kernel Ma-
trix, Biological Sequences

I. INTRODUCTION

The quantity of high dimensional data sets in genomic
sequencing necessitates dimensionality reduction techniques
and ways to aid in creating data visualizations. Principal
component analysis (PCA) and independent component anal-
ysis (ICA) are standard dimensionality reduction techniques.
Among them, the t-distributed stochastic neighbor embedding
(t-SNE) introduced by van der Maaten and Hinton (2008) [1]
has recently gained popularity, especially in the natural sci-
ences, due to its ability to handle large amounts of data and its
use for dimensionality reduction while preserving the structure

*Corresponding Author
2022 IEEE International Conference on Big Data (Big Data) — 978-1-

6654-8045-1/22/$31.00 ©2022 European Union

of data. It is typically used to create a two-dimensional
embedding of high-dimensional data to simplify viewing while
keeping its overall structure. Despite its enormous empirical
success, the theory behind t-SNE remains to be seen.

This paper demonstrates the effect of informed initialization
on the step-wise process (incremental performance, conver-
gence, etc.) of the t-SNE algorithm. We also review the
impact of different kernels on t-SNE for various types of
biological (nucleotide, protein, etc.) sequence data, including
SARS-CoV-21 sequences. The vast global spread of pan-
demics like COVID-19 provided the impetus for this research,
pushing viral sequence analysis into the “Big Data” realm.
This leads to challenges in reducing high-dimensional data
to low-dimensional space, not just to conserve computational
resources when using it in cutting-edge methods like machine
learning, but also to improve visualization.

The severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) virus is a member of the genus Betacoro-
navirus, and its genetic material is a single positive-strand
RNA [2]. Its viral genome (Gene ID—MN908947) has
roughly 29, 881 nucleotides [3]. The virus has a double-layered
lipid envelope with four structural proteins, S, M, E, and N,
in its structure. Most of the mutations related to SARS-CoV-2
occur in the spike region [4].

In this work, we use four datasets, of which three sets are
biological sequences, to assess the effect of informed initializa-
tion and kernel selection on t-SNE. Firstly, we use a toy dataset
as a proof of concept. Among others, there is a set of 7000
SARS-CoV-2 spike protein sequences obtained from the well-
known GISAID2 database. The COVID-19 pandemic has gen-
erated a renewed interest in the larger family Coronaviridae,
among which SARS-CoV-2 is a member, along with others
such as the original severe acute respiratory syndrome and the
middle-eastern respiratory syndrome coronaviruses [5]. Since
the family Coronaviridae affects a wider variety of hosts,
it is often of interest to characterize such viral sequences
with the primary host that it affects. Hence, the third dataset
used contains the host for each sequence. Finally, sometimes
researchers only obtain such data in the form of short reads

1The SARS-CoV-2 virus is the cause for the global COVID-19 pandemic.
2https://gisaid.org/

ar
X

iv
:2

21
1.

09
26

3v
1

 [
cs

.L
G

]
 1

6
N

ov
 2

02
2

https://gisaid.org/

(when no reference genome is available, for example). To
simulate this scenario, our fourth dataset is obtained by taking
a set of ≈10K full-length nucleotide sequences of SARS-CoV-
2, and simulating the process of sequencing, Illumina reads
from each such nucleotide sequence.

In this paper, our contributions are the following:
1) We convert the biological sequences to a fixed-length nu-

merical representation, afterward, we compute different
kernel matrices and show their effect along with several
initialization methods on the quality of t-SNE.

2) We show that the Kernel selection can play an important
role and should be considered carefully rather than using
the typical Gaussian kernel for t-SNE computation.

3) We show that random initialization is inefficient for t-
SNE computation. Alternatively, the Ensemble approach
is a better choice to start with as an initial solution than
the Random, Principal Component Analysis (PCA), and
Independent Component Analysis (ICA) approaches.

4) We evaluate the performance of the t-SNE using sub-
jective (t-SNE plots) and objective (AUCRNX) crite-
ria, and report results for different kernel computation
methods along with different initialization approaches.

5) We show that our proposed setting that includes the use
of Laplacian kernel, along with ensemble initialization,
outperforms the typical Gaussian and Isolation kernel-
based methods in terms of AUCRNX .

The rest of the paper is organized as follows: Section II
contains the related work for the t-SNE computation problem.
Our proposed solution is given in Section III. The dataset
statistics, along with the experimental setup details, are given
in Section IV. Our results are reported in Section V. Finally,
we conclude the paper in Section VI.

II. RELATED WORK

The task of data visualization is crucial. This work has
been made easier using t-SNE, which was first introduced
in [6]. Authors in [7] use it to show distinct variations in
coronavirus protein sequence data. It was also discovered that
employing k-means to cluster SARS-CoV-2 protein sequences
is similar to the patterns shown in t-SNE plots [8], [9]. Authors
in [10] present a theoretical feature of SNE (a forerunner to t-
SNE) requiring that global minimizers quantitatively separate
clusters. However, their finding is only nontrivial when the
number of clusters is much greater than the number of points
per cluster, which is not a reasonable assumption in general.

Authors in [11] show the importance of initialization in
UMAP and t-SNE. With informed initialization, t-SNE per-
forms as well as UMAP. However, they have yet to consider
the importance of kernel selection. In [12], a decentralized data
stochastic neighbor embedding (dSNE) is developed, which
is beneficial for visualizing decentralized data. In [13], au-
thors propose a deferentially private dSNE (DP-dSNE) variant.
Both dSNE and DP-dSNE use similarity to map the data points
from distinct places. The dSNE and DP-dSNE approaches
come in handy when data cannot be shared due to privacy
issues. Although current t-SNE approaches are effective on

popular datasets like MNIST, it is unclear if they can be
applied to large datasets of biological sequences.

III. PROPOSED APPROACH

In this section, we first discuss the method to convert
the sequences into a fixed-length numerical representation.
We then describe the different kernel computation methods.
Finally, we describe initialization approaches for the t-SNE.

A. Numerical Embedding Generation

Since t-SNE operates on the numerical vectors/embeddings,
the first step is to convert the sequences into fixed-length
numerical representations. For this purpose, we use a recently
proposed method called Spike2Vec [14]. Given a sequence,
Spike2Vec generates a fixed-length numerical representation
using the concept of k-mers (also called n-gram). It uses the
idea of the sliding window to generate substrings (called mers)
of length k (size of the window). For a set of k-mer for a
biological sequence, we generate a feature vector of length
|Σ|k (where Σ corresponds to the set of alphabets “amino
acids” or nucleotide in the sequence), which contains the
frequency/count of each k-mer.

B. t-SNE computation pipeline

The overall pipeline of our model is shown in Figure 1.
In the t-SNE computation pipeline, there are three steps
involved, namely (1) Kernel matrix computation, (2) Solution
Initialization, and (3) Gradient Descent.

Fig. 1: Overall pipeline of our model. Given the input data (A),
we first compute the kernel matrix (P) using different kernel
functions. We then Initialize a solution (Y) using different
initialization approaches. Later we apply Gradient Descent to
get the low dimensional representation of the data.

1) Kernel Functions: For kernel matrix computation, we
use four different kernel functions, which are described below,
and also the process is shown in the first box of Figure 1.

a) Gaussian Kernel [15]: The N-dimensional Gaussian
kernel is computed for any number of points by comput-
ing each Kernel coordinates and their distance to the cho-
sen points, then taking the Gaussian function of these dis-
tances. In 2D, the Gaussian Kernel is defined as: K (x, y) =

exp
(
−‖x−y‖2

2σ2

)
, where the width of the Kernel is defined by

sigma, we computed the difference using Squared Euclidean
distance with a perplexity value of 250 for our trials, and we
are tweaking sigma. The Gaussian Kernel is a default Kernel

used in the t-SNE implementation. We use this as a baseline
to evaluate the performance of other Kernel.

b) Isolation Kernel [16]: It is a data-dependent kernel
that is quick to compute because it just has one parameter. It
adjusts to the local density distribution, unlike the Gaussian
kernel. For given two points x, y ∈ Rd, the Isolation kernel
of x and y with respect to D is defined to be the expectation
taken over the probability distribution on all partitioning H ∈
Hψ(D) which both x and y fall into the same isolating partition
θ[z] ∈ H, z ∈ D given by: Kψ(x, y | D) = EHψ(D)[1(x, y ∈
θ[z] | θ[z] ∈ H)].

c) Laplacian Kernel [17]: The Laplacian kernel function
gives the relationship between two input feature vectors x and
y in infinite-dimension space. Its value ranges between 0 and
1 where, 1 denotes x and y are similar. Can be denoted by
the following: k(x, y) = exp

(
− 1

2σ2 ‖x− y‖1
)
, where x and y

are the input vectors and ‖x− y‖1 is the Manhattan distance
between the input vectors.

d) Approximate Kernel [18]: This kernel offers a mech-
anism to compare two sequences’ similarities by computing a
spectrum based on the number of matches k and mismatches
m between k-mers of two sequences. Given a pair of the
sequence X and Y , the spectrum (frequency count-based
vector of k-mers) between any two sequences will have a
length equal to the size of more significant length sequences
between X and Y , which will contain the counts of matches
and mismatches between characters in the sequence k-mers.
This method computes n× n kernel matrix based on the dot
product of vectors. We use k = 3 and m = 0 for computing
this kernel.

2) Solution Initialization: It is an important component of
the t-SNE computation process. For the initialization of t-SNE,
we use the following four techniques, also shown in the second
box of Figure 1.

a) Random Initialization: Random numbers are assigned
to the N×2 matrix, where N is the total number of sequences.

b) Principle Component Analyses (PCA) [19]: Singular
Value Decomposition reduces the data’s dimensionality and
projects it to a lower dimensional environment. We are not
using PCA as a dimensionality reduction method here. Rather,
we use it to get intelligent initial t-SNE vectors(initialization).
Here we get N × 2 matrix as output when numerical embed-
ding is provided as input to PCA. This low-dimensional output
is used to initialize the solution for the t-SNE algorithm.

c) Independent Component Analyses (ICA) [20]: ICA
establishes two essential assumptions, i.e., statistical inde-
pendence and non-Gaussian distribution property, among the
components. In a semantic sense, the information about x
(original data) does not provide information about y (new
data comprised of independent components), and vice versa.
Its goal is to separate the data by transforming the input
space into a maximally independent basis. More formally,
this corresponds to p(x, y) = p(x)p(y), where the probability
distribution of x is represented by p(x), and p(x,y) represents
the joint distribution of x and y.

d) Ensemble: We took the average for N × 2 matrices
generated by PCA and ICA in this method. Initialize the
solution in t-SNE with the generated averaged matrix.

3) Gradient Descent: Ultimately, we use gradient descent
to optimize the t-SNE-based 2D representation. As shown in
the last part of Figure 1, we set the parameters like learning
rate, momentum, and Iteration. KL divergence is used to
measure the distance between two distributions (Distribution
among distances in the data points in LD and HD). Taking the
cost function’s derivative and calculating gradient descent, we
keep updating the initial solution Y to get the optimal solution.
Finally, we apply t-distribution on low-dimension distribution,
which gives us a longer tail to give better visualization.

IV. EXPERIMENTAL SETUP

In this section, we first discuss the dataset statistics. Af-
ter that, we report the goodness metrics used to evaluate
the performance of t-SNE. All experiments are performed
on Intel (R) Core i5 system with a 2.40 GHz proces-
sor and 32 GB memory. The code and dataset used in
this study are available online https://github.com/pchourasia1/
tSNE Informed Initialization.

A. Dataset Statistics

This section discusses the detailed description and statistics
of datasets used for experiments.

1) Circle Dataset: Using a straightforward toy dataset,
we can demonstrate the significance of random and non-
random (informed) initialization. To create Kernel matrices,
we collected 7000 points from a circle with some additional
Gaussian noise.

2) Spike Sequence Dataset: The spike sequences are taken
from GISAID 3, a well-known database. The entire retrieved
sequences are 7000, including 22 lineages of virus. The detail
of each lineage, i.e., name (count/distribution), in the dataset,
is as follow B.1.1.7 (3369), B.1.617.2 (875), AY.4 (593),
B.1.2 (333), B.1 (292), B.1.177 (243), P.1 (194), B.1.1 (163),
B.1.429 (107), B.1.526 (104), AY.12 (101), B.1.160 (92),
B.1.351 (81), B.1.427 (65), B.1.1.214 (64), B.1.1.519 (56),
D.2 (55), B.1.221 (52), B.1.177.21 (47), B.1.258 (46), B.1.243
(36), and R.1 (32).

3) Host Dataset: This data is taken from [5], which com-
prised 5558 spike sequences and coronavirus hosts as class
labels. The count of each host (class label) is following: Bats
(153), Bovines (88), Cats (123), Cattle (1), Equine (5), Fish
(2), Humans (1813), Pangolins (21), Rats (26), Turtle (1),
Weasel (994), Birds (374), Camels (297), Canis (40), Dolphins
(7), Environment (1034), Hedgehog (15), Monkey (2), Python
(2), Swines (558), and Unknown (2). Length of Spike2Vec
based feature vector is 13824.

4) Short Read Dataset: This dataset is generated by tak-
ing 10181 SARS-CoV-2 nucleotide sequences and simulating
short reads from each sequence using inSilicoSeq 4 with the
miseq model (all other settings were default settings). The

3https://www.gisaid.org/
4https://github.com/HadrienG/InSilicoSeq

https://github.com/pchourasia1/tSNE_Informed_Initialization
https://github.com/pchourasia1/tSNE_Informed_Initialization
https://www.gisaid.org/
https://github.com/HadrienG/InSilicoSeq

lineages/class labels (count/distribution) in this dataset is as
follows: B.1.1.7 (2587), B.1.617.2 (1198), AY.4 (1167), AY.43
(412), AY.25 (275), B.1.2 (253), AY.44 (249), B.1 (200),
B.1.177 (184), AY.3 (166), P.1 (137), B.1.1 (128), B.1.526
(112), AY.9 (108), AY.5 (96), AY.29 (86), AY.39 (85), B.1.429
(81), B.1.160 (79), Others (2578). There are 496 unique
lineages for 10181 sequences.

B. Evaluation Metrics

We evaluate the t-SNE in two ways including subjective
and objective evaluation. We plot t-SNE-based 2D visual
representation for subjective evaluation to evaluate the perfor-
mance. For objective evaluation, we use a technique called
k-ary neighborhood agreement (k-ANA) method [16] to
analyze the t-SNE model’s performance objectively. Given the
original high dimensional (HD) data and the equivalent low
dimensional (LD) data for this assessment method (2D data
computed using the t-SNE approach), the k-ANA approach
verifies the neighborhood agreement (Q) between HD and LD.
It gets the intersection on the number of neighbors (for various
k nearest neighbors). In a formal setting:

Q(k) =

n∑
i=1

1

nk
|kNN (xi) ∩ kNN (x′i)| (1)

where kNN(x) is the set of k nearest neighbors of x in high-
dimensional and kNN(x′) is the set of k nearest neighbors of
x in low-dimensional (LD). We employed a quality evaluation
technique that quantifies neighborhood preservation and is de-
noted by R(k), which evaluates on a scalar metric if neighbors
are preserved [21] in low dimensions using Equation 1. In
a formal setting: R(k) = (n−1)Q(k)−k

n−1−k . The value of R(k)
ranges from 0 to 1, with a higher score indicating better
neighborhood preservation in LD space. We computed R(k)
for k ∈ {1, 2, 3, ..., 99} in our experiment, then looked at the
area under the curve (AUC) created by k and R(k). Finally,
we compute the area under the R(k) curve in the log plot
(AUCRNX) [22] to aggregate the performance of various k-
ANN. More formally, AUCRNX =

Σk
R(k)
k

Σk
1
k

, where AUCRNX
is an average quality weight for k closest neighbors.

V. RESULTS AND DISCUSSION

This section reports the results of t-SNE for different
kernels and initialization methods. The deformed circular data
with isolation and Laplacian kernel was created using the t-
SNE method with the random initialization, also shown in
Figure 2a. In this instance, it is clear that the overall structure
was not maintained; in fact, gradient descent in t-SNE merely
brings near neighbors closer and is hardly affected by the over-
all arrangement of points. While using PCA (frequently sug-
gested for initialization in t-SNE), it restores the original circle
and significantly enhances the t-SNE result (see Figure 2b).
While recovering the original circle for all 3 kernels, informed
initialization (PCA) simultaneously significantly improves the
outcomes. Thus, it is clear that the closed one-dimensional

(a) Random Initialization (b) PCA Initialization

Fig. 2: t-SNE plots comparison for different kernel matrices
with Random and PCA initialization for Circle toy dataset
using Gaussian, Isolation, and Laplacian kernels, respectively.

manifold—the circle—can only be faithfully represented with
informative initialization.

In Figure 3, using various kernels and initialization strate-
gies, we present the AUCRNX charts for gradient descent
iterations ranging from 100 to 2000. With ensemble initializa-
tion, the Laplacian Kernel outperforms the competition. Based
on these results, we suggest a recommendation and avoiding
combination in Table I.

100 500 1,000 1,500 2,000
0.56

0.62

0.68

0.74

0.8

0.85

0.9

Number of Iteration

A
U
C
R
N
X

Sc
or

e

Random
PCA
ICA

Ensemble

(a) Gaussian Kernel

100 500 1,000 1,500 2,000

0.62

0.68

0.74

0.8

0.85

0.9

Number of Iteration

Random
PCA
ICA

Ensemble

(b) Isolation Kernel

100 500 1,000 1,500 2,000
0.56

0.62

0.68

0.74

0.8

0.85

0.9

Number of Iteration

Random
PCA
ICA

Ensemble

(c) Laplacian Kernel

Fig. 3: AUC score of t-SNE for different Kernel methods
applied with increasing number of iteration for Circle data.
The figure is best seen in color.

In Figure 4, we report the t-SNE plots (for Spike sequence
data) using the different kernels (for Spike2Vec-based embed-
ding) and random initialization method. We can observe that
the Alpha (B.1.1.7) variation displays unambiguous grouping
in most cases. For Gaussian and Isolation kernels, only the
alpha variant is clearly separated. The other classes overlap
with each other. However, for the Laplacian kernel, we can
see smaller groups for other variants, such as Delta (AY.4)
and Epsilon (B.1.429).

Figure 5 shows the results of AUCRNX for different ini-
tialization approaches and kernel computation techniques for
Spike data. For the Gaussian kernel, all initialization methods
perform comparably to each other as the number of iterations
increases. Similarly, for the Isolation kernel, we can observe
that the random initialization-based approach is worse than
other initialization methods. However, the other three (PCA,
ICA, and Ensemble) methods seem to perform similarly. At
around 1500th iteration, the ICA-based initialization gets a
spike in AUCRNX compared to the other methods. However,
it is not significant as compared to an ensemble. For the
Laplacian kernel, the ensemble initialization approach seems
to perform better than the other methods, while random initial-
ization performs worst at the start. Moreover, the maximum
AUCRNX reported for the Laplacian kernel is the largest
among all three kernels, which shows that the Gaussian kernel
is the typical kernel used for t-SNE computation, may not

(a) Gaussian (b) Isolation

(c) Laplacian (d) Approximate

Fig. 4: t-SNE plots for different kernel matrices with random
initialization for Spike Sequence dataset.

be a good choice. Based on this result, We can recommend
Laplacian with Ensemble and say Random performs poorly
with Isolation and Laplacian Kernel, as mentioned in Table I.

100 500 1,000 1,500 2,000
0

0.04

0.08

0.12

0.16

0.20
0.23

Number of Iteration

A
U
C
R
N
X

Sc
or

e

Random
PCA
ICA

Ensemble

(a) Gaussian Kernel

100 500 1,000 1,500 2,000
0

0.04

0.08

0.12

0.16

0.2

0.23

Number of Iteration

Random
PCA
ICA

Ensemble

(b) Isolation Kernel

100 500 1,000 1,500 2,000
0

0.04

0.08

0.12

0.16

0.2

0.23

Number of Iteration

A
U
C
R
N
X

Sc
or

e

Random
PCA
ICA

Ensemble

(c) Laplacian Kernel

100 500 1,000 1,500 2,000
0

0.04

0.08

0.12

0.16

0.2

0.23

Number of Iteration

Random
PCA
ICA

Ensemble

(d) Approximate Kernel

Fig. 5: AUC score of t-SNE for different Kernel methods and
initialization with the increasing number of iterations for Spike
sequence data. The figure is best seen in color.

In Figure 6, we report the t-SNE plots using the different
kernels and random initialization method for Host data. In
most cases, the Environment and Human displays unambigu-
ous grouping. For Laplacian, classes overlap with each other.
However, for the Approximate kernel, we can see smaller
groups for other variants, such as Bird and Swine.

Figure 7 shows the results of AUCRNX for different
initialization approaches and kernel computation techniques
for Host data. For the Gaussian kernel and Isolation Kernel,
all initialization methods perform comparably to each other as
the number of iterations increases. In comparison, Laplacian
and Approximate are worse and can not be compared. How-
ever, among them, random initialization significantly performs
worst than other initialization in Laplacian. Ensemble methods

(a) Gaussian (b) Isolation

(c) Laplacian (d) Approximate

Fig. 6: t-SNE plots for different kernel matrices with random
initialization for Coronavirus Host dataset.

seem comparable in general (especially with Approximate ker-
nel). Overall Isolation kernel, with the ensemble initialization
approach, seems to perform better than the other methods.
In contrast, random initialization with Laplacian and ICA
initialization with Approximate Kernel perform worst. The
summary is shown in Table I.

100 500 1,000 1,500 2,000
0.16

0.2

0.24

0.28

0.32

0.36

Number of Iteration

A
U
C
R
N
X

Sc
or

e

Random
PCA
ICA

Ensemble

(a) Gaussian Kernel

100 500 1,000 1,500 2,000
0.16

0.2

0.24

0.28

0.32

0.36

Number of Iteration

Random
PCA
ICA

Ensemble

(b) Isolation Kernel

100 500 1,000 1,500 2,000
0.16

0.2

0.24

0.28

0.32

0.36

Number of Iteration

A
U
C
R
N
X

Sc
or

e

Random
PCA
ICA

Ensemble

(c) Laplacian Kernel

100 500 1,000 1,500 2,000
0.16

0.2

0.24

0.28

0.32

0.36

Number of Iteration

Random
PCA
ICA

Ensemble

(d) Approximate Kernel

Fig. 7: AUC score of t-SNE for different Kernel with an
increasing number of iterations for Coronavirus Host data
comprised of 5558 sequences. The figure is best seen in color.

In Figure 8, we report the t-SNE plots using the different
kernels (for Spike2Vec-based embedding) and random initial-
ization method for Short Read data. We can see Gaussian and
Isolation are somewhat similar, but Laplacian and Approxi-
mate are overlapping, and hard to find groups in them. A high
number of classes(496) is one of the reasons.

Figure 9 shows the results of AUCRNX for Short Read data.
For the Gaussian kernel, all initialization methods perform
comparably to each other as the number of iterations increases.
Isolation is somewhat close but incomparable with Gaussian,
whereas Laplacian and Approximate Kernels are significantly
worse. However, among all initialization, Ensemble methods

(a) Gaussian (b) Isolation

(c) Laplacian (d) Approximate

Fig. 8: t-SNE plots for different kernels with random initial-
ization for Short Read dataset. The legends for 496 classes
are not shown to save space. The figure is best seen in color.

seem to perform better. Overall Gaussian kernel, with the
ensemble initialization approach, appears to be a reasonable
choice. Conversely, any other Kernel seems not a good choice,
as mentioned in the recommendation summary in Table I.

100 500 1,000 1,500 2,000
0

0.18
0.24
0.30
0.36
0.42
0.48

Number of Iteration

A
U
C
R
N
X

Sc
or

e

Random
PCA
ICA

Ensemble

(a) Gaussian Kernel

100 500 1,000 1,500 2,000
0

0.18

0.24

0.3

0.36

0.42

0.48

Number of Iteration

Random
PCA
ICA

Ensemble

(b) Isolation Kernel

100 500 1,000 1,500 2,000
0

0.04
0.08

0.18

0.3

0.36

0.42

0.48

Number of Iteration

A
U

C
Sc

or
e Random

PCA
ICA

Ensemble

(c) Laplacian Kernel

100 500 1,000 1,500 2,000
0

0.04
0.08

0.18

0.3

0.36

0.42

0.48

Number of Iteration

Random
PCA
ICA

Ensemble

(d) Approximate Kernel

Fig. 9: AUC score of t-SNE for different Kernel methods and
initialization with the increasing number of iterations for Short
Read data. The figure is best seen in color.

Dataset
Recommended Not Recommended

Kernel Initialization Kernel Initialization

Circle Laplacian Ensemble Isolation ICA
Laplacian Random

Spike Laplacian Ensemble
Approximate PCA

Isolation Random
Laplacian Random

Host Isolation Ensemble Approximate ICA
Laplacian Random

Short Read Gaussian Ensemble All others None

TABLE I: Recommendation based on summary of perfor-
mance (AUCRNX) on different dataset.

VI. CONCLUSION

We propose using an ensemble initialization procedure to
improve the performance of t-SNE for biological sequences.

We show that kernel selection can also play a crucial role
along with ensemble initialization to improve the performance
of t-SNE. In the future, we will explore more kernels and
initialization methods along with other biological data to study
the behavior of t-SNE.

REFERENCES

[1] G. Hinton and L. van der Maaten, “Visualizing data using t-sne,” J.
Mach. Learn. Res., vol. 9, no. Nov, pp. 2579–2605, 2008.

[2] C. Bai, Q. Zhong, and G. F. Gao, “Overview of sars-cov-2 genome-
encoded proteins,” Science China Life Sciences, pp. 1–15, 2021.

[3] R. Raman, K. J. Patel, and K. Ranjan, “Covid-19: Unmasking emerging
sars-cov-2 variants, vaccines and therapeutic strategies,” Biomolecules,
vol. 11, no. 7, p. 993, 2021.

[4] A. C. Walls, Y.-J. Park, M. A. Tortorici, A. Wall, A. T. McGuire, and
D. Veesler, “Structure, function, and antigenicity of the sars-cov-2 spike
glycoprotein,” Cell, vol. 181, no. 2, pp. 281–292, 2020.

[5] S. Ali, B. Bello, P. Chourasia, R. T. Punathil, Y. Zhou, and M. Patterson,
“Pwm2vec: An efficient embedding approach for viral host specification
from coronavirus spike sequences,” MDPI Biology, 2022.

[6] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[7] S. Ali, B. Sahoo, N. Ullah, A. Zelikovskiy, M. Patterson, and I. Khan,
“A k-mer based approach for sars-cov-2 variant identification,” in
International Symposium on Bioinformatics Research and Applications,
2021, pp. 153–164.

[8] S. Ali, Tamkanat-E-Ali, M. A. Khan, I. Khan, and M. Patterson, “Ef-
fective and scalable clustering of sars-cov-2 sequences,” in International
Conference on Big Data Research (ICBDR), 2021, pp. 1–8.

[9] Z. Tayebi, S. Ali, and M. Patterson, “Robust representation and efficient
feature selection allows for effective clustering of sars-cov-2 variants,”
Algorithms, vol. 14, no. 12, p. 348, 2021.

[10] U. Shaham and S. Steinerberger, “Stochastic neighbor embedding sep-
arates well-separated clusters,” arXiv preprint arXiv:1702.02670, 2017.

[11] D. Kobak and G. C. Linderman, “Initialization is critical for preserving
global data structure in both t-sne and umap,” Nature biotechnology,
vol. 39, no. 2, pp. 156–157, 2021.

[12] D. K. Saha, V. D. Calhoun, S. R. Panta, and S. M. Plis, “See without
looking: joint visualization of sensitive multi-site datasets.” in IJCAI,
2017, pp. 2672–2678.

[13] D. K. Saha, V. Calhoun, Y. Du, Z. Fu, S. Panta, S. Kwon, A. Sarwate,
and S. Plis, “Privacy-preserving quality control of neuroimaging datasets
in federated environment,” Hum Brain Mapp, 2022.

[14] S. Ali and M. Patterson, “Spike2vec: An efficient and scalable embed-
ding approach for covid-19 spike sequences,” in International Confer-
ence on Big Data (Big Data), 2021, pp. 1533–1540.

[15] G. E. Hinton and S. Roweis, “Stochastic neighbor embedding,” Advances
in neural information processing systems, vol. 15, 2002.

[16] Y. Zhu and K. M. Ting, “Improving the effectiveness and efficiency
of stochastic neighbour embedding with isolation kernel,” Journal of
Artificial Intelligence Research, vol. 71, pp. 667–695, 2021.

[17] M. R. Hajiaboli, M. O. Ahmad, and C. Wang, “An edge-adapting
laplacian kernel for nonlinear diffusion filters,” IEEE Transactions on
Image Processing, vol. 21, no. 4, pp. 1561–1572, 2011.

[18] S. Ali, B. Sahoo, M. A. Khan, A. Zelikovsky, I. U. Khan, and M. Patter-
son, “Efficient approximate kernel based spike sequence classification,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
2022.

[19] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp.
37–52, 1987.

[20] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms
and applications,” Neural networks, vol. 13, no. 4-5, pp. 411–430, 2000.

[21] J. Lee, D. Peluffo-Ordóñez, and M. Verleysen, “Multi-scale similarities
in stochastic neighbour embedding: Reducing dimensionality while
preserving both local and global structure,” Neurocomputing, vol. 169,
pp. 246–261, 2015.

[22] J. A. Lee, E. Renard, G. Bernard, P. Dupont, and M. Verleysen, “Type
1 and 2 mixtures of kullback–leibler divergences as cost functions in
dimensionality reduction based on similarity preservation,” Neurocom-
puting, vol. 112, pp. 92–108, 2013.

	I Introduction
	II Related Work
	III Proposed Approach
	III-A Numerical Embedding Generation
	III-B t-SNE computation pipeline
	III-B1 Kernel Functions
	III-B2 Solution Initialization
	III-B3 Gradient Descent

	IV Experimental Setup
	IV-A Dataset Statistics
	IV-A1 Circle Dataset
	IV-A2 Spike Sequence Dataset
	IV-A3 Host Dataset
	IV-A4 Short Read Dataset

	IV-B Evaluation Metrics

	V Results and Discussion
	VI Conclusion
	References

