2209.10361v1 [cs.Sl] 21 Sep 2022

arxXiv

MULBOT: Unsupervised Bot Detection
Based on Multivariate Time Series

Lorenzo Mannocci*T, Stefano Cresci*, Anna Monrealef, Athina Vakalit and Maurizio Tesconi*

* Institute for Informatics and Telematics, National Research Council (IITT-CNR), Pisa, Italy [name.surname @iit.cnr.it]
T Department of Computer Science, University of Pisa, Pisa, Italy anna.monreale @unipi.it, lorenzo.mannocci@phd.unipi.it
1 School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece avakali@csd.auth.gr

Abstract—Online social networks are actively involved in
the removal of malicious social bots due to their role in the
spread of low quality information. However, most of the existing
bot detectors are supervised classifiers incapable of capturing
the evolving behavior of sophisticated bots. Here we propose
MULBOT, an unsupervised bot detector based on multivariate
time series (MTS). For the first time, we exploit multidimensional
temporal features extracted from user timelines. We manage the
multidimensionality with an LSTM autoencoder, which projects
the MTS in a suitable latent space. Then, we perform a clustering
step on this encoded representation to identify dense groups of
very similar users — a known sign of automation. Finally, we
perform a binary classification task achieving fl-score = 0.99,
outperforming state-of-the-art methods (fl1-score < 0.97). Not
only does MULBOT achieve excellent results in the binary
classification task, but we also demonstrate its strengths in a novel
and practically-relevant task: detecting and separating different
botnets. In this multi-class classification task we achieve f1-score
= 0.96. We conclude by estimating the importance of the different
features used in our model and by evaluating MULBOT’s capa-
bility to generalize to new unseen bots, thus proposing a solution
to the generalization deficiencies of supervised bot detectors.

Index Terms—Dbot detection, multivariate time series, unsuper-
vised learning, social media

I. INTRODUCTION

Online Social Networks (OSN) have become pervasive in
our society and an ever greater source of information for
many people. Due to their strong impact, it is paramount
to address crucial issues such as disinformation, polarization
and hate speech. These concerns, also considered by the
European Union!, have a wide range of consequences, such
as threatening our democracies, polarising debates, and putting
the health, security, and environment of all the citizens at risk.
In this scenario, social bots play an important role, especially
in spreading misinformation [1], [2]. It was estimated that
between 9% and 17% of Twitter accounts are bots who
contribute on average between 16% and 56% of tweets [3],
[4]. On Facebook, bots were estimated to correspond to 11%
of all accounts [5]. To make matters worse, many different
types of bots exist with different characteristics, behaviors,
and aims. For example, fake followers are the simplest kind of
bots, exploited to increase the number of followers of a target
account, make an account more trustworthy and influential,
attracting genuine followers [6]. We can find more complex

Uhttps://digital-strategy.ec.europa.eu/en/policies/online-disinformation

behaviors in spambots, whose purpose is spreading (malicious)
content, increasing the visibility of some public characters, and
promoting a certain company’s product [7].

The wide presence of bots in OSNs brought to the appli-
cation of many machine learning models, mainly based on
supervised approaches. The most widely used supervised bot
detector is Botometer? [8], which is also extensively used to
label ground-truth datasets used to train other bot detectors [9].
However, the dependency of other detectors on Botometer,
which has been criticized as inaccurate [10], might propagate
existing flaws, instead of fixing them. On the other hand,
hand-labeling bot datasets does not appear to be a satisfactory
solution either, given the existing biases in human labeling and
the results showing that even the most experienced OSN users
struggle to spot the latest generation of bots [7].

Moreover, one of the main characteristics of bots is that
they evolve over time, changing their behavior to evade detec-
tion [7]. This is the reason why traditional detection methods
based on profile features [8], [11], text content [12]-[14],
social relationships or interaction graphs [15]-[17] and posting
patterns [18] become soon obsolete and new techniques must
be developed. There is a struggle between developers of
algorithms for bot detection and increasingly sophisticated
bots. The demonstration is that from 2017 onwards, there
has been an increase in bot detectors based on adversarial
approaches [19] as they are suitable for managing this type of
task. Novel and more sophisticated bots do not act anymore
individually, but as coordinated groups [5], forming botnets
to increase their impact [20], such as the Star Wars botnet
[21] or the Bursty botnet [22]. Supervised approaches classify
individual users, thus failing to recognize coordinated bots. So,
developers of bot detectors moved from supervised learning
towards unsupervised models that analyze groups of accounts
as a whole, rather than individual accounts, also solving the
labeling issue [5]. In this evolving scenario, tabular features
extracted from the user profile proved insufficient to identify
the new bots [5]. Indeed, considering the whole timeline of
posts of the users and the synchronicity between coordinated
users was shown to bring a deeper knowledge of the users’
past behavior [9], [23], [24].

Finally, different types of bots (e.g., spammers, fake fol-

Zhttps://botometer.osome.iu.edu

https://digital-strategy.ec.europa.eu/en/policies/online-disinformation
https://botometer.osome.iu.edu

lowers) have different behavioral characteristics. Therefore su-
pervised learning techniques suffer a decrease in performance
when trying to detect previously unseen behaviors (i.e., they
do not generalize well), as also demonstrated in [25]. The
Leave One Botnet Out (LOBO) test was recently proposed to
assess the generalization capabilities of bot detectors [26]. The
test involves iteratively re-training bot detectors by excluding
a specific botnet at each iteration and by evaluating the
effectiveness at detecting bots of the excluded botnet.

On the other hand, most unsupervised approaches rely
on textual content analysis, which is now unreliable due
to recent improvements in natural language generation [27],
[28]. Moreover, the few models based on temporal features,
which allow tracking the whole timeline of the users, typically
exploit just one dimension at a time [24], discarding relevant
information and overlooking much of the bots’ behavior.

A. Contributions

Given the reasons mentioned above, we propose MUL-
BOT, an unsupervised approach for bot detection based on
multivariate time series (MTS). The MTS represent temporal
information of the tweet’s timeline of the user. Then the
multidimensional nature is addressed with the use of an LSTM
autoencoder [29]. We exploit the autoencoder to compress
data, reducing the original dimensionality to a smaller latent
space. We choose an LSTM architecture since it is the most
appropriate architecture for sequential data [30]. Therefore,
the autoencoder encodes the MTS in a suitable latent space,
where we apply the appropriate clustering algorithm.

MULBOT makes several contributions with respect to the
state-of-the-art, as discussed in the following sections.

a) Unsupervised and Generalization: MULBOT is com-
pletely unsupervised, overcoming the evolving nature of bots,
the emergence of new types of bots and the consequent lack
of generalization, typical of supervised approaches. In order to
verify if MULBOT is a solution to the lack of generalization
of supervised approaches, we perform a test inspired by the
LOBO test [26]. We demonstrate that in a real scenario, where
new kinds of bots arrive over time, the model is robust and
can recognize these new ones.

b) Multivariate Time Series: MULBOT is the first
method in literature, to the best of our knowledge, based on
MTS. MTS allow us to consider multiple dimensions of the
users’ tweets, such as the number of daily replies, hashtags,
URLSs and more. Previous works of the state-of-the-art, based
on time series, only consider one aspect at a time, losing
important information regarding bots’ behavior.

¢) Multi-class Classification: MULBOT is the first un-
supervised method that addresses multi-class bot detection.
Actually, even within the supervised methods, only [31] and
[25] address this task. However, both works solve the task,
switching to a multiple binary classification problem. Here
instead, we can separate not only bots and genuine users
but also recognize different types of bots in a truly multi-
class classification task. The latter is a fundamental endeavor
because different types of bots have different nature, behaviors,

and aims. Recognizing the kind of bot is a fundamental step
in contrasting the activity of malicious bots in OSNs.

d) Results: We achieve fl-score = 0.99 in the traditional
binary classification task, overcoming state-of-the-art methods
that obtain fl1-score < 0.97. In the new multi-class classifi-
cation task we achieve fl-score = 0.96. In order to make a
comparison, we extend the unsupervised method by Ahmed
et al. [32] to the multi-class classification task, which obtains
f1-score = 0.62.

B. Organization

The rest of this paper is organized as follows. In Section
II, we critically discuss the current limits of supervised and
unsupervised approaches and the advancement in the state-of-
the-art with our approach. In Section III, we present the steps
of the proposed method, MULBOT. Section IV describes the
performed task, the experimental settings and the implemen-
tation of the method presented in Section III. In Section V,
we show the reached results for each task. Lately, Section VI
concludes the paper discussing possible future works.

II. RELATED WORKS

In this section, we survey and critically discuss different
approaches (mainly unsupervised) used in literature to perform
bot detection.

A. Supervised Approaches

We divide this section into two parts. The first one includes
classic supervised machine learning approaches. While the
second one presents recent deep learning methods based on
neural networks.

1) Classic Supervised Methods: There are several works
[8], [33]-[36] based on features extraction and classic machine
learning classifiers. The most famous supervised approach
is Botometer [8], which is often used as ground truth for
unsupervised methods. It exploits more than 1,200 features
and evaluates users based on their profile information, social
network, content, sentiment expressions and the timings of
their actions. However, the generality and ease of deployment
of this detector are counterbalanced by a reduced bot detection
accuracy [7], [37]. In [6], higher performance is reached
with a model specialized in a single type of bot, developing
a set of supervised machine learning classifiers to detect
fake followers, quite easy to identify with respect to other
more sophisticated bots. Attempting to address the evolving
nature of the bots, in [38] (2013) the authors developed a
supervised classifier designed for detecting evolving bots, but
yet in 2016, the proposed method was no longer successful
at spotting a new wave of malicious accounts [5]. In [31]
an attempt to solve the generalization issue is done. Inspired
by [25], it trains an ensemble classifier, where each classifier
is specialized in a type of bot. This solution only bypasses
the problem, reaching a fake generalization. Indeed, a new
classifier must be trained for each new type of bot, which
is not an optimal solution. However, with the very similar
[25], this is the only work where a multi-class classification

is addressed. Actually, in both works, the task is transformed
into a multiple binary classification problem through the use of
an ensemble classifier, where each internal detector classifies
between genuine users and a single type of bot. So, a real
multi-class classification is still not addressed.

2) Neural Network Methods: In recent years, new ap-
proaches based on neural networks have been proposed with
the increasing success of deep learning. In [39] a graph-
convolutional architecture is used to extract local latent fea-
tures and classify the graph based on the distribution of
these features. Also [40] is based on graph-convolutional net-
works and [41] is always a graph-based approach, proposing
a bot detector that adopts relational graph transformers to
leverage the topology and heterogeneity of the real-world
Twittersphere. Instead, [42] leverages long short-term memory
(LSTM) architecture, exploiting both content and metadata to
detect bots at the tweet level. The method tries to minimize
the number of features and the size of the training dataset
used for classification. Also [43] is based on text and LSTM
architecture, while [44] leverages generative adversarial net-
works. Finally, SATAR [45] is a self-supervised representation
learning framework for Twitter users, adapting by pre-training
on a massive number of self-supervised users and fine-tuning
on detailed bot detection scenarios.

B. Unsupervised Approaches

The possible unsupervised approaches can be several, based
on anomaly detection or graphs that try to extract connectivity
patterns of suspicious accounts or even on clustering.

1) Clustering and Anomaly Detection Methods: Within
works based on clustering, there are [46], [47] and [48]. The
latter is based on the fact that spammers do not have high
overall peer acceptability and that peers would not accept them
in the community. Firstly, they perform the clustering based on
user interest distribution, and then they do the spam detection
based on peer acceptance. [4] detects tweets containing URLSs
(likely produced by spambots), with a clustering algorithm to
find groups of accounts tweeting texts with high similarity.
This method’s main issue is using only text features in input.
In fact, it has been shown that bot detection based on text
features is not a promising approach. Just think of GPT-3 [27],
[28], which can generate a text with a so high quality that it
can be difficult to determine whether or not it is written by a
human.

We can find the same great limit of using text features in
[13]. This work proposes a model based on two stream clus-
tering algorithms. They address bot detection as an anomaly
detection task treating spambots as outliers, relying on a vector
of input features, including content, user information, and
tweet text. Among models based on anomaly detection also
fall [15] and [49]. The first one is a graph-based approach.
The drawback of the second one is that it is not a group-based
approach and exploits the behavioral profile of an account,
which depends only on its own actions.

Finally, BotWalk [9] is based on the fact that bots are
only about 8.5% of Twitter accounts. Therefore, it employs

an ensemble anomaly detection method comparing each user
to a seed-set of users (bot and normal users). The exploited
features can be divided into 4 categories: metadata-, content-,
temporal-, and network-based.

2) Time Series Based Methods: We reserve a section for
unsupervised methods leveraging temporal features, which are
fundamental for detecting novel sophisticated bots. Indeed,
the synchronicity of the actions carried on by bots can not
be bypassed by bots’ developers as there must be a common
purpose for the whole coordinated group of bots. So, DeBot
[14] works collecting tweets in real-time. It creates a time
series for each user, with a one-second sampling rate, where
zero value indicates no action and spikes represent the number
of actions in that specific second. It does not distinguish
different actions but sums up indiscriminately the number of
actions in each second. Then it clusters the users hierarchically
based on correlation matrix over the set of users. This work
is quite essential for our method, MULBOT, because it is
the unique case where proper time series are used even if
univariate.

Indeed, also in [23] univariate time series are exploited, but
with discrete values. It creates a sequence, the so-called DNA-
sequence, where each value corresponds to a user’s tweet. So
the chosen granularity is the tweet, and each sequence is a
succession of characters belonging to a predefined alphabet.
Each character represents an entity of the tweet (hashtag,
URL...). Finally, they apply an unsupervised approach based
on longest common substring, which compares different se-
quences (users). Those who share long behavioral patterns are
labeled as spambots, and users who share little similarities
are labeled as genuine. If a tweet contains multiple entities,
they are managed simply with tweet contains entities of mixed
types. This kind of choice implies a loss of information
regarding the tweet, dealing with a model that only exploits
one dimension at a time.

A similar limit can be found in RTbust [24], which con-
structs a univariate time series based only on retweets. Each
value represents the difference between the timestamp of the
retweet and a reference timestamp. Then the time series are
compressed with an LSTM variational autoencoder exploited
to compress the representation and reduce the length of the
time series, which all have different lengths, so to obtain a
vector of the same length. It uses HDBSCAN [50] to cluster
users, classifying noisy points as genuine users and clustered
ones as bots.

C. Advancement of the State-Of-The-Art

Starting from DeBot [14], DNA-sequence [23] and RTbust
[24], we can highlight the properties and the deficiencies
of the existing time series based model. A summary of the
analysis is reported in Table I, where we can observe that
none of them considers multiple features at the same time.
Indeed, it is true that DeBot considers different properties
with a sampling granularity of one second, but it sums up
the number of actions without considering their nature. Even
DNA-sequence considers different actions, but if there is more

TABLE I
COMPARISON OF THE METHODS SHARING SOME PROPERTIES WITH MULBOT.

model approach time series multiple fine-grained continuous samplmg MTS multi-
features values granularity class
DeBot [14] unsupervised v v X (sum actions) X 1 second X X
DNA - Sequence [23] unsupervised v v X (“mixed type”) X tweet X X
RTbust [24] unsupervised v X (retweet) v v retweet X X
Dimitriadis et al. [31] supervised X v v - - - v
MuLBoOT unsupervised v v v v 1 day v v

than one action per tweet (such as the presence of a mention
and an URL), it assigns a symbol that means “mixed type”.
Instead, RTbust exploits the timestamp of the retweets, yet not
considering other kinds of actions. Therefore, even if these
methods initially include multiple features, they actually have
a coarse-grained resolution in using features. We can conclude
that there is an important lack in the literature, which is the
use of temporal information representing the tweets’ history of
the users considering several features at the same time, such
as mentions, hashtags, URLs, replies and more. Finally, it is
also included Dimitriadis et al. [31], because it approaches the
multi-class classification even if it is a supervised approach
based on tabular features.

Therefore, MULBOT, based on temporal information, con-
siders the history of the user. Moreover, these multiple features
represented as MTS, capturing complex behaviors, are not
aggregated and are considered at a fine-grained level. The
unsupervised approach is a solution to the issue of the gen-
eralization of the supervised learning method. Finally, to the
best of our knowledge, it is the first unsupervised method also
designed for the multi-class task, namely the recognition of
the kind of bot.

III. METHOD

We propose MULBOT, an unsupervised approach based on
multivariate time series (MTS). As discussed in the earlier
sections, the MTS allow taking into account the temporal
information of the users, considering more than one feature at
a time. In Figure 1, we summarize the proposed framework.
Firstly, we extract from the tweets’ timeline of the users
several temporal information, aggregating them with daily
granularity. This allows us to capture complex behaviors of
the users and detect even sophisticated bots. Once extracted
the time series, we have to manage the multidimensionality of
the data. Hence, we train an autoencoder [29], whose encoder
maps the MTS into a latent space, where it is easier to perform
the last step, which is the clustering algorithm. The considered
latent space can have a vectorial dimensionality or can be
univariate time series, leaving unaltered the temporal dimen-
sion. There is also an optional step between the dimensionality
reduction of the autoencoder and the clustering algorithm. In
the case of mapping toward univariate time series, we can
extract global statistical features and perform the clustering
on this final data. In the following sections, we describe each
step of the method in detail.

A. Step 1: Multivariate Time Series Extraction

The first phase is the retrieval of information from the
history of each user’s tweets. We extract a set of multivariate
time series describing the evolution of specific features that
characterize the online user behavior. For each user, we
propose to extract temporal features describing tweets, such
as the number of URLs or hashtags in tweets aggregated by a
daily granularity. The chosen features have already been used
successfully in other forms in DNA-sequence [23] or Botwalk
[9]. Let N be the number of users, 7' the number of timestamps
of the time series and D the number of input features, the
final data shaped as multivariate time series are described by
a matrix N x T' x D. Being the chosen granularity the day, T’
is the number of considered days. For each user n =1... N,
for each timestamp ¢t = 1... T, for each input dimension (i.e.,
feature) d = 1... D, we define the MTS value as:

TW
no i TWR#£0
Fly = j; fias ‘7 (1)
-1, if TW =0

where f/", ; 1s the number of occurrences of the feature d
(e.g. number of hashtags) in the tweet j, for the user n, in the
day t. TW" is the number of tweets of the user n in the day .
When TW;* # 0 is the case in which there is at least a tweet
in the day ¢, for the user n. In the case in a certain day, there
are no tweets, which is a frequent situation, we assign the
special value -1 to each dimension. This setting is useful for
distinguishing this special case from the case in which there
is a day where the user has tweets but without, for example,
URLSs, mentions or hashtags. In this last case, a zero value is
assigned to the corresponding dimension.

B. Step 2: Dimensionality Reduction

Once we extracted the MTS, we have to face the issue of
the multidimensional nature of the data. Inspired by RTbust
[24], we train an autoencoder to use the encoder to reduce the
dimensionality of the time series, mapping the MTS towards
a suitable latent space. Since we are dealing with sequential
data, the choice for the neural network architecture falls
on an LSTM architecture [30]. The first possibility for the
dimensionality of the latent space is the univariate time series,
represented by a matrix N x T x 1. The second one is the
vectorial representation with a chosen latent dimension L, the

FEATURES EXTRACTION

[l [Te[[[#]

4

VECTORIAL
LATENT SPACE

[l T Te[T 1#]

TIME

Extract daily aggregated MTS values
for each user n, for each day t
and for each dimension d

LATENT
DIMENSION

DIMENSIONALITY REDUCTION
ENCODER _

N

Go to the latent space through an autoencoder.
It can be vectorial or a univariate time series

e GLOBAL FEATURES EXTRACTION

Au

OPTIONAL

o
Concatenate global features with
O LATENT - 1 vectorial features in output from the

encoder

If encoding is vectorial,
extract statistical
global features

!

CONCATENATE

i UNIVARIATE
" TIME SERIES
LATENT SPACE

[T 1]

N

i
e CLUSTERING
T
e Cluster encoded
TIME
‘ data with a density-
/7& based or hierarchical

clustering

Fig. 1. MULBOT framework, showing the representation of the extracted MTS, the dimensionality reduction step carried on with an autoencoder, the extraction
of statistical global features (optional) and finally the clustering algorithm execution.

encoded data have dimension N x L. The encoded data is
represented in step 2 of Figure 1.

C. Step 3-4: Global features and Concatenation (optional)

The third step is an optional phase of the method, and we
can execute it only if we map the input data to the univariate
time series latent space. Therefore, before the clustering step,
we can extract statistical global features® from the univariate
time series, obtaining tabular/vectorial data. Then, there is
a further optional step, the fourth one. We can apply the
clustering analysis to this tabular data, or we can concatenate
these tabular data with the vectorial data obtained by the
encoding of the MTS, using an autoencoder mapping to tabular
data.

D. Step 5: Clustering Analysis

In the fifth step, data are univariate time series or vectorial
features. If we map the data to the vectorial space, we can use
a classical clustering algorithm for tabular data. This includes
DBSCAN [51], agglomerative hierarchical clustering, HDB-
SCAN [50], K-Means [52], [53]. HDBSCAN, already used
in RTbust [24], is a mix between DBSCAN and hierarchical
clustering, which are, for this reason, the most promising
ones. These algorithms can also be used in case we map the
original data to univariate time series. Indeed, once a similarity
measure for MTS is defined, we get a matrix that can be used
as input for the above algorithms.

IV. EXPERIMENTS

In this section, we show the application of MULBOT to a
well-known dataset of the literature, the tasks performed, the
setting of the hyperaparameters and the chosen methods of the
state-of-the-art for the comparison of our results.

TABLE I
SUPPORT AND PERCENTAGE OF GENUINE USERS AND FOR EACH TYPE OF
CLASS OF BOTS.

class bot type support percentage
0 0 Genuine users 3,394 29%
1 Spambots 1 991 9%
2 Spambots 2 3,457 30%
3 Spambots 3 464 4%
4 Fake followers 3,202 28%
A. Tasks

As discussed in Section III, the MTS are encoded towards a
latent space, where it is possible to apply a suitable clustering
algorithm. Once the data are clustered, thanks to the use of a
labeled dataset, we can evaluate the results with the traditional
classification metrics. Therefore, we can perform a binary
and a multi-class classification in the final evaluation phase.
The binary one is a state-of-the-art task whose aim is the
recognition of bots from genuine users. However, here we also
address a novel and more difficult task, useful for a deeper
knowledge of bots’ behaviors. The multi-class classification
aims to divide genuine users from bots and also recognize
different kind of bots. This is essential in a scenario where each
kind of bots behaves in different ways, guided by different
purposes [3].

As already mentioned, even if the method is completely
unsupervised, with the use of a labeled dataset we can evaluate
the results with the traditional metrics used for classification.
Therefore, for the binary classification task, we report preci-
sion, recall, f1-score and accuracy (Table V). Here, the main
considered metric is accuracy, since it is reliable when working
with balanced datasets.

3An exhaustive list of the extracted features can be found:
https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html#
module-tsfresh.feature_extraction.feature_calculators

https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html#module-tsfresh.feature_extraction.feature_calculators
https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_extraction.html#module-tsfresh.feature_extraction.feature_calculators

TABLE III
HYPERPARAMETERS FOR THE AUTOENCODERS WITH UNIVARIATE TIME
SERIES AND VECORIAL LATENT SPACE.

autoencoder

univariate time .

parameter . vecorial
series

activation function tanh tanh
output activation function tanh tanh
optimizer rmsprop rmsprop
learning rate 0.5 0.0002
epochs 250 250
batch size training set size training set size
latent dimension (None, 2976, 1) 300

Instead, in the multi-class classification task (Table VI
and Table VII), we also consider the Matthews correlation
coefficient (MCC) [54], since our imbalanced dataset would
undermine the usefulness of the accuracy metric. As such,
for multi-class classification we mainly consider f1-score and
MCC.

B. Dataset

We apply MULBOT on a well-known Twitter dataset in
bot detection literature that is cresci-17, described in [7]. The
cresci-17 dataset includes genuine users and four kinds of bots:
spambots (three types) and fake followers. In Table II, we
report the support and the percentage in the dataset of genuine
users and each type of bot. Overall, the dataset contains 3,394
genuine users (29% of the total) and 8,144 bots (71%). The
large imbalance between bots and genuine users could pose
challenges for the binary classification task, reason for which
we balance the two classes. Instead, we keep the original
(imbalanced) dataset for the multi-class task, since balancing
each type of bots would result in discarding too much data.

Therefore, for the binary classification task, to compare our
approach with state-of-the-art methods mainly thought for just
one kind of bot, we use the cresci-17 dataset, just including
Spambots 1 and Genuine users. Moreover, we balance the
dataset with a random downsampling of the genuine users.
In this way, we create the best conditions for the state-of-the-
art methods for the fairest possible evaluation. Instead, in the
multi-class classification task, we use the whole dataset, as we
presented here.

C. Features

The dataset includes several user’s profile features and user
tweets’ features, but here we use just the most effective ones
according to previous works, such as DNA-sequence [23] or
Botwalk [9]. The features initially included in our experiments
are: a) num_urls: number of daily URLs b) num_hashtags:
number of daily hashtags c¢) num_mentions: number of daily
mentions d) retweet_count: number of daily retweets e) re-
ply_count: number of daily replies f) favorite_count: number
of daily favorites.

The chosen granularity is the daily aggregation, considering
that a finer granularity would have caused the presence of

TABLE IV
AUTOENCODERS STRUCTURE IN THE UNIVARIATE TIME SERIES ENCODING
AND IN THE VECTORIAL ONE.

layer type output shape

LSTM Univariate Time Series

InputLayer (None, 2976, 6)
LSTM (None, 2976, 1)
LSTM (None, 2976, 6)

LSTM Vectorial

InputLayer (None, 2976, 6)
LSTM (None, 2976, 1)
Flatten (None, 2976)
Dense (None, 300)
Dense (None, 2976)
Reshape (None, 2976, 1)
LSTM (None, 2976, 3)

many timestamps without tweets and a coarser one would have
implied the loss of too much information. Moreover, after
several preliminary trials with z-normalization and min-max
normalization, the extracted MTS are normalized with min-
max normalization, obtaining higher performance.

D. MULBOT Implementation

In MULBOT, it is required the implementation of the au-
toencoder and the choice of the suitable clustering algorithm.

The training of the autoencoders [29] is done with a hold-
out validation and the mean squared error as loss. The chosen
architecture for the neural network is the LSTM, more suitable
for time series [30]. Table III shows the chosen values of
the hyperparameters for the two autoencoders, one mapping
to the univariate time series latent space and the second
one to the vectorial encoding. The first column reports the
hyperparameters, while the corresponding values for the two
autoencoders are reported in the second and the third columns.
In table IV, the architecture of the two autoencoders is shown,
describing the type of layer and the corresponding output
dimension.

Concerning the clustering algorithm, we use for the binary
classification task the Agglomerative Hierarchical algorithm
with type of linkage = Ward*. Instead, for the multi-class
classification, best results are obtained using a density-based
clustering, namely DBSCAN [51]. DBSCAN can cluster data
and label specific points as noisy points®. From the experi-
ments, we observe that bots are clustered together, showing
more similar behaviors with respect to genuine users, who
have different behaviors. As a consequence, DBSCAN tends
to consider genuine users as noisy points, unable to find a
common pattern among them. This result confirms the findings
presented in [56], where it is shown that human accounts have
more heterogeneous behaviors than automated ones. Given the
discovered clusters, the first interpretation we can derive from

“https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
AgglomerativeClustering.html

SDBSCAN parameters are chosen based on the distribution of distances
between points, by following the widely-used method proposed in [55]

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html

TABLE V
RESULTS FOR THE BINARY CLASSIFICATION TASK. IN THE TOP PART, STATE-OF-THE-ART METHODS; IN THE BOTTOM PART, VARIANTS OF MULBOT.
BEST RESULTS IN EACH EVALUATION METRIC ARE SHOWN IN BOLD.

evaluation metrics

methods type precision recall fl-score accuracy
State-of-the-art

DNA - Sequence [23] unsupervised 0982 0972 0.977 0.976
DNA - Sequence [23] supervised 0982 0.977 0.977 0.977
Yang et al. [38] supervised 0.563 0.170 0.261 0.506
Miller et al. [13] unsupervised 0.555 0.358 0.435 0.526
Ahmed_MC unsupervised 0.704 0.699 0.619 0.698
Ahmed_DBSCAN unsupervised 0.930 0.930 0.930 0.928
MULBOT best variants

UTS_DBSCAN unsupervised 0.855 0.855 0.855 0.852
UTS_Hier unsupervised 0935 0.930 0.925 0.928
Vec_Hier unsupervised 0.985 0.985 0.990 0.986
Glob_Hier unsupervised 0.995 0.995 0.990 0.993
Glob_Vec_Hier unsupervised 0.995 0.995 0.990 0.992

the results is to consider all noisy points as genuine users and
all the others as bots. In this case, we are simply solving
a binary classification of each user. The use of a labeled
dataset enables a more sophisticated inference about the type
of bots represented in any discovered cluster, performing the
multi-class classification task. Let L = ¢,by,...,b; be the
set of labels associated with the users, where g is used to
identify genuine users and b; represents a particular type of
bot. Given the clustering result composed of a set of clusters
Cy,C1,Cs, ..., Cy, where Cy represents the group of points
labeled as noisy points and C7,C5,...,Cn all the other
extracted clusters, we identify the users in Cj as genuine while
the users in each C; as bots of type b;, if this label is the most
frequent in the cluster C;.

Lastly, we can optionally extract global statistical features
with an automatic extraction process thanks to an existing
package®, from the encoded univariate time series.

E. Comparisons

For the binary classification, we compare MULBOT against
other methods of the literature, both unsupervised and super-
vised ones. Namely, we apply the DNA-Sequence [23] both
in the unsupervised and supervised approach, Yang et al. [38],
Miller et al. [13] and Ahmed et al. [32]. However, this last
method expects to use the Markov Clustering, which reaches
low performance in all the metrics. Therefore, we replace the
Markov Clustering with DBSCAN clustering, increasing the
effectiveness of the method.

In the multi-class classification, to the best of our knowl-
edge, there is a lack of methods with which to compare
[31]. Therefore, we adapt Ahmed et al. [32], implementing it
also for the multi-class classification (always using DBSCAN
instead of Markov Clustering). The choice of this method
for this task is because it is easily extendable to the multi-
class classification task, contrary to most of the methods in
literature. We do not implement [25] or [31], both for the high

Shttps://tsfresh.readthedocs.io/en/latest/index.html

number of features (more than 1,200 in the first work and
about 400 in the second one) and for the type of approach
used: multiple binary classification tasks instead of a single
multi-class task as in our work.

V. RESULTS

In this section, we report the results of the tasks and
experiments already presented.

A. Binary Classification

In Table V, we report the results for the binary classification
task. In the first part of the table, we present the results of
the state-of-the-art methods introduced in Section IV-E. In the
second part, we report the best variants of our approach. The
following tags for the variants of MULBOT and Ahmed et al.
[32] are used:

« UTS_DBSCAN: Encoding to univariate time series and
DBSCAN as clustering algorithm;

o UTS_Hier: Encoding to univariate time series and Ag-
glomerative Hierarchical clustering algorithm, linkage =
Ward,

o Vec_Hier: Encoding to vectorial features and Agglomera-
tive Hierarchical clustering algorithm, linkage = Ward,

o Glob_Hier: Encoding to univariate time series, from
which global features are extracted. On these global
features it is performed the Agglomerative Hierarchical
clustering algorithm, linkage = Ward;

o Glob_Vec_Hier: Encoding to uniavriate times features,
from which global features are extracted. These global
features are concatenated with the vectorial ones obtained
from the corresponding encoding. On this final concate-
nated data it is performed the Agglomerative Hierarchical
clustering algorithm, linkage = Ward;

o Ahmed_MC: Implementation of Ahmed et al. with
Markov Clustering according to the original method;

« Ahmed_DBSCAN: Implementation of Ahmed et al. with
DBSCAN to increase the performance.

https://tsfresh.readthedocs.io/en/latest/index.html

TABLE VI
WEIGHTED PERFORMANCE OF MULBOT AND AHMED_DBSCAN FOR
MULTI-CLASS CLASSIFICATION.

evaluation metrics

method precision recall fl-score MCC accuracy

MuLBoT 0.966 0.959 0.963 0.949 0.966

Ahmed_DBSCAN 0.704 0.699 0.618 0.647 0.698
TABLE VII

RESULTS OF MULBOT FOR MULTI-CLASS CLASSIFICATION WITH INPUT
FEATURES retweet_count, reply_count, favorite_count, num_mentions, SO
EXCLUDING num_urls AND num_hashtags.

evaluation metrics

class support precision recall fl-score accuracy
0 3,394 0.90 0.99 0.94
1 991 0.99 0.85 0.92
2 3,457 1.00 0.98 0.99 0.9624
3 464 1.00 0.82 0.90
4 3,202 0.99 0.96 0.98

With Glob_Hier variant, we reach the highest accuracy of
0.993. The last row of Table V reports the most complex case,
in which the global features are concatenated with the vectorial
encoding. However, there are no improvements to justify the
use of this more complex variant. MULBOT outperforms all
the state-of-the-art approaches, both unsupervised and super-
vised.

B. Multi-class Classification

This section reports the results of the innovative task
of multi-class classification in bot detection. We reach the
best performance for the multi-class classification using an
LSTM architecture encoding to univariate time series. More-
over the best combination of features in input includes
retweet_count, reply_count, favorite_count, num_mentions, so
excluding num_urls and num_hashtags. In Table VI the
weighted performance of the two methods is reported. We can
observe that MULBOT reaches markedly higher results both
in accuracy and in fl-score with respect to Ahmed et al. [32].
Even if the used dataset is imbalanced, we can fairly evaluate
the results by looking at the MCC (0.949), which is the most
robust measure with respect to all the other ones. However,
even including all the 6 features presented in Section IV-C,
the method reaches 0.95 of fl-score. In Table VII, we report
the results of MULBOT for each class, always with the best
combination of features in input. For the corresponding class
id, refer to Table II.

The method reaches a precision almost equal to one for all
the bots. We can better observe it also from the confusion
matrix reported in Figure 2. The colors of the cells are based
on the normalized confusion matrix on a scale [0, 1]. Instead,
the values in the cells are the absolute values of the confusion
matrix. Almost all the genuine users are correctly classified
(row one of the confusion matrix). This means that the model
does not wrongly classify genuine users as bots. This is an

Genuine users
0.8
Spambots 1
0.6

Spambots 2

True Label
Scale

-04
Spambots 3
-0.2

Fake followers

-0.0

Genuine users Spambots 1 Spambots 2 Spambots 3 Fake followers
Predicted Label

Fig. 2. Confusion matrix of the results of MULBOT for multi-class
classification with input features retweet_count, reply_count, favorite_count,
num_mentions, so excluding num_urls and num_hashtags. The colors of the
cells are based on the normalized confusion matrix, while the values in the
cells are the real absolute values.

favorite_count 1

reply_count 0952

retweet_count 0578

num_urls 0.148

num_hashtags 170.032

Input features

num_mentiens 10
00 0.2 04 06 08 10
Feature importance

Fig. 3. Feature importance for the 6 features included in MULBOT.

important result, meaning that in a real scenario, MULBOT is
careful not to “ban” genuine Twitter accounts. Instead, bots
are more likely to be wrongly classified as genuine users (first
column of the confusion matrix). Indeed, precision is 0.90 for
Genuine users and the recall for Spambots I and Spambots 3
is respectively 0.85 and 0.82. The method performs well with
Fake followers, which are one of the most simple existing bots,
but also with Spambots 2, reaching respectively an fl-score of
0.98 and 0.99.

C. Feature Importance

This section explores the feature importance of the 6 fea-
tures included in MULBOT. Insjpired by [6], we compute a
score for each feature i as S; = <=, where f_; is the fl-score
obtained by MULBOT, excluding the feature ¢ in input and f
is the fl-score reached by the method with all the 6 features in
input. The scores are then normalized and reported in Figure
3. The features favorite_count and reply_count result the
most important ones. Instead, num_mentions, num_hashtags,
num_urls have almost zero importance. These features are
extracted from the tweets’ content, validating that text features
are not so important in bot detection tasks.

D. Generalization of MULBOT: LOBO Test

In this section, we demonstrate how MULBOT can gen-
eralize previously unseen bots, overcoming one of the main
issues of supervised approaches. With this aim, we perform the
LOBO test [26]. In the original work, LOBO test evaluates if

TABLE VIII
PERCENTAGE CHANGE OF WEIGHTED F1-SCORE FOR EACH LOBO TEST
INSTANCE (ONE CLASS REMOVED FROM THE TRAINING OF THE
AUTOENCODER AT A TIME).

evaluation metrics

excluded class accuracy percentage change

class 1 0.9577 -0.66%
class 2 0.9496 -1.39%
class 3 0.9611 -0.09%
class 4 0.9565 -0.78%

a classifier can detect a bot class, training it only with other
bot classes. Inspired by LOBO test, for each kind of bot b;
in the dataset, we remove the b; class before the training of
the autoencoder. Then we use the trained encoder to encode
also the removed class b;. In Table VIII, we report for each
experiment (one bot class removed at a time), the percentage
change in the weighted fl-score, computed with respect to
the MULBOT base case that is the one reported in Table VI.
We can observe just small decreases in weighed fl-score.
Therefore, our method is robust to the arrival of new types
of bots and does not lack generalization, unlike supervised
methods. In a real scenario, it means that the unsupervised
approach continues working well, even with the arrival on
the OSN of new bots with different behaviors. However, we
must observe that in case of a high drop in performance, the
autoencoder can be easily re-trained. Indeed, thanks to the fact
that the whole method is completely unsupervised, there is no
need to label the new kinds of bots, which is the main obstacle
for the supervised approaches to keep up with the evolutionary
nature of the bots.

E. Results Significance

MULBOT is a group-based approach, being able to recog-
nize new sophisticated bots. The complete unsupervised nature
of the method allows reactivity to the evolving nature of the
bots. Moreover, the use of MTS is effective since it reaches
excellent results both in binary and multi-class scenarios. This
highlights how important it is the use of temporal information
in the bot detection task, taking into account the whole user’s
timeline. The feature importance analysis confirmed the low
importance of features extracted from the text, giving more
importance to actions performed by other users, such as
replies. Including a higher number of features in the model
would allow an analysis of the features importance of a wide
range of information in the bot detection task. Finally, as
anticipated in Section I-A, the developed method can reach
high performance even with previously unseen bots. Therefore,
it can be a solution to the issue of the generalization, typical
of supervised learning approaches.

VI. CONCLUSION

We proposed an unsupervised method for bot detection to
address the issues of the supervised ones. We also exploited
temporal features, using multivariate time series for the first

time in bot detection. We exceeded the results of the state-
of-the-art methods in the binary classification task, reaching
an fl-score of 0.99. We addressed for the first time a multi-
classification task, achieving high results in a complex scenario
where another method of the literature failed. We conducted
several experiments to find the best combination of features
in input, evaluating their importance and impact on the per-
formance. Finally, we proposed the LOBO test as proxy for
the generalization, showing how the proposed method can
generalize to bots never seen before.

In future works, we would like to extend to multi-class
classification other state-of-the-art methods to have more com-
parisons. We used standard features in input, but we can do
a more complex features engineering, increasing the features
in input and capturing more complex bots’ behaviors. For
example, it would be important to insert features such as the
time gap between a tweet and the previous one. Moreover,
being the method based on clustering, the insertion of new
features could imply issues with the curse of dimensionality.
Further experiments include different possibilities for the time
granularity of the aggregation. The daily granularity is the
most balanced in terms of MTS’s length and sparsity of values.
However, we could test an hourly or weekly granularity to
observe the effects in the results. Finally, we could reach
greater certainty of the method’s effectiveness by testing it
with different datasets of the literature.

REFERENCES

[1] C. Shao, G. L. Ciampaglia, O. Varol, K.-C. Yang, A. Flammini, and
F. Menczer, “The spread of low-credibility content by social bots,”
Nature Communications, vol. 9, no. 1, 2018.

[2] M. Stella, E. Ferrara, and M. D. Domenico, “Bots increase exposure to
negative and inflammatory content in online social systems,” PNAS, vol.
115, no. 49, 2018.

[3] O. Varol, E. Ferrara, C. A. Davis, F. Menczer, and A. Flammini, “Online
human-bot interactions: Detection, estimation, and characterization,” in
ICWSM. AAAI Press, 2017.

[4] Z.Chen and D. Subramanian, “An unsupervised approach to detect spam
campaigns that use botnets on twitter,” 2018.

[51 S. Cresci, “A decade of social bot detection,” Communications of the
ACM, vol. 63, no. 10, 2020.

[6] S. Cresci, R. D. Pietro, M. Petrocchi, A. Spognardi, and M. Tesconi,
“Fame for sale: Efficient detection of fake twitter followers,” Decis.
Support Syst., vol. 80, 2015.

[7] , “The paradigm-shift of social spambots: Evidence, theories, and
tools for the arms race,” in WWW. ACM, 2017.

[8] C. A. Davis, O. Varol, E. Ferrara, A. Flammini, and F. Menczer,
“BotOrNot: A system to evaluate social bots,” in WWW (Companion
Volume). ACM, 2016.

[9] A. J. Minnich, N. Chavoshi, D. Koutra, and A. Mueen, “Botwalk:

Efficient adaptive exploration of Twitter bot networks,” in ASONAM.

ACM, 2017.

A. Rauchfleisch and J. Kaiser, “The false positive problem of automatic

bot detection in social science research,” PLoS One, vol. 15, no. 10,

2020.

C. Kater and R. Jdschke, “You shall not pass: detecting malicious users

at registration time,” in Proceedings of the Ist International Workshop

on Online Safety, Trust and Fraud Prevention, 2016.

S. Lee and J. Kim, “Early filtering of ephemeral malicious accounts on

twitter,” Computer Communications, vol. 54, 2014.

Z. Miller, B. Dickinson, W. Deitrick, W. Hu, and A. H. Wang, “Twitter

spammer detection using data stream clustering,” Inf. Sci., vol. 260,

2014.

N. Chavoshi, H. Hamooni, and A. Mueen, ‘“Debot: Twitter bot detection

via warped correlation,” in ICDM. 1EEE Computer Society, 2016.

[10]

(11]

[12]

[13]

[14]

[15]

[16]
(17]
[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

M. Jiang, P. Cui, A. Beutel, C. Faloutsos, and S. Yang, “Catching
synchronized behaviors in large networks: A graph mining approach,”
TKDD, vol. 10, no. 4, 2016.

——, “Inferring lockstep behavior from connectivity pattern in large
graphs,” KAIS, vol. 48, no. 2, 2016.

S. Liu, B. Hooi, and C. Faloutsos, “Holoscope: Topology-and-spike
aware fraud detection,” in CIKM. ACM, 2017.

G. Stringhini, C. Kruegel, and G. Vigna, “Detecting spammers on social
networks,” in ACSAC, 2010, pp. 1-9.

S. Cresci, M. Petrocchi, A. Spognardi, and S. Tognazzi, “Better safe
than sorry: an adversarial approach to improve social bot detection,” in
WebSci, 2019.

J. Zhang, R. Zhang, Y. Zhang, and G. Yan, “The rise of social bot-
nets: Attacks and countermeasures,” Trans. Dependable Secur. Comput.,
vol. 15, no. 6, 2018.

J. Echeverria and S. Zhou, “Discovery, retrieval, and analysis of the’star
wars’ botnet in twitter,” in ASONAM. ACM, 2017.

J. Echeverria, C. Besel, and S. Zhou, “Discovery of the twitter bursty
botnet,” in Data Science for Cyber-Security. World Scientific, 2019.
S. Cresci, R. D. Pietro, M. Petrocchi, A. Spognardi, and M. Tesconi, “So-
cial fingerprinting: Detection of spambot groups through DNA-Inspired
behavioral modeling,” Trans. Dependable Secur. Comput., vol. 15, no. 4,
2018.

M. Mazza, S. Cresci, M. Avvenuti, W. Quattrociocchi, and M. Tesconi,
“RTbust: Exploiting temporal patterns for botnet detection on Twitter,”
in WebSci. ACM, 2019.

M. Sayyadiharikandeh, O. Varol, K. Yang, A. Flammini, and F. Menczer,
“Detection of novel social bots by ensembles of specialized classifiers,”
in CIKM. ACM, 2020.

J. Echeverria, E. D. Cristofaro, N. Kourtellis, I. Leontiadis, G. Stringhini,
and S. Zhou, “LOBO: evaluation of generalization deficiencies in Twitter
bot classifiers,” in ACSAC. ACM, 2018.

T. Brown et al., “Language models are few-shot learners,” in NEURIPS,
vol. 33. Curran Associates, Inc., 2020.

T. Fagni, F. Falchi, M. Gambini, A. Martella, and M. Tesconi, “Tweep-
fake: About detecting deepfake tweets,” PloS one, vol. 16, no. 5, 2021.
G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, 2006.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, 1997.

1. Dimitriadis, K. Georgiou, and A. Vakali, “Social botomics: A system-
atic ensemble ml approach for explainable and multi-class bot detection,”
Applied Sciences, vol. 11, no. 21, 2021.

F. Ahmed and M. Abulaish, “A generic statistical approach for spam
detection in online social networks,” Comput. Commun., vol. 36, no.
10-11, 2013.

K.-C. Yang, O. Varol, P-M. Hui, and F. Menczer, “Scalable and
generalizable social bot detection through data selection,” in Proceedings
of the AAAI conference on artificial intelligence, vol. 34, no. 01, 2020.
D. M. Beskow and K. M. Carley, “Using random string classification
to filter and annotate automated accounts,” in SBP-BRiMS. Springer,
2018.

——, “Bot-hunter: a tiered approach to detecting & characterizing
automated activity on twitter,” in SBP-BRiMS, vol. 3, 2018.

——, “Bot conversations are different: leveraging network metrics for
bot detection in twitter,” in ASONAM. ACM, 2018.

C. Grimme, D. Assenmacher, and L. Adam, “Changing perspectives:
Is it sufficient to detect social bots?” in SCSM, vol. 10913. Springer,
2018.

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

[56]

C. Yang, R. C. Harkreader, and G. Gu, “Empirical evaluation and new
design for fighting evolving Twitter spammers,” Trans. Inf. Forensics
Secur., vol. 8, no. 8, 2013.

T. Magelinski, D. Beskow, and K. M. Carley, “Graph-hist: Graph classi-
fication from latent feature histograms with application to bot detection,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 04, 2020.

S. Ali Alhosseini, R. Bin Tareaf, P. Najafi, and C. Meinel, “Detect me
if you can: Spam bot detection using inductive representation learning,”
in Companion Proceedings of The 2019 World Wide Web Conference,
2019, pp. 148-153.

S. Feng, Z. Tan, R. Li, and M. Luo, “Heterogeneity-aware twitter bot
detection with relational graph transformers,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 36, no. 4, 2022.
S. Kudugunta and E. Ferrara, “Deep neural networks for bot detection,”

Information Sciences, vol. 467, 2018.

F. Wei and U. T. Nguyen, “Twitter bot detection using bidirectional long
short-term memory neural networks and word embeddings,” in TPS-ISA.
IEEE, 2019.

G. Stanton and A. A. Irissappane, “Gans for semi-supervised opinion
spam detection,” arXiv, 2019.

S. Feng, H. Wan, N. Wang, J. Li, and M. Luo, “Satar: A self-supervised
approach to twitter account representation learning and its application
in bot detection,” in CIKM. ACM, 2021.

M. C. Benigni, K. Joseph, and K. M. Carley, “Online extremism and the
communities that sustain it: Detecting the isis supporting community on
twitter,” PloS one, vol. 12, no. 12, 2017.

W. Wu, J. Alvarez, C. Liu, and H.-M. Sun, “Bot detection using
unsupervised machine learning,” Microsystem Technologies, vol. 24,
no. 1, 2018.

D. Koggalahewa, Y. Xu, and E. Foo, “An unsupervised method for social
network spammer detection based on user information interests,” J. Big
Data, vol. 9, no. 1, 2022.

X. Ruan, Z. Wu, H. Wang, and S. Jajodia, “Profiling online social
behaviors for compromised account detection,” Trans. Inf. Forensics
Secur., vol. 11, no. 1, 2016.

L. Mclnnes, J. Healy, and S. Astels, “HDBSCAN: Hierarchical density
based clustering,” J. Open Source Softw., vol. 2, no. 11, 2017.

M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in KDD.
AAAI Press, 1996.

J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, vol. 1, no. 14, 1967.
S. Lloyd, “Least squares quantization in pcm,” Transactions on infor-
mation theory, vol. 28, no. 2, 1982.

D. Chicco and G. Jurman, “The advantages of the matthews correlation
coefficient (mcc) over fl score and accuracy in binary classification
evaluation,” BMC genomics, vol. 21, no. 1, 2020.

N. Rahmah and I. S. Sitanggang, “Determination of optimal epsilon
(eps) value on dbscan algorithm to clustering data on peatland hotspots
in sumatra,” in IOP conference series: earth and environmental science,
vol. 31, no. 1. IOP Publishing, 2016.

S. Cresci, R. D. Pietro, M. Petrocchi, A. Spognardi, and M. Tesconi,
“Emergent properties, models, and laws of behavioral similarities within
groups of twitter users,” Comput. Commun., vol. 150, 2020.

	I Introduction
	I-A Contributions
	I-B Organization

	II Related Works
	II-A Supervised Approaches
	II-A1 Classic Supervised Methods
	II-A2 Neural Network Methods

	II-B Unsupervised Approaches
	II-B1 Clustering and Anomaly Detection Methods
	II-B2 Time Series Based Methods

	II-C Advancement of the State-Of-The-Art

	III Method
	III-A Step 1: Multivariate Time Series Extraction
	III-B Step 2: Dimensionality Reduction
	III-C Step 3-4: Global features and Concatenation (optional)
	III-D Step 5: Clustering Analysis

	IV Experiments
	IV-A Tasks
	IV-B Dataset
	IV-C Features
	IV-D MulBot Implementation
	IV-E Comparisons

	V Results
	V-A Binary Classification
	V-B Multi-class Classification
	V-C Feature Importance
	V-D Generalization of MulBot: LOBO Test
	V-E Results Significance

	VI Conclusion
	References

