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Abstract—Fairness has been taken as a critical metric in
machine learning models, which is considered as an important
component of trustworthy machine learning. In this paper, we
focus on obtaining fairness for popular link prediction tasks,
which are measured by dyadic fairness. A novel pre-processing
methodology is proposed to establish dyadic fairness through
data repairing based on optimal transport theory. With the well-
established theoretical connection between the dyadic fairness for
graph link prediction and a conditional distribution alignment
problem, the dyadic repairing scheme can be equivalently trans-
formed into a conditional distribution alignment problem. Fur-
thermore, an optimal transport-based dyadic fairness algorithm
called DyadicOT is obtained by efficiently solving the alignment
problem, satisfying flexibility and unambiguity requirements.
The proposed DyadicOT algorithm shows superior results in
obtaining fairness compared to other fairness methods on two
benchmark graph datasets.

Index Terms—Optimal Transport, Dyadic Fairness, Link Pre-
diction

I. INTRODUCTION

Machine learning has been widely adopted in real-world
applications. Although remarkable results were achieved in
the prediction and decision-making scenarios, unexpected bias
occurs regularly [19]–[21]. For example, the famous new
media company ProPublica found that black defendants were
far more likely than white defendants to be incorrectly judged
as having a higher risk of recidivism in the COMPAS system
[24]. The Amazon company found that the AI hiring tool they
developed to automate the hiring process is biased against
women [26]. Many works emerge to design algorithms to
avoid such biases and aim to obtain fair machine learning
models.

This work focuses on achieving fairness in link prediction
tasks. The link prediction task is a fundamental but essential
problem in modern machine learning applications, not limited
to recommendation systems and knowledge graph completion.
The main goal is to predict whether the link between two
nodes exists in a graph. Many existing popular algorithms,
e.g., Node2Vec [16] and GCN [15], have been proposed
to solve the link prediction task with superior performance
in many scenarios. However, the dataset collected for the
model training procedure usually has various unexpected bi-
ases. This will lead to unfair results for the link prediction
model obtained. For instance, after collecting data from social
media platforms, early works highlighted that users were more
interested in conversing with others of the same race and
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gender [28]. Link prediction models, trained based on such
unfair data, will also tend to predict the existence of links
between nodes with the same sensitive information. This will
unfairly disadvantage some users. To formally define such an
unfair phenomenon, [3], [4] introduced dyadic fairness for link
prediction of graphs. The dyadic fairness criterion expects the
prediction results to be independent of the sensitive attributes
from the given two nodes.

Recently, several works have been proposed to achieve
dyadic fairness in link prediction tasks, which can be roughly
divided into three categories: 1) in-processing scheme [4]
considers modifying the learning algorithm to eliminate bias;
2) post-processing scheme [3] attempts to debias directly the
model’s output after training; 3) pre-processing scheme [2]
aims to repair the graph data before the training procedure, and
ensures the link prediction results can satisfy dyadic fairness.
In this paper, our proposed method is established under the
pre-processing scheme. Compared to the in-processing and
post-processing schemes, the pre-processing scheme should
be the most flexible fairness intervention [27]. Suppose the
discriminating information is removed from the data during
the pre-processing stage, the processed data could be utilized
to solve arbitrary downstream tasks without concern about
the fairness issue. Few works have studied obtaining dyadic
fairness through a pre-processing scheme. FairDrop [2] pro-
posed a heuristic repairing method that can mask out edges
based on the dyadic sensitive attributes. It is easy to implement
but without a theoretical guarantee of achieving fairness. To
design a theoretically sound pre-processing scheme, FairEdge
[5] firstly adopts the Optimal Transport (OT) theory [13]
to justify whether dyadic fairness can be obtained through
a repairing scheme. FairEdge focuses on the plain graph
(the node has no attribute) and proposes to repair adjacency
information distributions (conditioned on sensitive attribute)
to the corresponding Wasserstein barycenter. Dyadic fairness
is obtained once the adjacency information distributions are
all repaired as the obtained Wasserstein barycenter. Unlike the
previous approach, we expect to focus on attributed graphs
(each node has attributes) that are more general in the real
world. Because node attributes introduce bias even if the bias
of adjacency information can be removed, those algorithms
that simply consider plain graphs cannot solve this problem,
and the achievement of dyadic fairness on attributed graphs is
still underexploited.
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II. RELATED WORKS

A. Fairness in Link Prediction

Link prediction is a well-researched problem in applications
related to graph data [22], [23]. Since fairness in graph-
structured data is a relatively new research topic, only a few
works have investigated fairness issues in link prediction.
In [2], the authors proposed a biased dropout strategy that
forces the graph topology to reduce the homophily of sensitive
attributes. Meanwhile, to measure the improvements for the
link prediction, they also defined a novel group-based fairness
metric on dyadic level groups. In contrast, [3] considered
generating more heterogeneous links to alleviate the filter
bubble problem. In addition, they further presented a novel
framework that combines adversarial network representation
learning with supervised link prediction. Following the idea of
adversarially removing unfair effects, [4] proposes the algo-
rithm FairAdj to empirically learn a fair adjacency matrix with
proper graph structural constraints for fair link prediction to
ensure predictive accuracy as much as possible simultaneously.
Most similar to our method, [5] formulated the problem of fair
edge prediction and proposed an embedding-agnostic repairing
procedure for the adjacency matrix with a trade-off between
group and individual fairness. However, they still ignore the
node attributes, which impact both the prediction and fairness
performance.

B. Fairness with Optimal Transport

In the context of ML fairness, several works have proposed
using the capacity of optimal transport to align probability dis-
tributions, overcoming the limitation of most approaches that
approximate fairness by imposing constraints on the lower-
order moments. Along with this motivation, most of the exist-
ing methods consider using optimal transport theory to match
distributions corresponding to different sensitive attributes in
the model input space or the model output space, which
corresponds to pre-processing [5]–[7] and post-processing [8],
[10] methods, respectively. In addition, the in-processing [8],
[11] methods based on optimal transport achieve fairness by
imposing constraints in terms of the Wasserstein distance in
the objective function.

III. DYADIC FAIRNESS IN LINK PREDICTION

In this section, we formulate dyadic fairness in the link
prediction task and define two metrics (dyadic disparate impact
and dyadic balanced error rate) to quantify dyadic fairness.
Then we conclude two desired properties for our repairing
algorithm that try to obtain dyadic fairness, i.e., flexibility
and unambiguity. We further theoretically discuss how these
properties can be achieved and prove that aligning conditional
attribute and adjacency distributions to the same distribution
can obtain dyadic fairness with these properties.

A. Problem Formulation

Given the graph G := (V, E) with V := {v1, . . . , vN}
be the node set of the graph and E := {e1, . . . , eN} be
the edge set of the graph. Each node vi be endowed with

a vector xi ∈ RM of attributes. Each edge ei is the ith row
of a non-negative adjacency matrix A ∈ {0, 1}N×N which
summarizes the connectivity in the graph. If nodes vi and vj
are connected, then Aij = 1; otherwise, Aij = 0. The link
prediction model usually identifies whether the link between
two nodes (i, j) exists based on their node representations,
i.e., g : zi × zj 7→ {0, 1} where the zi denotes the node i’s
representation. The zi is usually obtained by random walk or
graph convolution on the whole graph: zi = f(G)[i] where
the f : G 7→ RN×d is called the embedding function. The d
is the dimension of the node representation, and the f can
be Node2Vec, GCN, GAT, etc. The link predictor g takes
two nodes’ representations with the node representations and
directly outputs whether a link exists between them. To study
the fairness of link prediction tasks, we assume that all nodes
have one sensitive feature S : V → S . We also take the
binary sensitive feature S = {0, 1} first and let S(i) denote the
sensitive feature of node i. The binary sensitive feature will
be relaxed later. Before proposing our algorithm, we make the
following two assumptions:
1). Equivalence assumption

P (S ⊕ S′ = 1) = P (S ⊕ S′ = 0) =
1

2
,

which is based on the fact that each node has the same chance
of being sampled regardless of its sensitive attribute value.
For instance, P(S = man) = P(S = woman) is always an
equivalence relationship independent of the sampling process
and the obtained graph data itself;
2). Propensity assumption

P
(
g(zu, zv) = 1

∣∣S(u)⊕ S(v) = 0
)

≥ P
(
g(zu, zv) = 1

∣∣S(u)⊕ S(v) = 1
)
,

which illustrates that the classifier we consider here will tend
to predict the existence of links between nodes with the same
sensitive attributes.

For link prediction problems, the main unfairness phe-
nomenon is assigning high link probability to nodes with the
same sensitive feature while assigning low probability to nodes
with different sensitive features. For example, a user may be
treated unfairly on social platforms because they are rarely
recommended to users of a different gender or race. This
unfairness can be defined mathematically as in [4].

Definition 1 (Dyadic Fairness): A link predictor g obtains
dyadic fairness if for node representation zi and zj

P
(
g(zi, zj)

∣∣S(i)⊕ S(j) = 1
)

= P
(
g(zi, zj)

∣∣S(i)⊕ S(j) = 0
)
.

(1)
When the link predictor decides the link between two nodes in
the same proportion regardless of whether they have the same
sensitive attributes, the predictor can be denoted as obtaining
dyadic fairness. Actually, the dyadic fairness described in (1)
is difficult to achieve in real data. Therefore, to better quantify
fairness, we could adopt two other essential fairness metrics,
i.e., dyadic disparate impact (DDI) and dyadic balanced error
rate (DBER), which are defined as follows:



Definition 2 (DDI: Dyadic Disparate Impact): Given a
graph G = (V, E) and a function g(zu, zv) : Rd × Rd →
{0, 1}, we define the link prediction function g has Disparate
Impact at level τ ∈ (0, 1] on S(u)⊕ S(v) w.r.t.Z if:

DDI (g,Z,S) =
P
(
g(zu, zv) = 1

∣∣S(u)⊕ S(v) = 1
)

P
(
g(zu, zv) = 1

∣∣S(u)⊕ S(v) = 0
) ≤ τ.

(2)
DDI measures the fairness level of the predictor. The higher
the value of τ , the fairer it is. Ideally, when the value of τ
reaches 1, it means that the link predictor achieves dyadic
fairness.

Definition 3 (DBER: Dyadic Balanced Error Rate): For a
graph G = (V, E) and a function g(zu, zv) : Rd × Rd →
{0, 1}, we define the dyadic balanced error rate of the predictor
g as the average class-conditional error:

DBER (g,Z,S) =
1

2

[
P
(
g(zu, zv) = 0

∣∣S(u)⊕ S(v) = 1
)

+P
(
g(zu, zv) = 1

∣∣S(u)⊕ S(v) = 0
)]
.

(3)
DBER measures the general misclassification error of sensitive
attributes by g in the particular case of P(S ⊕ S′ = 1) =
P(S ⊕ S′ = 0) = 1

2 . DBER can be guaranteed to be smaller
than 1

2 . With a larger DBER, the data and predictor g will be
more fair. If DBER equals 1

2 , then DDI will be 1, and dyadic
fairness will be achieved.

B. Obtaining Dyadic Fairness

In this paper, we consider establishing dyadic fairness
through pre-processing the graph data. Due to the nature of
pre-processing, our repairing procedure has no relationship
with the embedding function f and predictor g. As a result, it
becomes important to ensure that the repaired data can achieve
dyadic fairness for arbitrary embedding function and predic-
tor. These can be considered as the requirements flexibility.
Furthermore, another straightforward requirement needs to be
emphasised, i.e., unambiguity. After repairing, the attribute
and adjacency information of each node should be determined
without ambiguity.

To obtain the wide applicability on predictors (flexibility),
we consider optimizing the DBER of the most unfair predictor
with the repaired data, i.e.,

Z∗ = arg max
Z

min
g

DBER (g,Z,S) . (4)

Suppose that the repaired data Z∗ ensures high DBER under
the most unfair predictor. In that case, it obtains dyadic fairness
with wide applicability to predictors. Although this makes the
problem a bi-level optimization one, the closed form of g can
be obtained with the Bayes formula as in [6].

Theorem 1: The smallest DBER for the data Z is equal to:

min
g

DBER (g,Z,S) =
1

2

(
1− 1

2
W1. 6= (γ̂0, γ̂1)

)
, (5)

where W1.6= denotes the Wasserstein distance between the con-
ditional joint distributions of the node representation with the
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Fig. 1: The ambiguity illustration of dyadic repairing. These
pairs (A,C) and (A,D) are repaired respectively to the pairs
in the black line. A’s original attribute is yellow, while in the
repaired data, it has multiple values (“yello” and “purple”),
which might lead to ambiguity.

Hamming cost function. γ̂0 and γ̂1 are conditional distribu-
tions over Z×Z given S(u)⊕S(v) = 0 and S(u)⊕S(v) = 1.
The detailed proof of this theorem has been elaborated in work
[6]. As shown in the theorem, the dyadic balanced error rate
of the most unfair predictor depends on the Wasserstein dis-
tance between the two conditional dyadic node representation
distributions (γ̂0, γ̂1). When W1.6=(γ̂0, γ̂1) = 0, which means
that the two conditional distributions are identical, i.e.,

P
(
zu, zv

∣∣S(u)⊕ S(v) = 1
)

= P
(
zu, zv

∣∣S(u)⊕ S(v) = 0
)
.

(6)
The DBER can achieve the optimal 1

2 and Z are taken
as dyadic fairness on the sensitive feature S. Ensuring (6)
makes the repaired data achieve dyadic fairness with wide
applicability on arbitrary predictor g.

One straightforward repairing scheme is directly moving
the two conditional distributions to the same distribution.
However, the representation of node i’ zi often occurs more
times in γ̂0 and γ̂1. When repairing γ̂0 and γ̂1, zi will
probably assign multiple values. For example, as shown in
Figure 1, the direct repairing leads to ambiguity in the A’s
attribute. To achieve the unambiguity repairing, we propose
the following proposition.

Proposition 1: The dyadic fairness (6) is satisfied if and
only if the following equation is satisfied:

P
(
zu
∣∣S(u) = 0

)
= P

(
zv
∣∣S(v) = 1

)
. (7)

Proof: For the sufficient part, if (7) is satisfied, then for
arbitrary representation a and b, the

P
(
zu = a, zv = b

∣∣S(u)⊕ S(v) = 0
)

=
∑1

i=0P
(
zu = a

∣∣S(u) = i
)
× P

(
zv = b

∣∣S(v) = i
)

=
∑1

i=0P
(
zu = a

∣∣S(u) = i
)
× P

(
zv = b

∣∣S(v) = 1− i
)

= P
(
zu = a, zv = b

∣∣S(u)⊕ S(v) = 1
)
,



which indicates the satisfactory of (6) accordingly. For the
necessary part, it can be easily proved by contradiction. The
above proposition implies that a fair representation of nodes
is sufficient to achieve dyadic fairness in the optimal case.
Repairing based on (7) allows us to obtain the dyadic fairness
and unambiguity requirement due to the node’s representation
being only repaired once. After achieving wide applicability
on predictors and unambiguity, we consider obtaining the
wide applicability on embedding function f . The embedding
function takes the whole graph G as input and outputs the node
representation zi based on the graph.

Proposition 2: For any node u, v in the graph G, if they
have the same node attributes and adjacency status, i.e,

xu = xv and eu = ev, (8)

then for any embedding function f , f(G)[u] = f(G)[v]. xu,
xv denote the attribute of node u and node v, respectively. eu,
ev denote the 1-hop adjacency information, which means the
local topology structure of node u and node v.
This proposition enables us to transform (7) into the following
one:

P
(
xu, eu

∣∣S(u) = 0
)

= P
(
xv, ev

∣∣S(v) = 1
)
. (9)

Based on (9), the dyadic fairness (1) can be further satisfied
for arbitrary predictors. In the following, we aim to propose
an efficient algorithm to guarantee (9).

IV. ALGORITHMIC FRAMEWORK

In this section, we introduce a practical and efficient al-
gorithm called DyadicOT to achieve dyadic fairness in link
prediction tasks based on optimal transport theory. It can be
easily extended to multi-valued sensitive attributes problems,
which can relax the binary sensitive value constraint.

A. Dyadic fairness with optimal transport

In order to achieve dyadic fairness through (9), we first
represent the graph G as a matrix RN×(d+N) where each row
represents the attribute of one node (xu) and adjacency infor-
mation (eu). According to the sensitive feature of each node,
we further split G into G0 ∈ RN0×(d+N) and G1 ∈ RN1×(d+N)

where N0 and N1 are the number of nodes with S = 0 and
S = 1. To bridge it with the optimal transport theory, we
assume graph G0 and G1 form uniform distributions γ̂0 and γ̂1.
Our goal can be explicitly described as minGW1.6=(γ̂0, γ̂1).
To achieve that goal, we solve the following optimal transport
problem:

Γ∗ = min
Γ∈Π(1/N0,1/N1)

〈Γ,C〉 , (10)

where Ns is the number of nodes in the graph and 1
Ns

is the
uniform vector with Ns elements, i.e., s ∈ {0, 1}.

1) Define the cost matrix C: Considering the distribution
γ̂0 and γ̂1 encodes two important parts of information about
the node, i.e., feature xu and the local topology structure
eu, our cost matrix C will consist of two components with
hyperparameter η as a trade-off between the feature term and
the structure term.

Cij = η ‖xi,xj‖22 + (1− η) ‖ei, ej‖22 . (11)

To emphasis, although the Hamming distance is used in the
above theoretical results, we practically employ the squared
Euclidean distance.

2) The DyadicOT algorithm: The optimal transport plan Γ∗

can be obtained, and further Γ∗ can be utilized to repair the
node feature and the adjacency information by mapping both
G0 ∈ RN0×(N+d) and G1 ∈ RN1×(N+d) to the mid-point of
the geodesic path between them [13], i.e.,{

G̃0 = π0G0 + π1Γ
∗G1,

G̃1 = π1G1 + π0Γ
∗>G0.

(12)

Following the above schemes (10)-(12), the proposed Dyadi-
cOT algorithm can be concluded as follows.

Algorithm 1 DyadicOT: Dyadic fairness with OT

1: Initialize η and Γ0 ∈ Π (1/N0, 1/N1);
2: Split the graph G ∈ RN×(d+N) into G0 ∈ RN0×(d+N) and
G1 ∈ RN1×(d+N);

3: Compute the cost matrix C with (11);
4: Transform the distributions to their Wasserstein barycenter

by solving (10);
5: Repair the G0 and G1 with (12).

3) Multi-class extension: In order to extend our approach
to the case of the non-binary sensitive attribute, it would be
necessary to compute the Wasserstein barycenter [29] of the
conditional distributions. Specifically, since each node has |S|
possible values of sensitive attribute, we first divide the graph
G into |S| sensitive attribute groups Gk ∈ RNk×(d+N) where
Nk is the number of nodes with S = k. Then, we compute
the Wasserstein barycenter Ḡ∗ of these groups as follows:

Ḡ∗ = argmin
Ḡ∈RN×(N+d)

1

|S|

|S|∑
k=1

min
Γk∈Π

(
1
N , 1

Nk

)〈Γk,Ck〉, (13)

where Ck is the cost matrix between Gk and Ḡ. Once we
have the Wasserstein barycenter Ḡ∗ and the optimal transport
plan between the Wasserstein barycenter and each sensitive
attribute group, i.e.,Γk, we will repair each sensitive attribute
group Gk as follows:

G̃k = NkΓ∗k
>Ḡ∗. (14)

V. EXPERIMENT RESULTS

This section specifies the experimental procedure of our
approach on link prediction tasks and summarizes the analysis
of the experimental results.



A. Experiment Setup

At the beginning, we first describe the experimental setup,
including real-world datasets, baselines, evaluation metrics,
and experiment details.

Datasets. Our proposed algorithm is evaluated on two real-
world network datasets. The statistical results for these two
datasets are summarized in the following Table I.

TABLE I: Statistic for datasets in experiments

Dataset #Nodes #Edges #Node attributes |S|

CORA 2708 5278 2879 7

CiteSeer 2110 3668 3703 6

- CORA1 is a citation network consisting of 2708 scientific
publications classified into seven classes. Each node in the
network is a publication, characterized by a bag-of-words rep-
resentation of the abstract. The link between nodes represents
undirected citations, and sensitive attributes are set to be the
categories of the publication;
- CiteSeer2 dataset consists of 2110 scientific publications
classified into one of six classes. Similar to the CORA dataset,
the node in the CiteSeer network is also a publication. Its
sensitive attribute is set to be the publication’s categories.

Baselines. The following two pre-processing dyadic fairness
baseline methods are chosen to be compared as follows:
- FairDrop [2] is a biased dropout strategy that forces the
graph topology to reduce the homophily of sensitive attributes.
Specifically, it generates a fairer random copy of the original
adjacency matrix to reduce the number of connections between
nodes sharing the same sensitive attributes; - FairEdge [5] is a
theoretically sound embedding-agnostic method for group and
individually fair edge prediction. It aims to repair the adja-
cency matrix of plain graphs based on the optimal transport
theory and directly ignore the influence of node attributes.

Evaluation metrics. In order to measure the structural changes
between the repaired and the original graph for the pre-
processing mechanism, we use Assortativity Coefficient (AC)
[5] to evaluate the correlation between the sensitive attributes
of every pair of nodes that are connected. The values of AC
always belongs to [−1, 1], and the value close to 0 denotes
that there is no strong association of the sensitive attributes
between the connected nodes.

To evaluate the fairness, which is the main concern of our
work, Representation Bias (RB) [18] is employed to measure
whether the embedding is well-obfuscated, i.e., contains no
sensitive information. Further more, we introduce a new
dyadic fairness evaluation metric called DyadicRB through
extending classical RB metric. Similar with RB, the DyadicRB

1https://networkrepository.com/cora.php
2https://networkrepository.com/citeseer.php

TABLE II: Assortativity Coefficient

Dataset Original FairEdge FairDrop DyadicOT

CORA .771 .668 −.089 .397

CiteSeer .673 .645 −.065 .567

is calculated based on the accuracy of dyadic sensitive feature
classification problem, which can be calculated as

DyadicRB =

1∑
s=0

∣∣Es∣∣∣∣E∣∣ Accuracy
(
S(u)⊕ S(v)

∣∣Zu,v

)
.

where Zu,v is the edge embedding as the concatenation of the
embeddings of the two nodes u and v connected by the link.
And Accuracy(·) is the accuracy of predicting the dissimilarity
of sensitive information S(u)⊕S(v) based on edge embedding
Zu,v . Without limiting ourselves to unbiased embeddings,
we utilize DDI (2) to measure the fairness properties of
the predictions themselves. The effectiveness of our method
on link prediction tasks from both the utility and fairness
perspectives will be further evaluated. As for the utility index,
the Accuracy (ACC) is considered to measure the predictor’s
performance.

Experiment Details. Node2Vec [16] and support vector clas-
sifier are employed for all experiments as our embedding
function and link predictor, respectively. The dimension of the
node‘s embedding is 128, and all values are collected with 5
different random seeds. For easy reproduction of the results,
our codes are open-sourced in Github3, and more details can
be found there.

B. Experiment Results

In this section, we will evaluate and compare the effec-
tiveness of our proposed DyadicOT method with other SOTA
algorithms on real-world datasets at different stages along the
pipeline of the link prediction task.

Impact on the graph structure. Table II shows that the AC
values of the two original graphs are relatively high, indicating
that the links often appear between nodes with the same
sensitive attributes. This leads to discrimination against nodes
with different sensitive attributes. The three repairing methods
can reduce the assortativity coefficient from the original graph.
Specifically, DyadicOT achieves smaller AC than FairEdge,
which indicates the effectiveness of DyadicOT. FairDrop could
achieve a much smaller AC, and the resulting negative AC
indicates that the different sensitive attribute nodes are more
likely to connect. However, the prediction accuracy of Fair-
Drop may be highly influenced, and this phenomenon has been
shown in Table III and Table IV.

Impact on node embeddings. Comparison on the impact on
node embeddings among different repairing methods is another
important concern. Two aforementioned metrics are used,
i.e., RB and DyadicRB, to quantify the fairness of the node

3https://github.com/mail-ecnu/OTDyadicFair



TABLE III: Results on CORA. ↑ (↓) denotes the higher (lower)
the better respectively.

ACC ↑ DDI↑ RB ↓ DyadicRB ↓

Original .829± .007 .266± .012 .834± .004 .726± .009

FairEdge .663± .008 .393± .073 .655± .004 .596± .031

FairDrop .533± .019 .657± .087 .467± .015 .522± .018

DyadicOT .614± .006 .836± .106 .172± .018 .522± .013

TABLE IV: Results on CiteSeer.

ACC ↑ DDI↑ RB ↓ DyadicRB ↓

Original .820± .011 .372± .019 .661± .005 .658± .009

FairEdge .821± .013 .389± .018 .655± .004 .623± .023

FairDrop .532± .024 .717± .081 .493± .021 .510± .037

DyadicOT .585± .014 .653± .181 .211± .027 .506± .036

embedding. As shown in Tables III and Table IV, DyadicOT
achieves the best score of both RB and DyadicRB. These
results indicate that both the sensitive attribute prediction and
the dyadic sensitive attribute relation prediction are hard after
repairing through DyadicOT.

(a) Original Embedding (b) FairEdge’s Embedding

(c) FairDrop’s Embedding (d) DyadicOT’s Embedding

Fig. 2: Visualization of node embedding learned by Node2Vec
on CORA. Different colors indicate different sensitive at-
tributes. (a) and (b) denote the node embeddings learned
from the original graph or the graph repaired by DyadicOT
respectively.

To better understand the impact of our repairing on node
embedding, we employ the PCA method to reduce the learned
embedding into 2-dimension space. As shown in Figure 2,
the learned embedding from the original graph is distributed
with highly correlated to the node’s sensitive feature, which
corresponds to higher RB. The embedding learned from the
repaired graph by DyadicOT is less correlated with the sen-
sitive features compared with the baselines, corresponding to
lower RB. The comparison of dyadic embedding is shown
in Figure 3. The learned dyadic embedding by DyadicOT
is less correlated than the original graph, indicating less

(a) Original Embedding (b) FairEdge’s Embedding

(c) FairDrop’s Embedding (d) DyadicOT’s Embedding

Fig. 3: Visualization of dyadic node embedding learned by
Node2Vec on CORA. Here, the red colour represents node
embeddings with different sensitive attributes, while the blue
colour indicates node embeddings with the same sensitive
attributes.

predictability of the dyadic sensitive features’ relationship
(lower DyadicRB).
Impact on link prediction. Finally, we consider the perfor-
mance comparison on the link prediction task through two
basic metrics, i.e., ACC and DDI. ACC indicates the utility
of the predictor, while DDI denotes the quantity of dyadic
fairness the predictor achieves. For the CORA dataset, all
three repairing methods lose ACC while obtaining dyadic
fairness. Compared with FairEdge and FairDrop, DyadicOT
achieves the best quantity of dyadic fairness (DDI), and the
ACC decreases within the tolerance range.

As for the other CiteSeer dataset, FairEdge nearly cuts no
ice on fairness. However, compared to FairDrop, DyadicOT
achieves higher DDI with less accuracy decrease, which indi-
cates the better performance of DyadicOT.

VI. CONCLUSION

This paper proposes a pre-processing method to achieve
dyadic fairness in link prediction tasks. By transforming the
dyadic fairness obtaining problem into a conditional distri-
bution alignment problem, dyadic fairness can be obtained
with flexibility and unambiguity. Furthermore, a practical
repairing method is introduced based on optimal transport
theory. Experiments on CORA and CiteSeer show that the
proposed DyadicOT method has significant results in obtaining
the dyadic fairness of link prediction.
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