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ABSTRACT
Federated learning is a distributed machine learning paradigm
where multiple data owners (clients) collaboratively train one ma-
chine learning model while keeping data on their own devices.
The heterogeneity of client datasets is one of the most important
challenges of federated learning algorithms. Studies have found
performance reduction with standard federated algorithms, such
as FedAvg, on non-IID data. Many existing works on handling non-
IID data adopt the same aggregation framework as FedAvg and
focus on improving model updates either on the server side or on
clients. In this work, we tackle this challenge in a different view by
introducing redistribution rounds that delay the aggregation. We
perform experiments on multiple tasks and show that the proposed
framework significantly improves the performance on non-IID data.
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1 INTRODUCTION
As the amount of data generated by mobile devices increase ex-
plosively, followed by increasing privacy concerns of user data,
researchers start seeking a solution to the dilemma of utilizing a
large volume of user data while preserving the privacy of users.
Federated learning is a machine learning paradigm that provides a
solution to this dilemma. Under the coordination of a central server,
a model is trained collaboratively by clients. To update the model,
the server only collects a minimal amount of necessary information
from clients but not their data [20]. Federated learning has been
drawing increasing interest in recent years and has been applied in
many on-device prediction tasks [1, 2, 5, 23]. The privacy promise of
federated learning also makes it an appealing choice in healthcare
applications [7, 8, 17, 27].

In federated learning, a global model is trained collaboratively
on clients which are coordinated by a central server. Each round of
training typically consists of four phases: an aggregation phase on
the server, a local training phase on clients, and two communication
(server-to-client and client-to-server) phases. The whole training
process starts with a global model initialized on the server-side. In
the server-to-client communication phase, a group of active clients
is selected as training clients based on certain policy and the model
is sent to them. Then, each client trains the model by calculating
updates based on its own data stored on the local device. Stochastic
gradient descent (SGD) is typically used to update local models
during the local training phase. In the client-to-server communi-
cation phase, clients send their updated models back to the server,
which then aggregates local models into a new global model in the
aggregation phase.

Different from traditional distributed learning, in federated learn-
ing, client’s raw data are never collected by the central server. In-
stead, clients only send the updated model parameters to the server.
In order to prevent potential information leakage from the local
updated models, many privacy-preserving techniques, such as dif-
ferential privacy, have been studied and applied to ensure privacy
of model parameters [3, 4, 18].

Since the server has no control of the client’s data, this raises sev-
eral challenges. First, data on a particular client are generated by a
particular user, therefore, client data most likely are not distributed
in a balanced and IID manner, which is usually an assumption in
distributed learning. Second, the number of clients can be much
larger than the number of samples on each client. This aggravates
the issue of aggregation of non-IID clients. Third, clients are not
always able to participate in training as user devices can be offline
frequently or slow in communication. These challenges demand
new methods different from existing algorithms designed for tradi-
tional distributed learning.

Our work focuses on mitigating the impact of non-IID client
data distributions. Many existing works [15, 16, 26, 29, 31] adopt
the FedAvg [20] framework and applied various strategies to han-
dle non-IID data. In this work, we propose a new framework of
federated learning with delayed aggregations. We delay the aggre-
gation of local models on the server by redistributing local models
to clients multiple times. Compared with several state-of-the-art
federated learning algorithms that handle non-IID data distribu-
tions, our framework demonstrates a good ability to mitigate the
impact of the non-IID data distribution and yields the best perfor-
mance on multiple datasets. We also propose an algorithm to select
clients using importance sampling, incorporating which client fur-
ther improves the performance of the algorithm. We implement our
framework in Ray [21] with code made public 1. Our algorithm out-
performs the best benchmark algorithm by 1.56% on average across
9 non-IID datasets. On multiple datasets with a more challenging
task, our algorithm demonstrates an improvement of roughly 3%
against the best comparison algorithm.

In order to better evaluate our algorithm’s performance under
non-IID settings, we propose a new method to generate non-IID
data. Different from many existing sampling methods that focus
only on sampling non-IID class distributions, the method can sam-
ple non-IID sizes of clients, class distributions and even feature
distributions. Most importantly, it allows us to control the non-IID
level for each of the three attributes separately. With this method,
we can simulate different and specific non-IID settings.

Along the way, we study the impact of localized and global data
standardization. In global standardization, clients receive the mean
and standard deviation of the global data distribution from the

1Code is available at: https://github.com/y-xue/RADFed
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server and standardize local data using these statistics. Localized
standardization is a procedure where each client standardizes the
local data using its own statistics. Although global standardization
is commonly used in federated learning studies, localized standard-
ization is the only realistic choice when global statistics are not
available. We observe a performance regression on federated algo-
rithms when clients perform localized instead of global standardiza-
tion, as expected. The proposed algorithms are robust to localized
standardization scenarios, where we observe a larger improvement
against comparison models than under global standardization.

In Section 2, we discuss related work. Proposed algorithms are
described in Section 3. The experimental setup, including dataset
collection and generation, is described in Section 4. Section 5 dis-
cusses the computational results and the conclusions are drawn in
Section 6.

2 RELATEDWORK
Many works have been done to tackle aforementioned challenges.
Improving communication efficiency [12, 19, 20] is one of the most
important topics in federated learning as client devices are usually
on slow and expensive connections. Performing sketched updates
is a popular strategy. Konečnỳ et al. [12] applied quantization and
subsampling on the model update to compress it before sending
it back to the server. Wang et al. [19] reduce communication by
avoiding irrelevant updates from clients. Each client determines if
its update is relevant enough by checking whether its local update
aligns with the global tendency.

Despite the great success of FedAvg, researchers showed that
the performance of FedAvg reduces significantly when local data
are non-IID [31]. Zhao et al. also proposed a strategy to mitigate
non-IID data by sharing a subset of data between clients. The idea is
to make the training data more IID through sharing. Many studies
focuse on handling the non-IID issue in this direction [8, 9, 30].
Instead of sharing raw data, a generative adversarial network (GAN)
was trained in [9] to reproduce client data, which preserves privacy
as no real data of clients is shared.

Another category of studies improving federated learning on
non-IID data adds constraints when updating the model. This can
be done either on clients or on the server side. Sahu et al. proposed
FedProx [16], which modified the loss function on the client side
by adding a penalty to the weight difference between the local
model and the global model. Xie et al. also added such penalty in
their asynchronous federated learning algorithm [29]. Sattler et al.
proposed a communication-efficient federated learning framework
to reduce communication costs by applying Top-k Sparsification
[26]. The sparsification restricted changes to only a small subset of
the model’s parameters and is shown to suffer the least from the
non-IID data among existing model compression methods.

On the server side, Li et al. [15] applied momentum uniformly
to the gradients of all clients to stabilize the training process un-
der a non-IID scenario. However, collecting gradients from clients
might require more frequent communications than collecting mod-
els from clients. Xie et al. [29] proposed to update the global model
by weighted averaging between new local updates and the old
global model. Reddi et al. [24] proposed adaptive federated learn-
ing algorithms, which treats the difference between the client’s

local update and the global model as pseudo-gradient and applied
adaptive gradient descent algorithms to update the global model.

Our work focuses on handling non-IID data. Similar to [16, 24],
we modify the FedAvg algorithm to make it more robust on non-IID
data. Different from existingworks, we change the aggregation logic
by introducing redistribution rounds which delay the aggregation.
We also improve the client sampling process by incorporating the
idea of importance sampling.

3 METHODOLOGY
One of the most common approaches to solve the optimization
problem in federated learning is FedAvg [20]. In each training
round, the server sends the global model to a subset of randomly
selected clients. The clients update their local model using SGD on
their own data in parallel and send back the updated model to the
server. The server then updates the global model by averaging local
updates from clients. Consider a subset K of training clients, the
aggregation at the 𝑡-th round is written as

𝑤𝑡 ←
∑︁
𝑘∈K

𝑛𝑘

𝑛
𝑤𝑘𝑡 ,

where𝑤𝑘𝑡 is the updated model on client 𝑘 , 𝑛𝑘 is the size of client
𝑘 and 𝑛 is the total size of clients. When data are identically dis-
tributed at clients, this aggregation works well since each local
model is trained on a subset of data that is representative of the
global distribution. It is identical to updating the global model in
a centralized way. In non-IID cases, however, the client data can
be highly skewed and it might not be a good idea to average the
model weights trained on a highly skewed client with less skewed
ones. The weighted averaging makes the aggregation even worse
if a highly skewed client has a large number of samples, as the size
of a client is also taken into account and a larger client has a bigger
impact on aggregation.

3.1 Delayed Aggregation
In order to make this aggregation work better in the non-IID setting,
we have to answer the question: can each local model be trained on
data that are representative of the global distribution at the time of
aggregation?

One of the core promises federated learning makes is that no
client data is collected by the server, so we can not make data on
each client be representative of the global distribution by rearrang-
ing client data. However, we can rearrange local models. If we train
a model on all clients one by one, we end up with a model that is
trained on all the data. This would be similar to standard epoch
based training and thus very slow. Second, it would assume that
each client is active when needed. Alternatively, we can select only
a subset of clients to perform this strategy. Due to the fact that each
client data can be skewed, the model may be trained on consecutive
skewed mini-batches and thus might not be as good as the one
trained in the centralized fashion, where data can be properly shuf-
fled. Despite this, if each local model is trained on same data points
at the time of aggregation regardless of the order of samples, we
shall still expect a much more reliable aggregated model, compared
with the case where each local model is only trained on data of a
single client.
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Algorithm 1: RADFed
𝐾 clients participate in training; 𝐶 is the fraction of clients
participating in each training round; 𝑇 is the number of
training iterations and 𝑆 is the number of redistributing
iterations.
Server executes:
initialize𝑤1
𝑚 =𝑚𝑎𝑥 (𝐶 · 𝐾, 1)
for each round 𝑡 = 1, 2, ...,𝑇 do

𝑤𝑘𝑡 ← 𝑤𝑡 , for 𝑘 = 1, 2, ...,𝑚
�̄�𝑡 ← (𝑤1

𝑡 , ...,𝑤
𝑚
𝑡 )

for each redistributing iteration 𝑠 = 1, 2, ..., 𝑆 do
𝑈 ← uniformly sample𝑚 training clients
for 𝑖 = 1, 2, ...,𝑚 do

�̄�𝑖
𝑠+1 ← ClientUpdate(𝑈𝑖 , �̄�𝑖𝑠 )

end
end
𝑤𝑡+1 ← 1

𝑚

∑𝑚
𝑖=1 �̄�

𝑖
𝑆+1

end
return𝑤𝑇+1

Following this idea, we propose the Randomized Aggregation
Delayed Federated learning algorithm (RADFed). We delay the
aggregation by adding another training round to FedAvg. As shown
in Algorithm 1, in the inner rounds, the server randomly sends
local models back to clients again without performing aggregation.
The server only aggregates local models at the end of the inner
rounds. We call the inner training rounds the redistributing rounds.
ClientUpdate(𝑘 ,𝑤 ) trains the model of client 𝑘 with initial weights
𝑤 .

With enough redistributions, all local models are expected to be
trained on a similar number of samples. Therefore, we remove the
sample size factor during aggregation and perform plain averaging
over local models with equal weights. Because of this, the algorithm
has another appealing property in terms of privacy-preserving in
that the clients do not have to expose the size of their data. In
many cases, the size of data can also be considered as sensitive
information and exposing them may also cause privacy leakage.
For example, it is more likely that a heavier user of a health-tracking
app has a health problem.

In practice, it is possible that the number of active clients is differ-
ent in each round. To apply our framework, a small subset of active
clients can be selected to make sure the number of active clients is
the same across redistributing rounds. In some extreme cases where
too few clients are active during redistribution, there are multiple
strategies to make the framework work, e.g., reducing the number
of redistributing models accordingly, or counting the number of
times a local model has been redistributed and scheduling the re-
distributing process to make sure local models are redistributed a
similar number of times before aggregation.

3.2 Importance Sampling
Not all samples are equally important and so are clients, especially
in federated learning where client data are usually non-IID. If data
are not identically distributed on clients, why should we select

training clients through a simple uniform random sampling? We
hypothesize that focusing computation on good clients can help
improve federated learning algorithms. Inspired by [10], we propose
RADFed-IS that incorporates the idea of importance sampling into
our aggregation delayed framework. In [10] it is established that
the optimal sampling probability is proportional to the square of
the norm of the gradients.

The idea of importance sampling is to find a good mini-batch to
train the model on in the next training step. A straightforward way
of adopting this idea in our framework is to score the importance
of all clients with respect to the current global model right after
each aggregation and select the next set of clients to participate
in training based on this score. However, collecting scores from
all clients is usually not feasible in federated learning under the
assumption that clients are not always active. Besides, it may in-
crease the training time largely by adding an extra communication
round to collect scores after each aggregation.

Instead, we score each client along with its local training. After
local training, each client calculates the average square of the gra-
dient norm of all mini-batches as its importance score and sends it
back to the server along with the updated local model. The advan-
tage of this strategy is that there is almost no extra burden added to
the communication. Compared with the model itself, the size of an
importance score can be neglected. However, the importance score
calculated this way is no longer a good indicator of the importance
of the client’s data to the global model as each score is associated
with a local model. In addition, a local model is not likely going
to be trained on the same client in the next round because of the
redistribution. Therefore, selecting clients based on this score might
not be a good idea.

In order to solve this issue, we accumulate the importance scores
for each client by averaging the scores calculated on all local mod-
els that have been trained on its local data. We expect that the
accumulated score of a client becomes a good indicator of the im-
portance of this client’s data to all local models after accumulating
over multiple rounds.

The server accumulates importance score 𝑝𝑘 of client 𝑘 by taking
a weighted average between the old score and the new one as

𝑝𝑘 ← (1 − 𝛼)𝑝𝑘 + 𝛼𝑝𝑛𝑒𝑤𝑘
,

with a mixing hyper-parameter 𝛼 ∈ (0, 1). The detailed algorithm
is shown in Algorithm 2.

4 EXPERIMENTAL SETUP
In this work, we focus on evaluating the performance of federated
learning algorithms in non-IID settings. Although a real-world non-
IID dataset is ideal, datasets with an artificial partition are also very
helpful in simulating different non-IID settings. Many studies create
heterogeneous clients by manually sampling data on clients so that
the class distribution is not identical across clients. In existing
sampling methods, the sizes of clients are usually determined by
class sampling. To the best of our knowledge, feature-imbalance
has not been considered in prior works.

In order to simulate non-IID settings with more control of the
distribution of sizes, classes and features, we propose a sampling
method where we can sample them independently with a different

3
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Algorithm 2: Importance Sampling in Federated Learning
Server executes:
initialize𝑤1
initialize 𝑝𝑘 for each training client 𝑘
𝑚 =𝑚𝑎𝑥 (𝐶 · 𝐾, 1)
for each round 𝑡 = 1, 2, ...,𝑇 do

𝑤𝑖𝑡 ← 𝑤𝑡 , for 𝑖 = 1, 2, ...,𝑚
�̄�𝑡 ← (𝑤1

𝑡 , ...,𝑤
𝑚
𝑡 )

for each redistributing iteration 𝑠 = 1, 2, ..., 𝑆 do
𝑈 ←𝑚 clients sampled with probabilities ∝ 𝑝
for 𝑖 = 1, 2, ...,𝑚 do

�̄�𝑖
𝑠+1, 𝑝

𝑛𝑒𝑤
𝑈𝑖
← ClientUpdate(𝑈𝑖 , �̄�𝑖𝑠 )

𝑝𝑈𝑖
← (1 − 𝛼)𝑝𝑈𝑖

+ 𝛼𝑝𝑛𝑒𝑤
𝑈𝑖

end
end
𝑤𝑡+1 ← 1

𝑚

∑𝑚
𝑖=1 �̄�

𝑖
𝑆+1

end
return𝑤𝑇+1

ClientUpdate(𝑘,𝑤 ):
Client 𝑘 updates local model𝑤 on local data 𝐷
𝑝 = 1

|𝐷 |
∑
𝑑∈𝐷 | |∇ℓ𝑑 (𝑤) | |22

return𝑤 , 𝑝 to server

Dirichlet prior. It is not always the case that we can draw a de-
sired number of samples to satisfy all these independently sampled
distributions at the same time. Let us consider sampling non-IID
sample sizes and classes as an example. A sampling solution for 𝑇
clients and 𝐶 classes is a 𝑇 ×𝐶 matrix where each entry denotes
the number of samples of class 𝑐 on client 𝑡 . By sampling sizes and
classes separately, we specify each entry of the matrix, that is a
total of 𝑇 ·𝐶 numbers. However, given the number of samples in
each class in a dataset, we only need 𝑇 · 𝐶 − 𝐶 entries to specify
a solution. Therefore, we propose a Quadratic Programming (QP)
method to find a random feasible sampling solution.

4.1 Partitioning of Heterogeneous Data
4.1.1 Non-IID over classes and sizes. Let 𝐶𝑘 be the number of sam-
ples of class 𝑘 and 𝑁 be the total number of samples. Clearly,
we have 𝑁 =

∑
𝑘 𝐶𝑘 . Let 𝑛 ∼ 𝐷𝑖𝑟 (`) be the sizes of clients and

𝑐𝑡 ∼ 𝐷𝑖𝑟 (_𝑡 ) be the class distribution of client 𝑡 . Let 𝛼𝑡𝑘 be the
number of samples of client 𝑡 of class 𝑘 . We want 𝛼𝑡𝑘 = 𝑐𝑡𝑘𝑛𝑡𝑁 ,
given 𝑛𝑡 and 𝑐𝑡𝑘 . However, the dataset needs

∑
𝑡 𝛼𝑡𝑘 = 𝐶𝑘 and∑

𝑘 𝛼𝑡𝑘 = 𝑛𝑡𝑁 , which they might not hold. Therefore, we find a
feasible solution for 𝛼 by solving

min
𝛼≥0

∑︁
𝑡,𝑘

(𝛼𝑡𝑘 − 𝑐𝑡𝑘𝑛𝑡𝑁 )2 (1)

subject to: ∑︁
𝑘

𝛼𝑡𝑘 = 𝑛𝑡𝑁,∀ client 𝑡,∑︁
𝑡

𝛼𝑡𝑘 = 𝐶𝑘 ,∀ class 𝑘,

which is a convex QP.

4.1.2 Non-IID over features, classes and sizes. Using the similar idea
of sampling classes and sizes, we also sample categorical features
in a non-IID manner. We sample category distribution 𝑓 𝑗𝑡 ∼ Dir(\ 𝑗𝑡 )
of feature 𝑗 with 𝑑 𝑗 categories on client 𝑡 . We consider classes as a
feature that are sampled separately. Let 𝑈 be a set of all possible
combinations of categories in the dataset and 𝐵𝑢 be the number
of samples that fall into configuration 𝑢 ∈ 𝑈 . The first element of
𝑢 corresponds to classes. Now let 𝛼𝑡𝑢 be the number of samples
on client 𝑡 with configuration 𝑢. Then we find a feasible solution
through

min
𝛼≥0

∑︁
𝑡

[
𝐾∑︁
𝑘=1
(

∑︁
𝑢∈𝑈 ,𝑢1=𝑘

𝛼𝑡𝑢 − 𝑐𝑡𝑘𝑛𝑡𝑁 )2

+
𝑀∑︁
𝑗=1

𝑑 𝑗∑︁
𝑖=1
(

∑︁
𝑢∈𝑈 ,𝑢 𝑗+1=𝑖

𝛼𝑡𝑢 − 𝑓 𝑗𝑡𝑖𝑛𝑡𝑁 )
2]

(2)

subject to: ∑︁
𝑢∈𝑈

𝛼𝑡𝑢 = 𝑛𝑡𝑁,∀ client 𝑡,∑︁
𝑡

𝛼𝑡𝑢 = 𝐵𝑢 ,∀ configuration 𝑢 ∈ 𝑈 .

Here 𝑀 is the number of categorical features. If a feature is non-
categorical by nature, we can create buckets that correspond to
categories.

4.1.3 A random solution. The above QPs may have many optimal
solutions but wewant a random one.We generate a random solution
by modifying values at the “4 vertices of a random rectangle,” in a
way that the modified values still satisfy our constraints in (1) or
(2), see details in Algorithm 3. A step size b is used to control the
modification. The algorithm has two phases. In the first phase, we
find a suboptimal solution by randomly modifying values. Then,
in the second phase, starting from the suboptimal solution, we
continue modifying and record the best random solution we find.

4.2 Datasets and Models
For all datasets that are partitioned by (1) or (2), we set ` = 1. These
datasets have reasonably large variations in client sizes, see Table
1. We use the same _ = 0.1 for all clients, on all datasets but MNIST,
where we experiment on different values of _. For feature sampling,
we set \ = 0.1 for all clients and features. In QP, we use 𝑃 = 105,
𝑄 = 5 · 105 and b = 0.002. The impact of 𝐶 , 𝐵 (the mini-batch size)
and 𝐸 (the number of local training epochs) is well studied and
thus we do not focus on experimenting on various settings of these
variables. We set 𝐶 = 0.1, which is shown to be a generally good
setting that balances the performance and the convergence speed
[20]. Themini-batch size 𝐵 is set to 10 and 16 forMNIST and Cifar10,
respectively, considering that clients on these datasets do not have
many samples. On other datasets, 𝐵 is set to 256. We set 𝐸 = 10
for MNIST to make the task more challenging and set 𝐸 = 1 for
the other datasets. Besides these general federated learning hyper-
parameters as mentioned above, each particular algorithm has its

4
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Figure 1: Test performance comparison on theCovertype and Shakespeare datasets.Multiple runs are performedwith different
seeds on the most representative fold, defined as the one with the closest performance gap to the average of all folds. The
performance gap is the difference in the test performance between RADFed and FedAvg.

Algorithm 3: Random QP solution
Input: a feasible solution 𝐴 = {𝛼𝑡𝑘 }𝑡𝑘 from QP
for 𝑝 = 1, 2, ..., 𝑃 do

𝐴← RandomizeSolution(𝐴) // a burn-in period
end
ℎ ←∞
for 𝑞 = 1, 2, ..., 𝑄 do

𝐴← RandomizeSolution(𝐴)
𝐿(𝐴) ← calculate loss from (1) or (2)
if 𝐿(𝐴) < ℎ then

𝐴← 𝐴

ℎ ← 𝐿(𝐴)
end

end
return 𝐴

RandomizeSolution(𝐴):
(𝑖, 𝑗), (𝑖, 𝑗) ← indices of two randomly selected entries of 𝐴
Y ← uniform(0,min{𝐴𝑖, 𝑗 , 𝐴𝑖, 𝑗 , b})
for Each position (𝑚,𝑛) do

𝐴𝑛𝑒𝑤𝑚,𝑛 ←


𝐴𝑚,𝑛 − Y,𝑚 = 𝑖, 𝑛 = 𝑗

𝐴𝑚,𝑛 − Y,𝑚 = 𝑖, 𝑛 = 𝑗

𝐴𝑚,𝑛 + Y,𝑚 = 𝑖, 𝑛 = 𝑗

𝐴𝑚,𝑛 + Y,𝑚 = 𝑖, 𝑛 = 𝑗

𝐴𝑖, 𝑗 , otherwise
end
return 𝐴𝑛𝑒𝑤

Table 1: Statistics of datasets (number of samples of clients)

Dataset Min Max Mean Stdev C-score

Cifar10 2 2,850 600 605.85 1.286
Shakespeare 3 41,305 3,616 6,808.44 0.266
COVCLS 110 33,300 4,920 5,110.28 0.794
COVFEAT 372 17,328 4,920 3,237.06 0.682
MNIST _ = 1 3 3,365 700 667.12 0.696
MNIST _ = 0.1 11 3,327 700 658.89 1.293
eICU 108 5,683 901 925.50 0.060

own hyper-parameters. RADFed has one more hyper-parameter,
the number of redistribution rounds 𝑆 , than FedAvg. RADFed-IS
adds another hyper-parameter, the mixing weight 𝛼 . We tune hyper-
parameters specified by each federated learning algorithm using
grid search on validation clients. Table 3 lists the hyper-parameter
values of proposed algorithms used in our experiments.

4.2.1 Covertype. Covertype is a large structured dataset for forest
cover type prediction from the UCI KDD archive [6]. It consists of
10 numerical features and 2 categorical features with 7 imbalanced
classes. Since our goal is to evaluate our method’s performance
on non-IID data, we do not want to consider other data quality
problems such as high class imbalance at the same time. Therefore,
in our experiments, we only focus on predicting the two largest
classes. We partition the data into 100 clients. The number of train-
ing clients (𝐾 ) is 60. The number of validation and test clients are
20 each. The splitting of clients is discussed in Section 4.3. Same
sizes are used for the MNIST and Cifar10 datasets. We train a fully
connected neural network with 2 hidden layers with 64 neurons
each.

We create two types of datasets, one (COVCLS) with classes
and client sizes sampled non-identically based on (1) and the other
(COVFEAT) with also features sampled non-identically thus using
(2). For both datasets, we set _ = 0.1 for all clients, and set \ = 0.1
for the COVFEAT dataset. All the datasets that follow are created
based on (1).

On the Covertype datasets, we also study the impact of localized
and global data standardization. The difference is whether to use
global statistics of all clients’ data to standardize client local data or
to let each client perform standardization with its own statistics. On
COVFEAT-G and COVCLS-G, we perform global standardization,
while on COVFEAT-L and COVCLS-L, localized standardization is
used. When comparing our algorithm with benchmarks on other
datasets, we use global standardization to be consistent with the
original papers.

4.2.2 MNIST. MNIST [14] consists of images of digits with 10
classes. We sample 100 clients with classes and sizes non-identically
distributed. We study how data heterogeneity impacts the perfor-
mance of federated learning algorithms by creating two datasets
with _ = 1 and _ = 0.1, respectively. A dataset generated with the
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Table 2: Average test performance of 5-fold cross-validation: % accuracy for the MNIST, Cifar10 and Shakespeare dataset;
F1 score (×100) for all Covertype datasets; and Area Under the Receiver Operating Characteristic Curve (AUC) (×100) for the
eICU dataset. The best values are shown in bold. The absolute scores are reported for FedAsync and the % relative performance
difference against FedAsync is shown for other algorithms.

Dataset FedAvg FedProx FedAsync FedAdapt RADFed RADFed-IS

Cifar10 −2.07 −1.24 (84.63) −1.69 +0.61 +0.90
Shakespeare −0.75 −0.42 (52.10) −0.21 +3.26 +3.72
COVFEAT−G −0.34 +0.02 (87.91) −1.79 +2.88 +2.24
COVFEAT−L −0.92 +0.36 (79.52) −2.40 +4.05 +3.32
COVCLS−G +0.20 +0.23 (93.68) −0.05 +0.36 +0.44
COVCLS−L −0.06 +0.32 (90.67) −0.29 +2.22 +0.03
MNIST _ = 1 +0.05 +0.19 (97.24) +0.15 +0.22 +0.28
MNIST _ = 0.1 +0.17 +0.32 (96.79) +0.27 +0.40 +0.45
eICU −0.11 −0.11 (92.31) −0.05 +0.00 −0.03
AVG −0.42 −0.04 - −0.67 +1.56 +1.26

Table 3: Hyper-parameters in proposed algorithms

param COVCLS (-L & -G) COVFEAT (-L & -G) MNIST _ = 1 MNIST _ = 0.1 Cifar10 Shakespeare eICU

𝑆 (RADFed) 22 20 22 15 15 15 80
𝑆 (RADFed-IS) 22 20 22 15 100 100 80
𝛼 (RADFed-IS) 0.9 0.9 0.9 0.9 0.9 0.8 0.9

Figure 2: Validation performance comparison on the Covertype and MNIST datasets. The F1 score is used on all Covertype
datasets and accuracy is reported on the MNIST datasets. Curves are smoothed by taking the average over evenly spaced
intervals for better visualization. The intervals are chosen differently considering that validation frequencies are different.
The intervals are set to 100 for the Covertype datasets and 5 for the MNIST datasets.
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Figure 3: Validation performance comparison. Accuracy is reported on the Cifar10 and Shakespeare datasets. AUC is used on
the eICU dataset. Similar to Figure 2, curves are smoothed with intervals 1, 2 and 50 for the Cifar10, Shakespeare and eICU
datasets, respectively.

larger _ has a lower heterogeneity in class distributions. We build
a fully connected neural network same as [20].

4.2.3 Cifar10. Cifar10 [13] images are partitioned into 100 clients
with classes (_ = 0.1) and sizes (` = 1) non identically distributed.
We use pre-trained MobileNetV2 [25] as the model and train a
subset of layers from the last bottleneck convolution layer to the
classification layer.

4.2.4 Shakespeare. This dataset is a language modeling dataset
built from The Complete Works of William Shakespeare [20]. We
use the same data as [16] but partition samples by speaking roles.
Each speaking role corresponds to one client. In total, the dataset
consists of 143 clients. The number of training, validation and test
clients are 85, 29 and 29, respectively. The task is to predict the
next character given a sequence of 80 characters. We train a 2 layer
long short-term memory (LSTM) classifier with an 8-dimensional
embedding layer.

4.2.5 eICU. eICU is a largemulti-center critical care databasemade
available by Philips Healthcare [22]. We predict the in-hospital
mortality using variables underlying the Acute Physiology Age
Chronic Health Evaluation (APACHE) predictions 2. To avoid a
potential sampling bias, we focus on mid to large hospitals with
more than 100 admissions and exclude those associated with a high
mortality rate (greater than 20%). Each hospital corresponds to a
client. The dataset contains 164 clients. The number of training,
validation and test clients are 98, 33 and 33, respectively. We train a
logistic regression model with L2 regularization.

4.3 Evaluation Setup
We compare the performance of ourmethods (RADFed and RADFed-
IS) with FedAvg [20], FedProx [16], the adaptive federated operation
method (FedAdapt) [24] and the asynchronous federated optimiza-
tion method (FedAsync) [29] on multiple tasks. FedAvg is probably
the most popular and commonly used federated algorithm and the
others are the state-of-the-art federated learning algorithms that
handle non-IID data distributions.

2The full variable list and descriptions are available at https://eicu-crd.mit.edu/
eicutables/apachepredvar and https://eicu-crd.mit.edu/eicutables/apacheapsvar/.

Different from synchronous methods, FedAsync has to deal with
the staleness of updates from clients. The staleness of a client’s
update is defined as the timestamp difference between a client’s up-
date and the server’s model. The performance of FedAsync suffers
from large staleness. In order to mitigate the impact of staleness
on training, the new global model is updated as a weighted aver-
age between the old global model and the client’s local update. In
addition, the authors show that decaying the mixing weights as a
function of staleness helps to fight against large staleness. Despite
these efforts, the impact of staleness on FedAsync’s performance is
not completely eliminated.

In order to make a fairer comparison between asynchronous and
synchronous methods, we have to choose a reasonable value for
staleness. We simulate the FedAsync’s training procedure and find
maximum staleness where the average number of clients running
in parallel per round is the same as in the synchronous methods.
In other words, we compare the performance of FedAsync and syn-
chronous methods under the same level of parallelism on average.

To our best knowledge, there is no gold standard for evaluating
federated algorithms. Generally, there are 3 ways to split the data
into training and test sets: splitting all data globally [7, 15, 26],
splitting each client’s local data [1, 4, 24] and splitting clients into
training/test groups [5, 8, 23]. In this work, we adopt the last strat-
egy by assuming no local data can be collected by the server and
the server can not manipulate the client’s local data. Additionally,
we perform 5-fold cross-validation with the by-client splits in order
to reduce the selection bias, which might be aggravated by the
non-IID client distributions. We split all clients into 5 sets. One by
one, a set is selected as the test set. For the remaining sets, one by
one, a set is selected as the validation set and the others are used
as the training set.

5 RESULTS
We run each algorithm 3 times with different seeds on each of the 5
folds and report the average performance over the 15 runs in Table 2.
On average, RADFed and RADFed-IS offer an improvement over the
best benchmark, FedAsync, by 1.56% and 1.26%, respectively. On the
MNIST datasets and the eICU dataset, all algorithms achieve a close
performance. On other datasets, the best of RADFed and RADFed-IS
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Figure 4: Test performance comparison on datasets with different levels of heterogeneity

is significantly better than FedAsync (p < 0.05 under the Wilcoxon
signed-rank test [28]). Under some difficult settings, which we
discuss later, our framework offers a substantial improvement over
all comparison algorithms onmultiple datasets. The best of RADFed
and RADFed-IS outperforms the best comparison algorithm by
3.72% on Shakespeare, 2.88% on COVFEAT-G, 4.05% on COVFEAT-L
and 2.22% on COVCLS-L. Figure 1 shows that RADFed is quite stable
across different seeds and confirms its significant improvement on
these datasets.

In Figures 2 and 3, we compare the validation curves. With de-
layed aggregations, RADFed and RADFed-IS stabilize the training
by demonstrating a smaller variation in validation scores than the
algorithms that adapt the FedAvg framework. In general, our algo-
rithms achieve the maximum validation score at a similar number
of training rounds as other algorithms. On Shakespeare, our algo-
rithms peak much later than FedAvg. This is due to a large learning
rate used in FedAvg, where a relatively larger learning rate yields a
better result, although the model gets overfitted quicker than using
a lower learning rate. It does not imply that delaying aggregations
also delays convergence. In fact, on Shakespeare, aggregations in
RADFed are delayed with 15 redistribution rounds and the number
in RADFed-IS is 100. We observe a similar convergence behavior.

5.1 Heterogeneity
We create datasets with various levels of heterogeneity to evaluate
whether our model is effective and robust under different heteroge-
neous settings. In order to compare between manually partitioned
datasets and naturally partitioned ones, we introduce the class
non-IID score (C-score), which is defined as 1

𝐾

∑𝐾
𝑘=1

∑𝐶
𝑐=1 |𝑟𝑘𝑐 −𝑅𝑐 |,

where 𝑟 𝑖𝑐 is the ratio of class 𝑐 on client 𝑘 and 𝑅𝑐 is the ratio of class
𝑐 in all data. This score measures the difference between client’s
class ratios and the global class ratios. The C-score of each dataset
is shown in Table 1.

The MNIST dataset is partitioned with _ = 1 and _ = 0.1. The
MNIST _ = 0.1 dataset is expected to have a higher heterogeneity
of class distributions than the other due to a smaller value of _.
Its C-score is also higher than in MNIST _ = 1. All algorithms
perform worse on MNIST _ = 0.1 than MNIST _ = 1, as shown
in Figure 4. The RADFed-IS algorithm performs the best on both
datasets and yields the smallest performance regression when class
heterogeneity increases.

The COVCLS and COVFEAT datasets are partitioned with the
same value of ` and _, so they have a similar level of heterogeneity
with respect to client sizes and classes. Their C-scores are also
similar. However, since we also introduce heterogeneity on feature
distributions in the COVFEAT datasets, they should have a severer
issue on non-IID data distribution than COVCLS datasets. Therefore,
as shown in Figure 4, all algorithms show a lower performance on
COVFEAT datasets, no matter which standardization method is
used. Similar to the results on the MNIST datasets, our algorithms
suffer the least when data heterogeneity increases.

5.2 Standardization
With global standardization, RADFed-IS achieves a close perfor-
mance as RADFed on both COVFEAT-G and COVCLS-G datasets.
RADFed outperforms FedAvg by 0.17% and 3.24% on COVCLS-G
and COVFEAT-G, respectively.

With localized standardization, we observe a performance re-
gression on all federated learning algorithms, as shown in Figure 4.
However, RADFed demonstrates a good ability in handling local-
ized standardization by offering a larger performance improvement
over FedAvg on both COVCLS-L (2.3%) and COVFEAT-L (5.0%).

Interestingly, RADFed outperforms RADFed-IS on both COVCLS-
L and COVFEAT-L, which implies that it is more challenging for
RADFed-IS to determine which clients are better under localized
standardization. Therefore, we recommend RADFed-IS when it
is possible to perform global standardization and RADFed under
localized standardization.

5.3 Model Complexity
On all Covertype and MNIST datasets, we train fully connected neu-
ral networks with hidden layers. While on Cifar10 and Shakespeare
datasets, we test our algorithms with deeper networks (i.e., Con-
volutional Neural Networks and Recurrent Neural Networks) on
unstructured tasks. RADFed-IS performs the best on both datasets.
On Cifar10, it improves RADFed by 0.28% and outperforms the best
comparison algorithm and FedAvg by 0.90% and 3.03%, respectively.
Different from Cifar10, Covertype and MNIST datasets, the Shake-
speare dataset is not manually partitioned through our sampling
algorithm. Instead, the data are partitioned naturally by speaking
roles. As a result, the Shakespeare dataset has a lower C-score than
these three datasets. Our RADFed-IS algorithm improves RADFed
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by 0.45% and surpasses all other comparison methods by at least
3.26%.

Besides deep models, we train a logistic regression model on
the eICU dataset. As shown in Table 2, all federated algorithms
achieve similar AUC scores. The scores are all close to the central-
ized model’s AUC of 0.924. The eICU dataset is also not partitioned
through the sampling algorithm and its C-score is much smaller
than the scores of all other datasets. Despite small heterogeneity
of the dataset, RADFed still offers an improvement over FedAvg,
modest but significant (𝑝 = 0.001 under the Wilcoxon signed-rank
test [28] with 15 runs).

5.4 Divergence on Delayed Updates
5.4.1 Divergence from the centralized model. In studying the non-
IID challenge in federated learning, the weight divergence has been
used to explain the performance reduction, which as shown in
[31] can be attributed to the divergence. The weight Divergence
between the Centralized and federated models (𝐷𝐶) measures the
difference of the global weights of federated training relative to
those of centralized training. It is defined as

𝐷𝐶 (𝑡) =
| |w𝑡

𝐹𝐿
| | − | |w𝑡

𝐶
| |

| |w𝑡
𝐶
| |

, (3)

wherew𝑡
𝐹𝐿

are the weights of the global model in federated training
at the 𝑡-th round and w𝑡

𝐶
are the centralized weights.

(a) (b)

(c) (d)

Figure 5: Weight divergence

To visualize the weight divergence 𝐷𝐶 , we train a centralized
model and a federated model side by side. Both models start with
the same weight initialization. In each round, the same data are
used in training. The difference is that in centralized training we
collect data from clients and update the model using combined data.
The divergence from the centralized model is expected due to the

distance between the client data distribution and the population
distribution. As shown in Figures 5b and 5d, RADFed algorithm
demonstrates a smaller weight divergence than FedAvg. It indicates
that the aggregated weights of our algorithm are less impacted by
the skewness of the data and are closer to the weights trained on
data under the population distribution.

5.4.2 Divergence between local models. Another type of weight
divergence is the Divergence between clients’ Local updates (𝐷𝐿)
before each aggregation. For a set of clients K = {1, 2, ..., 𝐾}, the
divergence is defined as

𝐷𝐿(w𝑡1,w
𝑡
2, ...w

𝑡
𝐾 ) =

(
𝐾

2

)−1 ∑︁
𝑖, 𝑗 ∈K ;𝑖< 𝑗

(1 −
w𝑡
𝑖
·w𝑡

𝑗w𝑡
𝑖

 w𝑡𝑗  ), (4)

where w𝑡
𝑖
is the local update from client 𝑖 in the 𝑡-th round. A posi-

tive correlation between 𝐷𝐿 and federated learning performance
is observed in [11]. The study is based on the FedAvg framework
that is different from ours. Although the same correlation might
not hold when comparing different frameworks, it helps visualize
how our algorithm behaves.

During training of our algorithm, we observe a periodical trajec-
tory of 𝐷𝐿, Figure 5. In the first round after each aggregation, the
divergence is the smallest. As the aggregation being delayed for
more rounds, the divergence keeps increasing until the next aggre-
gation. The divergence in FedAvg vibrates around the lowest values
of our algorithm. Figures 5a and 5c show the weight divergence of
local updates on Shakespeare and COVFEAT-L datasets.

The increasing 𝐷𝐿 does not indicate any deficiency of our frame-
work. It might be due to the nature of the redistribution of local
models. For example, in a non-IID setting where each client has
one class of data, training may start with clients of different classes
and yield large divergence between local models. In the next re-
distribution round, the divergent local models are trained again
on client data of different classes. The divergence accumulates as
the redistribution continues. FedAvg, however, results in a smaller
𝐷𝐿 because it performs aggregation after each local training and
divergence is not accumulated.

6 CONCLUSION
In this work, we propose a new training framework with delayed
aggregation to handle the well-known non-IID issue in federated
learning. We demonstrate that our framework offers a substantial
improvement over the FedAvg framework and outperforms several
state-of-the-art federated learning algorithms. Moreover, we incor-
porate importance sampling in our framework and further improve
the framework on multiple datasets.

Along the way, we also discuss the following topics in federated
learning: the splitting of training and test sets, localized and global
standardization, and weight divergence on different frameworks.
Experiments show that federated learning algorithms suffer from
localized standardization. The proposed framework demonstrates
a good ability in handling localized standardization. However, the
importance sampling version does not offer further improvement
under localized standardization.
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In addition, we propose a sampling algorithm to generate non-
IID datasets. It offers the choice for a desired non-IID level on client
sizes, classes and features separately, thus providing researchers
with more flexibility and control about simulating different non-IID
settings. We also introduce the C-score to quantify the level of
heterogeneity of non-IID datasets and demonstrate the robustness
of proposed algorithms on datasets with various C-scores.
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