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Abstract—Channel Attention reigns supreme as an effective
technique in the field of computer vision. However, the proposed
channel attention by SENet suffers from information loss in fea-
ture learning caused by the use of Global Average Pooling (GAP)
to represent channels as scalars. Thus, designing effective channel
attention mechanisms requires finding a solution to enhance
features preservation in modeling channel inter-dependencies. In
this work, we utilize Wavelet transform compression as a solution
to the channel representation problem. We first test wavelet
transform as a standalone channel compression method. We
prove that global average pooling is equivalent to the recursive
approximate Haar wavelet transform. With this proof, we gen-
eralize channel attention using Wavelet compression and name
it WaveNet. Implementation of our method can be embedded
within existing channel attention methods with a couple of lines
of code. We test our proposed method using ImageNet dataset for
image classification task. Our method outperforms the baseline
SENet-34, and SOTA FcaNet-34.

Index Terms—Channel Attention, ImageNet, Wavelet Trans-
form

I. INTRODUCTION

In deep convolutional neural networks (CNNs), effective
feature learning often relies upon the success of attention
mechanisms in selectively capturing and preserving relevant
important details from input [1]. In tasks such as image
classification, attention mechanisms involve redistributing the
weights of input feature maps to achieve better classification
accuracy [2], [3]. Major attention mechanisms used in CNNs
consist of channel attention, spatial attention, branch attention,
and temporal attention. [4], [5]. Particularly, the computer
vision domain conventionally adopts the channel attention
(CA). Introduced by the SeNet [6], CA offers a relatively
computationally efficient selection of important channels by
generating scalar channel weights, whereby channel-wise com-
putations are performed on features derived from the global
average pooling (GAP).

While channel attention is an intuitive technique in captur-
ing salient properties of images, recent studies suggest that
CA’s use of global average pooling (GAP) in its architec-
ture hinders its performance. GAP is insufficient in retaining

sophisticated details and fails to comply with some task-
specific model practices [7]. Moreover, GAP’s straightforward
dimensionality reduction further limits CA’s inter-channel de-
pendencies modeling [8]. Our motivation to design WaveNet
stems from this need to reassess CA to capture finer details
in feature learning. This reassessment should allow CA to
redistribute the weights of input feature maps to improve
classification accuracy while maintaining CA’s computational
efficiency.

To address the above limitations, we propose to enhance
the feature preservation during downsampling via the discrete
wavelet transform (DWT). As a tool in digital signal process-
ing, DWT has various image processing applications in tasks
such as image compression, dehazing, classification, denois-
ing, restoration, and watermarking [9] [10] [11] [12] [13].
Essentially, DWT performs pyramidal image decomposition
by transforming an image into four sub-bands composed of
a lowpass (LL) filter and a bandpass filter with horizontal
(LH), vertical (HL), and diagonal (HH) decomposition of the
image, respectively [14] [15]. The LL filter corresponds to a
downsized version of the original image with lower resolution,
and the LH, HL, and HH bandpass filters highlights the input’s
predominant traits in their associated orientation. The ability of
DWT to perform multilevel decomposition on images inspired
WaveNet, in which we explore the levels of decomposition of
DWT’s application in CA.

In this work, we introduce a novel channel attention frame-
work that stems from a mathematical compression technique.
In an effort to better represent channel information and express
what GAP failed to explore, we propose to utilize Haar
DWT for the channel attention mechanism. Along with the
Haar channel attention framework, we propose a customized
wavelet channel attention framework. In this framework, we
use a set of random orthogonal filters to be used in a
customized wavelet. The role of those orthogonal filters is to
enforce feature preservation and diversity in the compression
task prior to excitation of channel attention.

Our implementation of this enhanced channel attention
mechanism achieves the state-of-the-art performance against978-1-5386-5541-2/18/$31.00 ©2022 IEEE
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related channel attention techniques. The main contribution of
this work are summarized as follows:

• We view the channel attention from a compression per-
spective and adopt DWT in the vanilla channel attention
for channel information preservation. With the proof,
we establish that conventional GAP is the recurrent Ap-
proximate Component of Discrete Haar Wavelet Trans-
form. Then, we generalize the channel attention from
the frequency basis and propose our method, termed as
WaveNet.

• Motivated by the success of the Discrete Haar Wavelet
Transform in WaveNet, we propose WaveNet-C, a custom
orthogonal linearly independent filters wavelet to enforce
diversity in the compression task for Channel Attention.

• We propose a filter selection criteria along with a param-
eter reduction technique to fulfill WaveNet-C.

• We conduct extensive experimental results which support
that the presented method achieves the state-of-the-art
results on ImageNet comparable computational cost to
SENet.

II. RELATED WORK

a) Visual Attention in CNNs: The active field of research
in attention mechanisms has varieties of vision applications
across various domains [16] [17] [18] [19] [20] [21] [22] [23]
[24] [25] [26] [27]. Early interest in visual attention is fostered
by the highway network [28], which introduced a gating
mechanism that enhances the flow of feature information in a
deep neural network. ResNet’s [29] success with deep CNNs
via the use of skips connections in residual blocks further
set the foundation for using attention in creating the next
state-of-art model. Soon, the proposal of SENet [6] presents
the channel attention in an efficient squeeze and excitation
architecture, fueling a wave of studies aiming to improve the
channel attention performance. Notably, DANet [30] integrates
a position attention module with channel attention to model
long-range contextual dependencies. Building upon NLNet
[31] and SENet, GCNet [32] proposes GC blocks to capture
channel-wise interdependencies while emphasizing long-range
global context modeling. [33] introduces the triplet attention,
modeling spatial attention and channel attention with efficient
parameters and no dimensionality reduction. HA-CNN [34]
assesses joint attention selection, which combines hard re-
gional and soft spatial attention with channel attention. Besides
utilizing spatial attention, CBAM [35] applies global max-
pooling in channel attention to counter GAP’s limits. ECA-
Net [36] remodels the channel attention architecture to capture
cross-channel interaction without unnecessary dimensionality
reduction. TSE [37] disregards GAP’s global spatial context
in SENet to streamline the SE network usage with AI acceler-
ators. FcaNet [38] adds a multi-spectral component to channel
attention from a frequency analysis perspective that explains
the relationship between GAP and discrete cosine transform.

b) Wavelet Transforms in Image Processing: Wavelet
transforms attract growing interest in deep learning-based
image processing applications. Early associated works tend to

neglect the use of attention mechanisms and range from image
super-resolution [39], [40], classification [41] [42], inpainting
[43], demoiréing [44], and restoration [12]. Recently, some
works propose to integrate attention mechanisms and Wavelet
transforms. AWNet [45] integrates non-local attention with
DWT to achieve better results for image signal processor
(ISP) with smartphone images. [46] proposes WAEN, which
composes of an attention embedding network and a wavelet
embedding network to enhance video super-resolution. The
soft attention-based model proposed in [47] applies DWT to
improve face recognition of morphed images. [48] presents a
framework for detecting surface defects of glass bottles that
fuses the Wavelet transform into their visual attention model.
[49] details a single image deraining framework based on a
fusion network with DWT and its inverse into its attention
module. Different than most previous works that use wavelet
transform with an attention mechanism for a specific domain-
based application, our WaveNet seeks to incorporate Wavelet
transform into the underlying architecture of CA to improve
the attention mechanism at its most fundamental level.

III. METHOD

We start this section by formulating the Discrete Wavelet
Transform (DWT) and Channel Attention (CA). We then look
into more details over the derivation of our Interdependent
channel attention. Together with the interdependent channel
attention model, we explore a diversification strategy for
custom wavelet transform.

A. Discrete Wavelet Transform (DWT) and Channel Attention
(CA)

In this section, we first go in-depth over the mathematical
derivation of DWT. Then, we elaborate on explaining the
channel attention mechanism.

a) DWT using Multiplication: Given scale weights H
and shift weights G describing wavelet w, the wavelet trans-
form of (1D) input X is:

Xoutput
J=1 =W ×X =

H
G

×X. (1)

Where

W =



h 0 . . . 0

0 h
. . . 0

...
. . . h 0

0 . . . 0 h
g 0 . . . 0

0 g
. . . 0

...
. . . g 0

0 . . . 0 g


n×n

(2)

The (2D) DWT can be described using the (1D) DWT by
applying the procedure to columns first then repeating the
process to the rows of the output. The first level DWT for
input X can be modeled as follows:



Xoutput
J=1 = DWT (X) =W ×X ×WT

=

H
G

X [
HT GT

] (3)

Xoutput =

[
A V
H D

]
=

HXHT HXGT

GXHT GXGT

 (4)

Where A is the Approximation of X , V is the Vertical
difference of X , H is the Horizontal difference of X , and
D is the Diagonal difference of X . For an image with the size
of (n × n), the extracted features size is (n/2 × n/2). The
wavelet transform level is the number of the times of wavelet
feature extraction. At J th level, the extracted feature size is
(n/2J × n/2J ).

b) DWT using Convolution: Given decoding high pass
and low pass filters H,L respectively, we use convolution with
correlations of the form :

Yk,l =
∑

ψijXi+k,j+l. (5)

We assemble the encoding filters by stacking the Low-Low,
horizontal, vertical, diagonal filters. For a d value filter where
d ∈ {2, 3, 4, 5}, the filter bank per channel has the dimensions
of size (4, d, d). Haar has d = 2 value filter. For input of
size (N × C × H ×W ) the filter bank size for convolution
is (4 × C,C, d, d) with 2 as the stride and no padding.
The convolution output is of size (N,C, 4, H/2,W/2) where
A,V,H,D are stacked on 3rd dimension.

c) Channel Attention: Convolution Neural Networks rely
heavily on channel attention mechanisms. The idea is to re-
calibrate the channel weights based on relative importance to
the general task. Suppose that X ∈ RC×H×W is an instance
of a deep image feature, C is the channel count, H is the
feature height, and W is the feature width. As discussed
in Sec. I, the channel attention process aims to summarize
the channel content into a scalar value. Hence the channel
attention mechanism described initially by SENet [] can be
written as:

att = excite(squeeze(X)))

= sigmoid(fc(GAP (X)))
(6)

where att ∈ RC is attention vector, sigmoid is Sigmoid
function, fc is a mapping function such as a fully connected
layer or an one-dimensional convolution, and squeeze (GAP):
RC×H×W 7→ RC×1×1 is a compression method. After acquir-
ing the attention vector of all C channels, all channels of input
X are scaled by their corresponding importance value:

X̃N,C,W,H = attN,C,1,1 ·XN,C,W,H (7)

where att, X , and X̃ are the input, attention vector and
attention mechanism output.

Typically, global average pooling is used as the compres-
sion method [6], [36]. Other popular compression methods
are global max pooling [35] and global standard deviation
pooling [50].

B. Interdependent Channel Attention

In this section, we start by highlighting weaknesses of the
current channel attention mechanisms. Based on the theoretical
analysis, we then discuss our proposed design to overcome
those weaknesses.

a) Wavelet Channel Attention: As discussed in
Sec. III-A, DWT extracts four main features of an image.
With the proof, We demonstrate that GAP is equivalent to
the recurrent approximation of the input image when Haar
wavelet transform is used.

Theorem 1. For an image X with the size of H ×W , GAP
is an exceptional case of 2D DWT with result proportional to
the log2 (max (H,W )) level approximation using 2D Discrete
Haar Wavelet Transform (DHWT).

Proof. The proof is divided into two transforms. The first
transform is applied to the input image X to get a padded
version with equivalent global average pooling. If the image
X isn’t divisible by 2 in both dimensions, we pad X to get
an image A = P (X) with GAP (X) = GAP (A). If the input
image is already divisible by 2 in both dimensions, we define
P to be the identity function.

Next we get GAP (B) = GAP (P (A)) = GAP (X). You
can repeat this argument until B is a 1x1 and GAP (B) = b.
To do so, we introduce the second transform T. If B = T (A),
for T being the transform, we have

Bi,j = (A2i,2j +A2i+1,2j +A2i,2j+1 +A2i+1,2j+1)/4. (8)

From this, it follows that
I,J∑

i=1,j=1

Bi,j = 1/4 ∗
2∗I,2∗J∑
i=1,j=1

Ai,j (9)

which implies that GAP (B) = GAP (A). Since
GAP (A) = a if a is a 1x1 matrix, the proof is complete
by induction. ■

b) Orthogonal Linearly Independent Channel Attention
Module: Theoretical analysis and Theorem 1 support that
GAP in the channel attention mechanism only uses the average
approximation feature while a diverse variety of potential
features are discarded. However, the discarded features may
also encode the useful information patterns in representing
the channels and should be taken into consideration in the
compression phase. To mathematically derive a more diverse
and meaningful compression method of channel information,
we propose to generalize GAP to more wavelet filters and
compress more information with multiple different wavelets.

ResNet has two main blocks, Basic Block and Bottleneck
Block. Basic has 4 channel sizes 64, 128, 256, and 512.
Bottleneck has 6 channel sizes 64, 128, 256, 512, 1024,
and 2048. In case of basic Block, we initialize 4 random
interdependent orthogonal filters of same size as channels and
we train the network on those filters. For the Bottleneck, we
use the same filters for the channels sizes that are shared
with the Basic Block. For the channels 1024 and 2048, we



(a) Original SENet

(b) WaveNet-C Orthogonal Interdependent Channel Attention

Fig. 1. Illustration of existing channel attention and Orthogonal Interdependent channel attention. The 2D DWT are initialized randomly then Orthogonalized
using Gram-Schmidt process. We can see that our method uses a variety of filters, while SENet only uses GAP in channel attention. Best viewed in color.

split the channels to chunks of size 512 and we initialize
those extra 4 filters of size 512 with new random orthogonal
weights to enforce catching more diverse information during
the compression phase.

The input X is passed through a separate orthogonal linearly
independent wavelet compression module to represent diverse
interdependent channel information. In this way, we express
the basic compression (CB) as follows:

CB(X) = DWTJ(X), (10)

in which the recursive wavelet level J = log2{H}. X ∈
RC×H×W is the input feature, and C(X) ∈ RC is the C-
dimensional vector post compression. Similarly, bottleneck
compression (CBN ) is described as follows:

C(X)BN =

{
CB(X) C = 64, 128, 256, 512

CAT (CB(X512)) C = 1024, 2048
(11)

where CAT is the concatenation function along the channel
dimension and X512 is the split of the input X of size 512
along the channel dimension.

The final orthogonal interdependent channel attention can
be expressed as:

Attention(X) = sigmoid(fc(C(X))). (12)

From Eqs. 10, 11 and 12, it is demonistrated that out model
performs a set of Wavelet transforms and extracts channel di-
verse compression representations of channel information. By
incorporating those extra information in the final description
we notice a major improvement in the channel representation.
Fig. 1 illustrates the overall concept of our method.

c) Wavelet Filter Choice: One important decision for
the network is to pick the wavelet to perform on a specific
channel. Our baseline network named Wavenet perform Haar
approximation on all channels and achieve SENet results. In
order to fulfill the orthogonal interdependent channel attention,
we propose Wavenet-C. We discuss more about those networks
in the following subsections.

WaveNet means WaveNet weights the components of
wavelet compression within each step of the deep wavelet
compression. Its main idea is to improve the compression by
including the vertical, horizontal, and diagonal components.
First, the network determines the importance of each frequency



TABLE I
RESULTS OF THE IMAGE THE CLASSIFICATION TASK ON IMAGENET OVER DIFFERENT METHODS. BESIDES THE AANET, WHICH HAD NO OFFICIAL CODE

IMPLEMENTATTION, ALL METHODS’ RESULTS ARE REPRODUCED AND TRAINED WITH THE SAME TRAINING SETTING.

Method Years Backbone Parameters FLOPS Train FPS Test FPS Top-1 acc Top-5 acc
ResNet [29] CVPR16

ResNet-34

21.80 M 3.68 G 2898 3840 74.58 92.05
SENet [6] CVPR18 21.95 M 3.68 G 2729 3489 74.83 92.23
ECANet [36] CVPR20 21.80 M 3.68 G 2703 3682 74.65 92.21
FcaNet-LF ICCV21 21.95 M 3.68 G 2717 3356 74.95 92.16
FcaNet-TS ICCV21 21.95 M 3.68 G 2717 3356 75.02 92.07
FcaNet-NAS ICCV21 21.95 M 3.68 G 2717 3356 74.97 92.34
WaveNet-C BigData22 21.95 M 3.68 G 2717 3356 75.06 92.376

component. Then, it investigates the effect of adding those fre-
quency components together through the recurrence process.

WaveNet-C means WaveNet with selective wavelet filters.
We use the convolution based wavelet transform and we assign
orthogonal independent filters for channel compression. We do
so by randomly initializing the filters then applying the gram-
schmidt process to orthogonality those filters thus forcing
the network to diversify the information compressed by each
channel therefore achieving better classification in general.

IV. EXPERIMENTS

In this section, we began by describing the experimental
details of our implementation. Then, we discuss the technique
of information compression in our framework, complexity, and
code implementation. Lastly, we discuss the accuracy of our
method on image classification, object detection, and instance
segmentation tasks.

A. Implementation Details

We utilize ResNet-34, as backbone model to evaluate the
proposed WaveNet on ImageNet [51]. We comply with data
augmentation and hyper-parameter settings in [29] and [52].
Specifically, with random horizontal flipping, the input images
are cropped randomly to 256×256. To do so, we modify
ResNet architecture to allow the input size to be 256 instead
of 224. During training, the SGD optimizer is set with a
momentum of 0.9. The learning rate is 0.2, the weight decay is
1e-4, and the batch size is 256 per GPU. All models are trained
within 100 epochs using Cosine Annealing Warm Restarts
learning schedule and label smoothing. To foster convergence,
for every 10 epochs, the learning rate scales by 10% of the
previous learning rate. We further adopt the Nvidia APEX
mixed precision training toolkit and Nvidia DALI library for
fast data loaders for training efficiency.

All models are implemented in PyTorch [53] and tested on
two Nvidia Quadro RTX 8000 GPUs.

B. Discussion

a) How the Orthogonal Linearly Independent filters com-
presses and embeds more information: In Sec. III-B, we prove
that solely adopting the vanilla GAP in the channel attention
discards information from all filters except the Haar filter, i.e.,
GAP. Therefore, designing the filters to be orthogonal and
linearly independent using the Gram-Schmidt method would

force the network to diversify the information extracted in the
channel attention compression phase.

We also provide a theoretical basis to show that more
information could be embedded. By nature, deep networks
are redundant [54], [55]. If two channels contain redundant
information, then the application of GAP on these channels
are likely to return repetitive information. On the other hand,
our multi-spectral framework extracts less superfluous infor-
mation from redundant channels since the inherent diverging
frequency components contain different information. Thus,
our multi-spectral framework can embed more unique salient
information in the channel attention mechanism.

b) Complexity analysis: We analyze the complexity of
our framework through the number of parameters and the
computational cost. Our method does not impose no extra
parameters compared with the baseline SENet that introduced
the vanilla channel attention since the filters of 2D DWT
are pre-computed constant. The negligible increase in the
computational cost is also similar to computational cost of
SENet. With ResNet-34 backbone, the relative computational
cost increases of our method is 0.05% compared with SENet,
respectively. More results can be found in Table I.

c) A Few lines of code change: Another strength of
the proposed wavelet attention framework is that it can be
integrated into existing diverse variants of channel attention
implementations. The major distinction between our method
and SENet is the adoption of different channel compression
method (multi-spectral 2D DWT vs. GAP). As discussed in
Sec. III-A0b and Eq. 5, 2D DWT can be viewed as a constant
filter convolution of inputs. It can be simply implemented
via a Conv2D layer. Accordingly, arbitrary channel attention
methods can adopt our framework easily.

V. CONCLUSION

In this paper, we proposed the WaveNet, an efficient, flexible
framework for improving channel attention’s power in captur-
ing salient features that can easily incorporate into existing
channel attention-based models. Theoretically, we prove that
the conventional GAP is the recurrent approximation compo-
nent of the DHWT that discards all channel information in all
filters except the Haar filter. Hence WaveNet tackles channel
attention as a compression problem and introduces DWT
to preserve more unaccounted channel-wise features under
GAP. We further introduce WaveNet-C, a custom orthogonal



linearly independent wavelet to best fit the compression task
for channel attention, and effective wavelet filter selection
criteria and parameter reduction techniques. Empirically, our
method persistently improves the performance of channel
attention mechanism in ImageNet classification task without
raising significant parameters and computation costs relative to
existing frameworks. Our future works include extending our
method for bigger ResNet networks like ResNet-50, ResNet-
101; introducing other tasks and datasets like segmentation and
object detection on COCO dataset; and incorporating delayed
learning for the wavelet filters to further improve our method
accuracy.
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