
Vehicle re-identification and trajectory reconstruction usingVehicle re-identification and trajectory reconstruction using
multiple moving cameras in the CARLA driving simulatormultiple moving cameras in the CARLA driving simulator
This paper was downloaded from TechRxiv (https://www.techrxiv.org).

LICENSE

CC BY 4.0

SUBMISSION DATE / POSTED DATE

07-11-2022 / 10-11-2022

CITATION

Kumar, Ashutosh; Kashiyama, Takehiro; Maeda, Hiroya; Zhang, Fan; Omata, Hiroshi; Sekimoto, Yoshihide
(2022): Vehicle re-identification and trajectory reconstruction using multiple moving cameras in the CARLA
driving simulator. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.21513768.v1

DOI

10.36227/techrxiv.21513768.v1

https://www.techrxiv.org
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.36227/techrxiv.21513768.v1

Vehicle re-identification and trajectory
reconstruction using multiple moving cameras in

the CARLA driving simulator
Ashutosh Kumar

Institute of Industrial Science
The University of Tokyo, Japan

ashutosh@iis.u-tokyo.ac.jp

Takehiro Kashiyama
Faculty of Economics

Osaka University of Economics, Japan
t.kashiyama@osaka-ue.ac.jp

Hiroya Maeda
UrbanX Technologies, Inc.

Tokyo, Japan
hiroya maeda@urbanx-tech.com

Fan Zhang
Department of Civil and Environmental Engineering

The Hong Kong University of Science and Technology, Hong Kong
cefzhang@ust.hk

Hiroshi Omata
Center for Spatial Information Science

The University of Tokyo, Japan
homata@iis.u-tokyo.ac.jp

Yoshihide Sekimoto
Center for Spatial Information Science

The University of Tokyo, Japan
sekimoto@csis.u-tokyo.ac.jp

Abstract—Analyzing vehicle movement trajectories is essential
for understanding urban mobility and traffic flow patterns.
Obtaining a reliable estimate of vehicle trajectory is challenging
as it requires the vehicle to be observed and re-identified at
different locations and times. Recently, a scalable citywide traffic
flow estimation method has been proposed utilizing moving
cameras on vehicle dashboards. As moving cameras constantly
interact with their surroundings, they provide valuable informa-
tion about the urban environment that can be used to estimate
vehicle trajectories. This study extends the recently proposed
method for traffic flow estimation by using cameras mounted
on multiple moving observers to reconstruct the trajectory of
detected vehicles. We develop the CARLA ReID dataset, which
includes more than 50,000 images taken from 85 cameras for over
700 different vehicle models, and train a re-identification network
to identify the same vehicle by multiple observers. Utilizing our
proposed methodology, we conduct extensive research to estimate
trajectories of vehicles in a driving simulator CARLA and evalu-
ate the accuracy of reconstructed trajectories using Symmetrized
Segment-Path Distance (SSPD) and Hausdorff Distance metrics.
Our proposed method achieves a mean error of 5.13 meters
evaluated using the SSPD metric for ten driving experiments in
CARLA. Findings from this study will provide valuable insights
for conducting traffic flow research in a simulation environment,
which is otherwise challenging and costly in practice.

Index Terms—CARLA, ITS, OSNet, ReID, Vehicle trajectory

I. INTRODUCTION

Reconstruction of vehicle trajectory is crucial to under-
standing traffic mobility patterns as they contain rich spatial
and temporal information about the traffic flow. When the
same vehicle is observed at different places and times, it is
possible to reconstruct its rough trajectory. Since there can
be several vehicles in the traffic stream, the same vehicle

needs to be identified by multiple observers. Camera sensors
such as surveillance cameras observe traffic flow at different
locations and can be used to re-identify vehicles for trajectory
reconstruction research and applications.

Various research has been conducted to re-identify vehicles
and reconstruct their trajectories. The study conducted in [1]
estimates vehicle trajectories at signalized intersections under
the Connected and Automated Vehicle (CAVs) environment.
Research conducted in [2] developed a framework VeTrac that
uses surveillance cameras to trace vehicle movements and
reconstruct the trajectory. Further, they use graph convolution
to maintain identity consistency across multiple cameras and
a self-training process to align the trajectories on the road
network. Another research [3] introduced a two-step process
based on wavelet analysis for filtering errors and reconstruct-
ing trajectories.

The use of static cameras in previous studies has limited
the ability to observe vehicles beyond the location where the
cameras were installed. Many previous research studies lack
generalizability and scalability because they have a number of
parameters. Additionally, it may not be possible for everyone
to reconstruct vehicle trajectories through large-scale surveil-
lance cameras due to data procurement issues.

In recent studies [4], [5], the authors propose a novel
framework using vehicle detection, vehicle tracking, vehicle
localization, and map-matching on the OpenStreetMap road
network for estimating traffic flow parameters from moving
cameras mounted on the dashboard of a car. The authors
suggest using crowd-sourcing for citywide traffic flow estima-
tion, making the method highly scalable. Another study [6]

Fig. 1. The framework for the reconstruction of trajectory using two observers. The vehicles are detected/tracked and their distance and angle from the
ego/observer vehicle is calculated to localize (e.g., Pi

det) them on the map. A vehicle re-identification neural network finds the closest matching vehicles
using L2 loss on the feature vectors. Re-identified detected vehicles’ position is used to reconstruct the trajectory using shortest path algorithm.

extends the methodology introduced in [4] to estimate traffic
flow in a driving simulator CARLA to verify the efficacy of
the proposed algorithm [4] under a variety of environmental
conditions.

Conducting driving experiments in the real world for trajec-
tory reconstruction research using computer vision techniques
is extremely challenging since we need to set up cameras
at different locations and also have multiple target vehicles
for generalization. Alternatively, a driving simulator such as
CARLA provides a realistic virtual environment to conduct
various experiments. Similar to the research conducted in [6]
for traffic flow estimation using multiple moving cameras in
a driving simulator, we use the CARLA driving simulator to
develop a fully computer vision-based approach to reconstruct
vehicle trajectory, as shown in Fig. 1. Specifically, we:

• Develop a large-scale vehicle re-identification (ReID)
dataset in the CARLA driving simulator with more than
50,000 images to train a ReID model and validate its
performance on synthetic and real-world [7] data sets.

• Use YOLOv7 [8] object detection network with SORT [9]
to estimate distances and angles of the detected vehicles
for localization and map-matching.

• Re-identify the same vehicles from multiple moving
observers using the vehicle re-identification network with
OSNet [10] backbone.

• Estimate the trajectory of the re-identified vehicles using
the shortest path algorithm utilizing distance heuristic and
assess the similarity between the estimated trajectory and
ground truth using two metrics – Symmetrized Segment-
Path Distance and Hausdorff distance.

II. METHODOLOGY

In the following subsections, we describe the necessity
and details of the CARLA driving simulator, development
of the CARLA ReID dataset for vehicle re-identification,
vehicle detection and tracking, vehicle localization, vehicle

re-identification, trajectory estimation techniques, evaluation
metrics, and driving experiment details.

A. CARLA driving simulator

Conducting driving experiments in the real world for au-
tonomous driving research and applications is challenging and
expensive. A driving simulator simulates a variety of environ-
ments and generates dynamic camera images at any time and
location. In this research, we use the CARLA driving simulator
(0.9.13) [11], which has a client-server-based framework to
simulate driving experiments for various autonomous driving
research and applications. CARLA’s simulation engine runs
on Unreal Engine 4 to create highly realistic, physics-based
environments. CARLA offers various environments known
as Town for conducting experiments, such as urban towns,
rural areas, highways, etc. It also provides various vehicle
class models along with several customization options for the
simulation environment. Lights, weather, traffic, camera, etc.,
inside the simulation environment can be controlled through
the client using Python API, as shown in Fig 2.

B. CARLA ReID dataset

Conducting driving experiments in the real world for vehi-
cle re-identification data collection is challenging, expensive,
and time-consuming. For preparing a vehicle re-identification
dataset, every unique vehicle needs to be identified and labeled
manually from multiple camera sources. Research conducted
in [7] captured vehicle images from up to 20 surveillance
cameras in an unconstrained traffic scenario to develop the
VeRi dataset. Another study [12] developed a large-scale
vehicle re-identification dataset from synthetic vehicle models
prepared in Unity called the VehicleX dataset. Though it
reduces the manual labeling of the images, nevertheless, they
have only vehicle images from varying perspectives without
any context, like a traffic stream on the road.

Fig. 2. CARLA (0.9.13) has nine different simulation environments. The
light and weather can be customized or kept dynamic with adjustable rate.
The camera attached to the ego vehicle can also be moved anywhere in the
simulation world for different applications.

In this study, we leverage the CARLA driving simulator
and prepare a large-scale synthetic vehicle re-identification
dataset called the CARLA ReID dataset, consisting of four
vehicle classes such as cars, trucks, motorcycles, and bicycles.
CARLA offers 39 models for all classes of vehicles, such as
Audi A2, Mini Cooper, Tesla Model 3, Tesla Cybertruck, etc.
As mentioned previously, the camera in the CARLA driving
simulator can be customized and placed at any location in the
simulation world. We consider 85 fixed locations of cameras
to observe the same vehicles. The 85 locations of cameras are
chosen manually at various distances around the vehicle. For
each vehicle, 85 images are captured and stored with labels
such as vehicle type, vehicle ID, and camera ID.

New models of vehicles can be prepared and imported,
however, CARLA has the option to change the vehicle color
for 35 out of 39 vehicle models, which can be used to
create new vehicles. In such cases, the vehicle model remains
the same; however, a new unique vehicle (vehicle ID) is
created. We consider various colors, such as black, light-gray,
silver, red, green, etc., to create additional vehicle IDs for the
compatible 35 vehicle models, as shown in Fig. 3.

55,196 images are generated from 700 different vehicle
models, i.e., 700 distinct vehicle IDs, with 650 vehicles
containing 50,949 images for training, 50 vehicles containing
424 images for query, and 3,823 images for gallery. A vehicle
re-identification model tries to match each vehicle ID in the
query set to the corresponding vehicle ID from a different
camera in the gallery set, as explained later in Section II-E.

C. Vehicle detection and tracking

1) Vehicle detection using YOLOv7: For the detection of
vehicles inside the CARLA driving simulator, we use the
vehicle orientation dataset [4] to train a YOLOv7 model [8]
to detect both vehicle class and orientation. The main reason
to choose YOLOv7 to train the vehicle detection neural
network is that YOLOv7 is significantly lightweight (75%
reduction in parameters with 1.5% higher AP for the same base
model) compared to its real predecessor YOLOv4 [13], [14]
while achieving improved benchmark results on the COCO
dataset [15].

We use the base model of YOLOv7 with pre-trained weights
on the COCO dataset with an input size of 640×640. We first
train with the real-world images from the vehicle orientation
dataset [4] for 100 epochs with a learning rate of 0.001 on
four Tesla A100 GPUs [16] and then use the synthetic vehicle
orientation dataset [6] to fine-tune the next ten epochs with
a reduced learning rate of 0.0001 to prevent large changes in
the parameters. It should be noted that the vehicle orientation
dataset contains 15 classes of vehicles, while the synthetic
vehicle orientation dataset has 12 classes of vehicles due to the
absence of bus class; thus, bus front, bus back, and bus side
classes are not present. Thus, we keep the output size of 15
for fine-tuning weights. It is also important to note here that
during training, we do not consider image augmentation tech-
niques such as image flipping in any direction because such
augmentation will produce images with incorrect labels. For
all subsequent experiments, we use the weight that achieves
the best mAP on the validation set of the synthetic vehicle
orientation dataset.

2) Vehicle tracking using SORT: When a vehicle is detected
in a frame, it needs to be identified by assigning a unique
ID and tracked over consecutive frames, as object detection
models such as YOLOv7 detect vehicles independently across
consecutive frames. Identifying identical vehicles in the image
frames is necessary to consider a detected vehicle only once
for re-identification/matching. If vehicles are not tracked,
multiple images of the same vehicle from consecutive frames
will exist in the search space for vehicle re-identification.

In this research, we consider an online lightweight tracker
SORT for tracking vehicles. SORT tracks objects by linear ve-
locity model using Kalman filter and association of detections
to tracks using Hungarian algorithm considering Intersection
over Union (IoU) metric. There exists an improved version
of SORT with a CNN-based feature descriptor known as
DeepSORT [17], which is good at tracking lost objects after
their reappearance in the image. In our problem, no lost objects
need to be tracked; thus, a simple Kalman filter-based tracking
algorithm is sufficient.

As tracker state of the original SORT algorithm considers
only single object class, similar to the research conducted
in [4], we modify the state of the tracker to include the detected
vehicle class (η), as shown in Eq. 1.

Ψ = [ϵ, a, r, ϵ̇, ȧ, η]T (1)

Fig. 3. Sample images from the CARLA ReID dataset, resized to the same dimension for visualization. Fig. (a) shows the variation of vehicle models and
colors in the CARLA ReID dataset. CARLA ReID dataset contains four classes of vehicles such as car, truck, motorcycle, and bicycle. Fig. (b) shows the
camera angle variation for observing the same vehicle. Each vehicle is observed by 85 cameras located at varying distances surrounding the target vehicle.

In Eq. 1, ϵ, a, r, and η represent center of the bounding box
coordinates, area of the bounding box, aspect ratio (assumed
constant), and vehicle class, respectively. The change in the
center of the bounding box coordinates and its area is repre-
sented using ϵ̇ and ȧ, respectively.

D. Localization of detected vehicles
To localize the detected vehicles on the map, we need to

know their position, which can be estimated using the ego
vehicle’s position and the distance and angle of the detected
vehicles with respect to the ego vehicle.

1) Distance of the detected vehicles: To estimate the dis-
tance of the detected vehicles from the ego vehicle, we use the
photogrammetry approach presented in [18], which states that
the ratio of object size in the real-world (Hreal,m) and its size
in image coordinates (Himage,m), considering same units (say
meters), is equal to the distance of the object from the camera
sensor (D) and focal length (f), as shown in Eq. 2. In Eq. 2,
we consider the height dimension of the object/image/camera
sensor to estimate the distance of the object from the camera
sensor.

Hreal,m

Himage,m
=
D
f

(2)

The dimension of the object in image reference frame by
digital cameras is measured in terms of pixels Himage,px,
which is related to the metric unit Himage,m using sensor
size (µh) and image resolution height (IH) as Himage,m =
µh×Himage,px

IH
. Replacing Himage,m in Eq. 2, we can obtain

the distance of the object in meters, as shown in Eq. 3.

D =
Hreal,m × f × IH
µh ×Himage,px

(3)

In Eq. 3, Hreal,m is considered fixed for different classes
of vehicles. For cars, trucks, bicycles/motorcycles, the average
height is considered to be 1.6 meters, 3.5 meters, and 1.45
meters, respectively. Himage,px is known through the height of

the bounding box coordinates of the detected vehicles from the
object detection network YOLOv7. IH is also a constant height
of the image resolution. The value of real-world camera’s
focal length (f) and sensor size (µh) is known through
sensor specifications. However, in CARLA, these values are
unknown, and thus we obtain the focal length by considering
its relationship with the camera field of view (FOV) and image
resolution width (IW), as shown in Equation 4.

f =
IW

2× tan(FOV × π
360)

(4)

In the CARLA driving simulator, we consider an FOV of
90 degrees and an image resolution width of 1,280 pixels
for carrying out experiments, which is used to calculate f
in Eq. 4 as 640-pixel units. The only parameter unknown in
Eq. 3 is the sensor height µh of the camera, which is estimated
considering it as the only variable in Eq. 3 using 51 known
ground truth distances of different vehicles. The average value
of µh from 51 observations is calculated to be 599.46-pixel
units [6], which we use in Eq. 3 to calculate the distance of
detected vehicles.

2) Angle of detected vehicles: To estimate the angle (θ) that
the detected vehicles make with respect to the ego vehicle,
we make use of the camera matrix (K), which is used to
project 3D coordinates in the real world onto the image plane.
Conversely, the inverse of the camera matrix (K−1) can be
used to project image coordinates to 3D rays in the real world.
While the real-world cameras need to be calibrated to obtain
the camera matrix, the camera sensor in the CARLA driving
simulator is considered ideal and distortion-free and hence can
be obtained directly using focal length (fx, fy) and optical
center (IW /2, IH/2) as shown in Eq. 5.

K =

fx 0 IW /2
0 fy IH/2
0 0 1

 (5)

Considering the inverse of the camera matrix, we obtain one
ray passing through the image center (IW /2, IH/2), which
represents a ray along the forward direction of the ego vehicle
and the other ray through the centroid of the detected vehicles
(cx, cy), as shown in Eq. 6 and Eq. 7, respectively.

−→rI = K−1 · [IW
2

IH
2

1]T (6)

−→rc = K−1 · [cx cy 1]T (7)

The angle θ between the ego vehicle’s direction and detected
vehicle is obtained using the cosine law for −→rI and −→rc , as
shown in Eq. 8.

θ = arccos
−→rI · −→rc
∥−→rI∥∥−→rc∥

(8)

3) Vehicle localization and map-matching: Once the dis-
tances and angles of the detected vehicles with respect to the
ego vehicle are estimated, their positions can be determined
using the ego vehicle’s location. In CARLA, a coordinate (x,
y, z) is represented using the Cartesian coordinate system, as
shown in Fig. 4. If the position of the ego vehicle is (xego, yego,
zego), the position of the detected vehicle (xi

det, y
i
det, z

i
det) at

a distance Di and angle θi, considering positive direction of
axes shown in Fig. 4 can be calculated, as shown in Eq. 9.

xi
det = xego +Di cos θi

yidet = yego +Di sin θi

zidet = zego

(9)

In Eq. 9, we consider the z-coordinate of the detected and ego
vehicle as the same since the road surface is almost flat within
the camera’s FOV.

Once the detected vehicle’s position is estimated, the po-
sition can be map-matched on the road network to obtain a
waypoint (W). In CARLA, a waypoint W consists of four
parameters, which are road ID, section ID, lane ID, and
distance (s) from the beginning of the road section, as shown
in Fig. 4. It should be noted that in CARLA, the sign of lane ID
for one direction is opposite to another direction. As shown in
Fig. 4, the lane IDs on the side of the ego vehicle are positive
compared to the opposite direction lanes. It is important to
know the waypoint information during the reconstruction of
the trajectory, as explained in Section II-F.

E. Vehicle re-identification
To identify the same vehicle across several vehicles detected

by multiple observers, it is necessary to carry out vehicle
re-identification. Given a query vehicle and a gallery of
several vehicles, the vehicle re-identification problem refers
to identifying the query vehicle from the vehicle gallery.

The backbone of the vehicle re-identification networks
commonly use CNNs such as ResNet [19]. However, such
CNNs are generic and developed for object recognition tasks.
Recently, specific networks for re-identification problems have
been developed. OSNet [10] is an Omni-scale feature learning

Fig. 4. The waypoint W of the estimated position (xi
det, yidet, zidet) of the

detected vehicle is obtained from a hash combination of road ID, section ID,
lane ID, and distance s from the beginning of the road section.

network specifically designed for the re-identification of ob-
jects such as persons, vehicles, etc. Re-identification networks
with a CNN backbone can be trained using the softmax loss
function or a ReID specific loss function – triplet loss [20].
During our preliminary experiment on the VeRi dataset, how-
ever, we find the performance of softmax to be better than
the triplet loss, and thus we only consider softmax loss for
training ReID networks for further experiments.

We use the VeRi dataset and the CARLA ReID dataset
to train vehicle re-identification network using six backbones
– ResNet-50, ResNet-152, InceptionV4, OSNet ain x1, OS-
Net ibn x1, and OSNet x1 with softmax loss function for
60 epochs. The hyperparameters of the model are shown in
Table I. Finally, we select the model with the best Cumulative
Matching Characteristics (CMC) curve top-1 accuracy, which
is defined as shown in Eq. 10. The ranking in the CMC curve
is estimated using the L2 loss between the query vehicle image
and vehicles in gallery images.

Acck =

{
1, query in the top-k ranked gallery vehicles
0, otherwise

(10)
Further, for the model trained on the CARLA ReID dataset,

we also evaluate its accuracy on the real-world images of
the validation set of the VeRi dataset to understand the
performance of the model trained on synthetic images on real-
world images.

During the driving experiment in the CARLA driving
simulator, we re-identify the vehicle only when the distance

TABLE I
HYPERPARAMETERS OF THE REID MODEL WITH DIFFERENT BACKBONES.

Hyperparameter Value
Learning rate 0.0003

Input size 256× 256
Loss function Softmax

Optimizer Adam [21]
Output feature vector 512

between the ego vehicle and the detected vehicle is less
than 15 meters. This is done to improve the accuracy of
the re-identification since the vehicle size would be larger
compared to if it was re-identified at a farther distance. This
consideration improves not only the re-identification but also
the estimated position of the vehicles as they are much closer
to the ego vehicle [6]. Further, it also reduces the tracking
failure reducing the redundant images in the search space
during re-identification.

F. Trajectory reconstruction

Once a target vehicle is re-identified at different locations
by the observer/ego vehicles, its rough trajectory can be
estimated considering its obtained positions, as mentioned in
Section II-D. Apart from the position of detected vehicles,
we also store attributes such as the timestamp of detection/re-
identification, vehicle orientation, and position of the ego
vehicle. If there are n observed locations for a target vehicle,
we estimate its complete trajectory by n − 1 pairs of tra-
jectory based on the timestamp of detection/re-identification.
For estimating the trajectory between two positions, we con-
sider the shortest path between those two locations using
the A* search algorithm with distance as a heuristic using
NetworkX [22]. calc traj function in Algorithm 1 shows
feature extraction of detected vehicles for re-identification and
trajectory reconstruction.

Further, it is important to note here that the estimated
position using Eq. 9 may sometimes contain some errors. For
example, if for one of the estimated positions, the detected
vehicle is on the opposite lane of the ego vehicle and due
to errors, say in the distance, the estimated position lies in
the same direction lanes as the ego vehicle, the estimated
path between the two positions can be quite large. As shown
in Fig. 4, lanes in opposite directions have different signs,
which we use to solve the occurrences of estimated position
on the wrong lane, as shown in Algorithm 1. For example,
if the orientation of the detected vehicle is front, it should
lie on the opposite lane of the ego vehicle. However, if
the lane ID is the same as the ego vehicle, we find a new
waypoint by multiplying lane ID with −1 without changing
the road ID, section ID, or distance from the beginning of the
road. This creates a new waypoint in the opposite direction
of the ego vehicle, from which we extract the position for
trajectory calculation. A similar procedure is repeated for
vehicles with back orientation such that the direction of the
ego vehicle and the detected vehicle is the same, as shown in
the correct position function of Algorithm 1.

Algorithm 1: Re-identification & trajectory estimation

1 Function correct_position(veh, ego):
// Corrects detected vehicle direction

2 if veh.road ∩ ego.road then
3 if (veh.orient ∩ ‘ front’) ∩ (veh.lane ⊕

ego.lane > 0) then
// Opposite direction to ego vehicle

4 veh.lane ← veh.lane × -1
5 end if
6 if (veh.orient ∩ ‘back’) ∩ (veh.lane ⊕

ego.lane < 0) then
// Same direction as ego vehicle

7 veh.lane ← veh.lane × -1
8 end if
9 end if

10 return (veh.x, veh.y)
11 End Function
12 Function calc_traj(ego1, ego2, veh t1, [] veh2):
13 veh1 t1 f ← extract feature(veh t1.image)

// Extract feature for target vehicle

14 [] veh2 f ← extract feature(veh2.images)
// Search space for re-identification

15 veh t1, veh t2 ← Lmin
2 (veh t1 f, [] veh2 f)

// Re-identify the vehicle at time t2

16 veh t1 pos ← correct position(veh t1, ego1)
17 veh t2 pos ← correct position(veh t2, ego2)

// Correct direction for front, back

18 P ← shortest path(veh t1 pos, veh t2 pos)
// P −→ Corrected trajectory

19 End Function

The switching of the lane by multiplication with −1 only
works when the road ID is the same, as shown in Fig. 4. This
is due to the OpenDrive map [23] standard that comprises
the CARLA road network, which does not guarantee that the
consecutive road sections follow the same signs for lane ID.
Thus if the right side of a road section has a positive lane
ID, the next road section will not have the same case and is
arbitrary.

For the evaluation of the reconstructed trajectory compared
to the ground truth path, we consider the following two
metrics:
Symmetrized Segment-Path Distance (SSPD): SSPD [24] is
a shape-based distance, which considers the entire trajectory
and is less affected by noise, and it is calculated using
Segment-Path-Distance (SPD). Consider Dxt as the distance
from a point x to a trajectory T defined as the minimum
of distances between this point (x) and all segments S that
compose T . The SPD between two trajectories T 1 and T 2 is
the mean of all distances from points that compose T 1 to the
trajectory T 2.

DSPD(T 1, T 2) =
1

n1

n1∑
i1=1

Dxt(x
1
i1, T 2) (11)

where Dxt(x
1
i1, T 2) = mini2∈[0,..,n2−1]Dxs(x

1
i1, s

2
i2) The

SPD, however, is not symmetric, which means that
DSPD(T 1, T 2) = 0 if T 1 is a very small trajectory of T 2.
However, in this case DSPD(T 2, T 1) will be a very large
number. The SSPD is then defined using SPD as shown in
Eq. 12.

DSSPD(T 1, T 2) =
DSPD(T 1, T 2) +DSPD(T 2, T 1)

2
(12)

Distance between points can be considered using both the
Spherical or Euclidean systems. In this study, we consider
the Euclidean system to calculate distances between points
for calculating the SSPD metric.
Hausdorff Distance: Hausdorff Distance (HD) [25], [26]
measures the dissimilarity between two point sets and is used
primarily for pattern matching and evaluating the quality of
clusters. The directed Hausdorff distance Ĥ between two
trajectories T 1 and T 2 is defined as the maximum of distances
between each point x ∈ T 1 to its nearest neighbor y ∈ T 2 as
shown in Eq. 13.

Ĥ(T 1, T 2) = maxx∈T 1 [miny∈T 2(∥x, y∥)] (13)

Similar to the SSPD metric, for estimating the distance
between points ∥x, y∥, we consider the Euclidean distance
function. The directed Hausdorff distance is not symmetric as
Ĥ(T 1, T 2) ̸= Ĥ(T 2, T 1). The Hausdorff Distance (HD) H
is defined as the maximum of the directed Hausdorff distance
in both directions, and hence is symmetric, as shown in Eq. 14.

H(T 1, T 2) = max[Ĥ(T 1, T 2), Ĥ(T 2, T 1)] (14)

The main difference between SSPD and HD is the way
distance is calculated between the two trajectories. If there
is a point on one of the two trajectories, HD measures the
longest distance, which one must travel from the point to the
other trajectory, while SSPD measures the mean distance. For
this reason, the HD metric is always greater than SSPD.

G. Driving experiment details
As part of the driving experiment, we drive through two

different virtual cities – Town01 and Town10 – of the CARLA
driving simulator during daytime normal weather conditions.
Town01 has a basic town layout with several T junctions,
while Town10 is an urban town with the most realistic textures
among all towns, with a wide variety of surrounding terrain.
Approximately, Town01 has a size of 387× 329 m2 with 160
road sections, and Town10 has a size of 217×204m2 with 200
road sections. We conduct five driving experiments in Town01
and the rest five in Town10. The simulation of each driving
experiment is finished when the target vehicle whose trajectory
is to be reconstructed reaches its final destination.

For simplification of results for visualization, we consider
that the traffic is composed of three types of vehicles –
observers, target vehicle, and self-driving agent vehicles. For
experiments, we consider up to four observers, one target
vehicle and up to 20 self driving agents in the simulation
environment. The self-driving agents are kept to 20 to avoid
traffic congestion or accidents due to unpredictable behavior

Fig. 5. Figure shows the comparison of APs for vehicles present in the
validation set of the synthetic vehicle orientation dataset. YOLOv7 VOD
refers to the model solely using real-world images in the vehicle orientation
dataset for 47 epochs, while YOLOv7 VOD FINE-TUNED refers to the
model fine-tuned with images in the synthetic vehicle orientation dataset.

of the agents due to dynamic conditions. The purpose of self-
driving agents is to provide sample search space for target
vehicle re-identification. All observer vehicles are equipped
with a camera sensor, and they detect vehicles, track vehicles,
estimate the distance and angle of the detected vehicles to
localize them, and put the detected vehicle’s image to a
database for re-identification by another program. The driver
of the target vehicle is instructed to go from an initial location
to a final location, during which it will be detected by
observer vehicles. As the target vehicle passes nearby observer
vehicles, it is detected/tracked, and the localized position of
both the observer vehicle and target vehicle, vehicle class,
and timestamp are sent to a database. At the end of the
experiment, we read attributes of the detected/tracked vehicles
and re-identify the same vehicles at different timestamps by
multiple observers, and reconstruct the trajectory, as described
in Section II-E and Section II-F.

III. RESULTS

A. Vehicle detection
We evaluate the performance of YOLOv7 for vehicle detec-

tion on the synthetic vehicle images prepared in the CARLA
driving simulator. As mentioned before in Section II-C1, we
train YOLOv7 on the vehicle orientation dataset for 100
epochs and select the weights with the highest mAP on
the validation set of the vehicle orientation dataset, which
corresponds to epoch 47 and continue to fine-tune with the
synthetic vehicle orientation dataset with reduced learning rate.
The AP of the vehicle detection before and after fine-tuning is
shown in Fig. 5. From Fig. 5, we notice that the performance
of the YOLOv7 model increases significantly after fine-tuning
the weights trained on the vehicle orientation dataset with the
images from the synthetic vehicle orientation dataset.

B. Vehicle re-identification
We train the vehicle re-identification models with six

CNN backbones – ResNet-50, ResNet-152, InceptionV4, OS-
Net ain x1, OSNet ibn x1, and OSNet x1 – with softmax
loss function for 60 epochs using the VeRi dataset and the

TABLE II
TOP-1 ACCURACY AND ITS CORRESPONDING MAP OF THE MODELS

TRAINED ON THE CARLA REID DATASET.

Backbone Top-1 accuracy mAP
ResNet-50 99.50% 98.70%

ResNet-152 99.50% 99.00%
InceptionV4 100.00% 97.10%

OSNet ibn x1 100.00% 98.30%
OSNet ain x1 100.00% 99.30%

OSNet x1 100.00% 99.30%

TABLE III
UNMATCHED AND TOP-1 ACCURACY OF THE MODELS ON THE VERI

VALIDATION DATASET CONTAINING 1,678 QUERY IMAGES.

Backbone VeRi dataset CARLA ReID
dataset

Unmatched Top-1 Unmatched Top-1
ResNet-50 55 96.72% 568 66.15%
ResNet-152 55 96.72% 563 66.45%
InceptionV4 100 94.04% 574 65.79%
OSNet ibn x1 6 99.64% 171 89.81%
OSNet ain x1 9 99.46% 169 89.93%

OSNet x1 11 99.34% 164 90.23%

CARLA ReID dataset. For the models trained on the CARLA
ReID dataset, we evaluate the top-1 accuracy on its validation
set, as shown in Table II. The validation set of the CARLA
ReID dataset contains 424 query images and 3,823 gallery
images. From Table II, we find that all the six models have a
very high top-1 accuracy. ReID-specific OSNet models achieve
perfect accuracy (100%) in the vehicle matching on the query
images of the CARLA ReID dataset.

To further assess the performance of the CARLA ReID
dataset on the re-identification of vehicles in the real world,
we also calculate top-1 accuracy on the validation set of the
VeRi dataset. The validation set of the VeRi dataset contains
1,678 vehicles in query images and 11,579 vehicles in gallery
images. Table III shows the top-1 accuracy of models trained
on the VeRi dataset and the CARLA ReID dataset on the
validation set of the VeRi dataset.

From Table III, it is evident that models with generic CNN
backbones, such as ResNet-50, ResNet-152, and InceptionV4,
trained on the CARLA ReID dataset have a drastic reduction
in the matching accuracy for real-world images in the VeRi
dataset. OSNet models trained on the CARLA ReID dataset
significantly outperform generic CNN backbone-based models
and have comparable performance with the models trained
on the VeRi dataset. Comparing results from Table II and
Table III, we select OSNet x1 model trained on the CARLA
ReID dataset in our experiment for the reconstruction of
vehicle trajectory.

C. Vehicle trajectories

We present the results of trajectory reconstruction for var-
ious trips in Fig. 6. In Fig. 6, we overlay the ground truth
trajectory (shown in red) and estimated trajectory (shown in
yellow) on the top view of each town. Fig. 6(a) – (e) and
Fig. 6(f) – (j) show the experiment results for Town10 and
Town01, respectively. The number of observers, trip distance

and the accuracy of trajectory reconstruction using SSPD and
HD metrics are also presented.

From Fig. 6, we notice that the vehicle trajectory can be
reconstructed with comparable accuracy for a range of vehicle
movements. For simple movements with small route choices,
such as Fig. 6(a) and Fig. 6(f), the accuracy is high. In some
cases, such as Fig. 6(c), Fig. 6(d), Fig. 6(e), and Fig. 6(j),
we find that some parts of the estimated trajectory do not
correspond or overlap with the ground truth. Overall, we notice
that the SSPD or HD metric are smaller for reconstructed tra-
jectory in Town01 compared to Town10 for similar movement
patterns.

IV. DISCUSSIONS

Vehicle detection using YOLOv7 on the validation set of
the synthetic vehicle orientation dataset shows good accuracy
using real-world images. After fine-tuning, the accuracy is
significantly improved and reaches almost perfect accuracy.
Compared to the vehicle detection AP on the validation set
of the synthetic vehicle orientation dataset evaluated using the
YOLOv4 model in [6], YOLOv7 significantly outperforms its
predecessor. The high accuracy can be attributed to the limited
number of vehicle models present in the synthetic vehicle
orientation dataset, which accounts for the similar distribution
of the training and validation sets.

The accuracy of various backbones for vehicle re-
identification clearly shows that OSNet models outperform
generic CNN backbones even with deeper layers such as
ResNet-152. This is not so pronounced on the validation set
of the CARLA ReID dataset since generic CNN models such
as InceptionV4, ResNet-152, etc., achieve similar accuracy.
However, the evaluation of the models trained on the CARLA
ReID dataset on the VeRi dataset shows the superiority of
OSNet. Particularly, OSNet x1 achieves the best performance
among other variants of OSNet models. Despite the CARLA
ReID dataset containing only synthetic images, it can well
match real-world vehicles with more than 90% top-1 accuracy.

We consider vehicles for re-identification only when they
are less than 15 meters from the observer vehicle. This is due
to two reasons. The first reason is that YOLOv7 can detect
vehicles when they are quite far, e.g., more than 50 meters.
Such far detected vehicles are very small in size (width and
height are in the range of 10 pixels to 50 pixels), and hence it
leads to incorrect re-identification due to less information since
the input size of images to the OSNet re-identification model
is 256× 256. By contrast, a vehicle at distances smaller than
15 meters has sizes ranging from 70 pixels to 500 pixels. The
second reason is due to the error in larger estimated distances
as presented in [6], which shows the RMSE for estimated
distances up to 60 meters to be 3.95 meters, and it reduces to
2.33 meters for distances smaller than 20 meters. A larger error
in the distance may localize the vehicle on the wrong side of
the road, thereby increasing errors in trajectory reconstruction.

Results of trajectory reconstruction show that the estimated
trajectory overlaps well with the ground truth trajectory. In
the case of Fig. 6(c), Fig. 6(d), and Fig. 6(e), the estimated

Fig. 6. Comparison of ground truth path and estimated trajectory of vehicles. The ground truth path is shown by the red line, while the yellow line shows
the estimated path. The observer vehicle’s location and ID are also shown with the arrow pointing towards the front direction of the vehicle.

trajectories do not completely overlap due to the incorrect
perception of the human driver about the shortest path for
traversing a set of positions. Moreover, we observe a slight
curve in the ground truth movement trajectory between two
points caused by the bad steering skills of the human driving
inside the simulator. In contrast, the agent makes a more
informed decision to move, which results in a mostly straight
trajectory. The curved movement is more prominent in Town10
(Fig. 6(a) to Fig. 6(e)) because Town10 has two-lane roads
compared to one lane in Town01, which gives more degree of
freedom for the driver, causing slightly curved trajectories.

The error in estimated distances can lead to the wrong lo-
calization of re-identified vehicles since we assume a constant
height for different classes of vehicles in Eq. 3. In some
of the vehicle models, the vehicle characteristics are much
farther than their respective vehicle classes, e.g., the Mercedes
Sprinter is much taller than the average height of cars, resulting
in distance/localization errors. As mentioned in Section II-F,
this can be solved for front and back orientation vehicles by
finding a new waypoint in the opposite lane for the same road
ID; the same is not true for vehicles with side orientation since
the road ID is mostly not the same. This can be seen in the
reconstructed trajectory in Fig. 6(j), where the orientation of
the target vehicle near observer 185 is side and has a different
road ID, which causes the final localized position to lie on the
same side as the observer vehicle, and hence the estimated
trajectory using shortest path algorithm takes the first left
turn after observer 78. Such problems can be solved if the
information about the surrounding road section from the road

network is also taken into account.
Table IV shows the sources of various errors and their

impact on the reconstructed trajectory. In Table IV, Type 1
error, which has a low impact on accuracy, refers to the errors
due to humans, while Type 2 error refers to potential errors
that occur in the trajectory reconstruction framework. Among
Type 2 errors, vehicle detection and tracking failure have
almost no impact because even if the vehicles are failed to
be detected/tracked among some frames, they can be detected
later as they approach closer to the observer vehicle. Even
for distances smaller than 15 meters, tracking failure only
increases the search space for vehicle re-identification without
affecting the accuracy as their localized position is almost
the same. Localization error’s impact is considered medium
when the detected vehicle orientation is either front or back,
which can be fixed by switching lane direction if the road
section is the same. However, for side orientation, we need
additional information about the road section, which is not
considered in this study. Traffic density also has a low impact
since vehicle detection is carried out for each vehicle when
they are close to the observer vehicles. The traffic density
does increase the search space for re-identification; however,
we do not notice significant errors since OSNet can re-identify
target vehicles from thousands of vehicles in gallery images
with high accuracy. The impact of traffic density may increase
if there are various identical vehicles in the vicinity of the
observer vehicle. There is a small impact in error due the
number of observers if the detected positions are close as they
do not have several route choices; however, the impact will

TABLE IV
ERROR TYPES WITH THE SEVERITY LEVEL.

Error
Type

Description Impact

Type 1 Shortest-path perception Medium
Type 1 Driving style Low
Type 2 Vehicle detection/tracking failure Low
Type 2 Localization error Medium to high
Type 2 Traffic density Low
Type 2 Number of observers Low to high

increase with larger distances with multiple route choices.

V. CONCLUSIONS

In this study, we present a novel method for estimating
vehicle trajectory from multiple cameras mounted on moving
vehicles. We train a YOLOv7 model to detect vehicles and
track them using the SORT algorithm. The distances and
angles of detected vehicles are estimated for localization and
map-matching, and they are re-identified at different locations
using a ReID model with OSNet backbone. We use the re-
identified vehicle’s detected positions to estimate the trajectory
using the shortest path algorithm and verify the accuracy
of the reconstructed trajectory using SSPD and HD metrics
for various driving experiments. The CARLA ReID dataset,
developed in this study, accurately identifies vehicles in real-
world images in the VeRi dataset, with 90.23% top-1 accuracy.

This study does not consider trajectory reconstruction in a
traffic stream consisting of vehicles of the same model and
color with high density. In the continuation of our research,
we will conduct experiments to develop algorithms for traffic
streams consisting of high-density identical vehicle models
and also work on developing and optimizing a real-time
framework for communication between different ego vehicles
for re-identification and trajectory reconstruction. As moving
cameras become more prevalent in vehicles and crowdsourc-
ing becomes more accessible, we anticipate our developed
techniques to have a promising future for vehicle trajectory
reconstruction.

ACKNOWLEDGMENT

This study used high-performance Tesla A100 GPU cluster
nodes provided by the Information Technology Center, The
University of Tokyo. This work has also been supported by
JST SPRING, Grant Number JPMJSP2108.

REFERENCES

[1] X. Chen, J. Yin, K. Tang, Y. Tian, and J. Sun, “Vehicle trajectory
reconstruction at signalized intersections under connected and automated
vehicle environment,” IEEE Transactions on Intelligent Transportation
Systems, 2022.

[2] P. Tong, M. Li, M. Li, J. Huang, and X. Hua, “Large-scale vehicle
trajectory reconstruction with camera sensing network,” in Proceedings
of the 27th Annual International Conference on Mobile Computing and
Networking, 2021, pp. 188–200.

[3] M. R. Fard, A. S. Mohaymany, and M. Shahri, “A new methodology for
vehicle trajectory reconstruction based on wavelet analysis,” Transporta-
tion Research Part C: Emerging Technologies, vol. 74, pp. 150–167,
2017.

[4] A. Kumar, T. Kashiyama, H. Maeda, and Y. Sekimoto, “Citywide recon-
struction of cross-sectional traffic flow from moving camera videos,” in
2021 IEEE International Conference on Big Data (Big Data). IEEE,
2021, pp. 1670–1678.

[5] A. Kumar, T. Kashiyama, H. Maeda, H. Omata, and Y. Sekimoto,
“Real-time citywide reconstruction of traffic flow from moving cameras
on lightweight edge devices,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 192, pp. 115–129, 2022.

[6] A. Kumar, T. Kashiyama, H. Maeda, H. Omata, and Y. Sekimoto,
“Citywide reconstruction of traffic flow using the vehicle-mounted
moving camera in the carla driving simulator,” in 2022 IEEE 25th
International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2022, pp. 2292–2299.

[7] X. Liu, W. Liu, H. Ma, and H. Fu, “Large-scale vehicle re-identification
in urban surveillance videos,” in 2016 IEEE international conference on
multimedia and expo (ICME). IEEE, 2016, pp. 1–6.

[8] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
arXiv preprint arXiv:2207.02696, 2022.

[9] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” in 2016 IEEE international conference on image
processing (ICIP). IEEE, 2016, pp. 3464–3468.

[10] K. Zhou, Y. Yang, A. Cavallaro, and T. Xiang, “Omni-scale feature
learning for person re-identification,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 3702–3712.

[11] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in Conference on robot learning.
PMLR, 2017, pp. 1–16.

[12] Y. Yao, L. Zheng, X. Yang, M. Naphade, and T. Gedeon, “Simulating
content consistent vehicle datasets with attribute descent,” in ECCV,
2020.

[13] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[14] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Scaled-yolov4:
Scaling cross stage partial network,” in 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021, pp. 13 024–
13 033.

[15] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[16] T. Suzumura, A. Sugiki, H. Takizawa, A. Imakura, H. Nakamura,
K. Taura, T. Kudoh, T. Hanawa, Y. Sekiya, H. Kobayashi et al., “mdx:
A cloud platform for supporting data science and cross-disciplinary
research collaborations,” arXiv preprint arXiv:2203.14188, 2022.

[17] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime
tracking with a deep association metric,” in 2017 IEEE international
conference on image processing (ICIP). IEEE, 2017, pp. 3645–3649.

[18] D. Kendal, “Measuring distances using digital cameras,” Australian
Senior Mathematics Journal, vol. 21, no. 2, pp. 24–28, 2007.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[20] E. Hoffer and N. Ailon, “Deep metric learning using triplet network,”
in International workshop on similarity-based pattern recognition.
Springer, 2015, pp. 84–92.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[22] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[23] M. Dupuis, M. Strobl, and H. Grezlikowski, “Opendrive 2010 and
beyond–status and future of the de facto standard for the description of
road networks,” in Proc. of the Driving Simulation Conference Europe,
2010, pp. 231–242.

[24] P. Besse, B. Guillouet, J.-M. Loubes, and R. François, “Review and
perspective for distance based trajectory clustering,” arXiv preprint
arXiv:1508.04904, 2015.

[25] F. Hausdorff, Grundzüge der mengenlehre. von Veit, 1914, vol. 7.
[26] A. A. Taha and A. Hanbury, “An efficient algorithm for calculating the

exact hausdorff distance,” IEEE transactions on pattern analysis and
machine intelligence, vol. 37, no. 11, pp. 2153–2163, 2015.

	Vehicle re-identification and trajectory reconstruction using multiple moving cameras in the CARLA driving simulator
	Introduction
	Methodology
	 CARLA driving simulator
	 CARLA ReID dataset
	 Vehicle detection and tracking
	Vehicle detection using YOLOv7
	Vehicle tracking using SORT

	 Localization of detected vehicles
	Distance of the detected vehicles
	Angle of detected vehicles
	Vehicle localization and map-matching

	 Vehicle re-identification
	 Trajectory reconstruction
	 Driving experiment details

	Results
	 Vehicle detection
	 Vehicle re-identification
	 Vehicle trajectories

	Discussions
	Conclusions
	References

