
Trie-based Output Space Itemset Sampling
Lamine Diop (lamine.diop@univ-tours.fr)

University of Tours https://orcid.org/0000-0003-4539-2549
Cheikh Talibouya Diop

University Gaston Berger of Saint-Louis
Arnaud Giacometti

University of Tours
Arnaud Soulet

University of Tours

Research Article

Keywords: Pattern mining, Pattern sampling, Itemset, Trie data structure

Posted Date: June 16th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1285827/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-1285827/v2
mailto:lamine.diop@univ-tours.fr
https://orcid.org/0000-0003-4539-2549
https://doi.org/10.21203/rs.3.rs-1285827/v2
https://creativecommons.org/licenses/by/4.0/

Under consideration for publication in Knowledge and Information
Systems

Trie-based Output Space Itemset
Sampling

Lamine Diop1,2, Cheikh Talibouya Diop1,

Arnaud Giacometti2 and Arnaud Soulet2

1University of Gaston Berger of Saint-Louis, Senegal
Email: {diop.lamine3, cheikh-talibouya.diop}@ugb.edu.sn
2University of Tours, France
Email: {firstname.lastname}@univ-tours.fr

Abstract. Itemset mining methods are techniques to discover relevant patterns in
transactional databases. The first approach, called constrained-based pattern mining,
is based on exhaustive pattern mining techniques which consist in returning all itemsets
that satisfy a given constraint. The main issues that hinder their efficiency are the
pattern explosion and the difficulty for a user to set the threshold value. To solve
this problem, methods that return the most interesting patterns, called top-k, are also
proposed, but they tend to lack diversity, a challenging issue for interactive pattern
mining. However, interactive pattern mining is based on fast methods that respond
effectively to user demand. To overcome all these problems, output pattern sampling
is proposed to draw quickly a set of interesting patterns while guaranteeing a good
diversity. Pattern sampling techniques are probabilistic methods that aim to draw a
set of interesting patterns where each pattern is drawn with a probability proportional
to a given interestingness measure. Nowadays, there are several measures that a user
can test when interacting with the same database. In that case, the system should last
a few times to consider the new utility measures while guaranteeing an exact draw. So,
the cost in time of utility change can be a real problem for output pattern sampling
techniques in large databases. In addition, with the current sampling methods, it is
necessary to store all data in memory and this storage is prohibitive for large data. To
solve these problems, this paper deals with how to structure the data for output pattern
sampling under length-based utility measures in large transactional databases. So, we
revisit the trie structure initially proposed by D. Knuth to enrich it and then no longer
have the need (i) to access the data to sample because the patterns will be directly
taken from the enriched trie, (ii) to reprocess the entire dataset when utility changes.
The computation of the value of a length-based utility measure is based on the lengths
of all the patterns that are present in the database. So, we define a new structure
of trie called trie of occurrences, built by our first algorithm TPSpace (Trie-based
Pattern Space), which materializes all the occurrences of the patterns in the database.

2 Diop et al

The data compression comes from a factorization of the information via the prefixes
of the patterns. The particularly remarkable result is that, by definition, the trie of
occurrences is the same for any length-based utility measure provided that the same
values are kept for the minimum and maximum length constraints. We then describe
TPSampling (Trie-based Pattern Sampling) which performs the sampling by drawing
patterns according to a length-based utility measure from the trie of occurrences. This
paper is completed by the complexity analysis in memory and in time of the method
and experiments on benchmark datasets. TPSampling is competitive with the two-
step approach to sample following a given interestingness measure but, as expected,
it is more particularly advantageous if several utility measures are used thanks to the
generic preprocessing. TPSampling is 10

5 times faster than Two-Step for reprocessing
in utility change.

Keywords: Pattern mining, Pattern sampling, Itemset, Trie data structure

1. Introduction

Pattern mining [1] is an active research area that aims at discovering inter-
esting and not trivial information in large databases. Itemset mining methods
are techniques to discover relevant patterns in a transactional database. Dur-
ing the last decade, the researchers in this field addressed the pattern explosion
challenge resulting from the joint effect of the volume of data and the combi-
natorial nature of the mining methods. In fact, it is very difficult to control the
size of the set of frequent patterns given a minimum threshold for instance. On
the one hand, if the minimum threshold is very small, the set of returned pat-
terns overwhelmed the end-user. On the other hand, if the minimum threshold
is very large, the set of patterns risks being empty. To solve this problem, many
approaches are proposed like Top-k pattern mining [2] which returns the k most
frequent patterns, but with a lake of diversity. The recent proposal approach is
based on output pattern sampling [3]. Output pattern sampling consists in gen-
erating a sample of patterns among the patterns that would have been extracted
from the complete dataset. It is a non-exhaustive method to extract relevant
patterns and ensures good interaction and great diversity while offering strong
statistical guarantees thanks to its random nature. Its usefulness has been widely
demonstrated in recent years in many areas like feature classification [4], outlier
detection [5] or interactive discovery [6, 7, 8]. It has also been applied to several
pattern languages such as graphs [3], itemsets [9, 4, 10] and sequences [11, 12].

However, at the time of writing this paper, none of the current sampling
methods does mind managing the size in memory of the data or the reprocessing
when the user changes the given utility. In the field of pattern mining, it is also
very important to consider the size of the database which can be an obstacle
when the data must be loaded into memory. Indeed, with the output sampling
methods of the state-of-the-art, it is a necessity that the entire database is stored
in memory except using a decentralized approach [10] where the data are natively
decentralized in different sites. In our case, we assume that all transactions are
available in a single and unique machine where the user needs to run a sampling
algorithm. In some datasets with very large sizes, one can use a compact data
structure in order to have a compressed representation of the database as it
was already done by the exhaustive extraction of interesting patterns [13]. To
the best of our knowledge, none of the output pattern sampling methods in

Trie-based Output Space Itemset Sampling 3

the literature [3, 4, 9, 11] has yet been applied to compact representations of
databases. However, most of the proposed methods need to store the entire
database in memory. It is also very important to facilitate reprocessing when
a user decides to change a utility measure. So, an efficient method should not
weight each transaction at each change. The processing phase is often consuming
when the size of the database becomes large. In [14] the authors tackle the
problem of utility change when they work with many utilities like frequency, area,
or decay. But, the proposed solution also depends on the number of transactions
in the database. Then, it has the same complexity of reprocessing as the Two-
Step pattern sampling in [4]. So, besides the need of reducing the storage cost,
this paper addresses techniques to speed up the reprocessing times for pattern
sampling in large databases when the user changes the interestingness measure.

In this paper, we present a new method of output pattern sampling that is
based on a compressed data structure. Our main objective is therefore to propose
a generic output pattern sampling algorithm that extracts patterns proportion-
ally to a length-based utility measure [10] from a trie of occurrences.

Our main contributions are as follows:

– We introduce a new structure called trie of occurrences then we propose
TPSpace (Trie-based Pattern Space), an algorithm for its construction. It
is a trie where each node has a set of weight information for the exact draw
of a pattern. In our case, we weight each node according to the lengths of
occurrences in the sub-trie of which it is the root.

– We propose TPSampling (Trie-based Pattern Sampling), a generic algorithm
for sampling patterns from a trie of occurrences according to a probability
proportional to a length-based utility measure. The genericity of TPSampling

comes from the fact that it can consider any interestingness measure based on
the length.

– We theoretically and experimentally evaluate the complexity of TPSampling.
In particular, we show that TPSampling makes an exact draw according to
a length-based utility measure chosen by the user and directly from the trie.
In addition, we evaluate the complexity in memory storage of the trie of oc-
currences on different transactional databases including synthetic datasets and
then we evaluate its speed according to different length-based utility measures.

The remainder of this paper is organized as follows: Section 2 situates our
work in the state-of-the-art of pattern sampling methods and highlights the main
motivations behind this paper. Section 3 begins with some basics to fully un-
derstand our approach to drawing patterns from a trie. It ends by highlighting
the challenges that we need to solve to achieve our goal. Section 4 presents
our first contribution on tries which consists in showing how to construct a trie
of occurrences. Section 5 describes our generic algorithm for sampling patterns
proportionally to a length-based utility measure from an enriched trie. Section 6
theoretically analyses our method by detailing the time of building a trie of oc-
currences and that of drawing a pattern by TPSampling. Section 7 presents the
experimental results of our approach by comparing them with those of the two-
step method algorithm [4] combining length-based utility measures [10]. Finally,
Section 8 concludes this paper and gives some perspectives.

4 Diop et al

2. Related works

This section presents the related works in pattern sampling and data struc-
tures for pattern mining.

2.1. Pattern sampling techniques

Since the first proposition of pattern sampling method [3] in 2009, numerous
algorithms are proposed for output pattern sampling [15, 4, 16, 17, 18, 19, 20,
21, 9, 22, 23, 11, 10, 24]. The types of these methods can be grouped into four
main classes: random work (MCMC), SAT framework, multi-steps and reservoir
sampling. In the following paragraphs, we will briefly present each family of
methods while discussing their efficiency in terms of storage in memory and
their ability to rapidly change a utility measure.

Random walk sampling. The first class of methods uses random walks in the
search space to sample interesting patterns. In this class, most of the methods
[3, 16, 15, 18] are based on Markov Chain Monte Carlo (MCMC) methods. The
idea is to build a Markov chain simulating a distribution of a probability law.
In [3], the authors proposed the first method of this class to sample frequent
sub-graphs in a graph database, and then [16] proposed another method for
interactive discovery. One of the limits of these methods is the slowness of their
convergence.
Efficiency in memory storage: It is important to note that all these algorithms
run locally in a single machine. So, they fully benefit from the available memory
by storing the entire data.
Flexibility on utility change: The methods of this class need to restart from
scratch when the user changes the utility measure. Indeed, the partial order
graph of the interesting sub-graphs must be readjusted to make new random
walks.

SAT-based sampling. The second class of output sampling methods is based
on the SAT logical formalism. It has been implemented for the output sampling
of pattern set [9]. In this article, the authors have presented both a generic
algorithm called GFlexic and a specialized algorithm called EFlexic. For this
class of methods, the basic idea is to use constraint programming and logical
solvers to perform pattern mining. On a practical level, GFlexic has only been
tested on small transactional databases (at most 4,000 transactions and 300
items), which is explained by the very great genericity of the method. One of
the limits of these methods is that they are not exact (the draw of a pattern is
approximatively exact).
Efficiency in memory storage: Like the random walk methods, all these algo-
rithms run locally in a single machine and need to use the available memory for
storing the entire data.
Flexibility on utility change: These methods need also to restart from scratch
when the user changes the utility measure. Indeed, they have to divide the space
of the valuations to satisfy the newly obtained logical formula.

Multi-step sampling. The multi-step approaches [4, 17, 22, 11, 12, 10, 14] walk
in two phases. The first phase is dedicated to the preprocessing which consists

Trie-based Output Space Itemset Sampling 5

to weight each instance (transaction or sequence) of the database proportionally
to the sum of the interest of the distinct patterns it contains. The multi-step
sampling methods presented in [4, 17, 22, 11, 12] deal with local database in
a single machine. However, in [10, 14], a multi-step algorithm is designed for
transactional distributed databases and was applied in DBpedia and Wikidata.
This algorithm centralizes the length of the transactions and uses two primitives
to construct the sampled pattern. It is then important to note that even if we
readapted the proposed algorithm in [10, 14] for local data, it could in no way
reduce the used size in memory.
Efficiency in memory storage: These methods also need to store the entire data in
main memory except that in [10, 14] in the case of native distributed databases.
Flexibility on utility change: When the user changes the utility measure, the two-
step methods do a reprocessing phase which consists of weighting each transac-
tion of the database according to the new utility measure. In [14], the authors
show that the reprocessing phase is experimentally fast because proportional to
the number of transactions in the database.

Reservoir pattern sampling. Reservoir pattern sampling methods [24] are
techniques to discover relevant patterns from streaming data. This approach
consists in incrementally maintaining a data sample representative of the data
stream benefiting from reservoir sampling [25, 26]. In [24], the authors propose
a generic algorithm called ResPat which samples relevant itemsets from data
streams according to the dumped support. They sow that ResPat can be very
fast according to the dumping function because it does one pass over the data
to sample a set of patterns.
Efficiency in memory storage: One of the most important challenges resolved
by reservoir sampling methods is the memory storage issue. ResPat works with
one transaction at a time, then the only one which is present in memory. So, the
methods of this class are very parsimonious in memory storage cost.
Flexibility on utility change: These methods need also to restart from scratch
when the user changes the utility measure because they do not store the data in
memory.

2.2. Data structures for pattern mining

To solve the problem of pattern mining, many data structures have been pro-
posed such as “FP-Tree”[13] or “Trie”[27]. In transactional databases, there are
lots of repetitions because several transactions can contain the same informa-
tion. These repetitions make sense in the field of pattern mining because they
allow us to find interesting rules, but we have to know how to represent them.
For example, in a transactional database, if 90% of transactions that contain the
items {e1, e2, e3, e4} also contain the items {e5, e6} then we might as well group
them together so that they share the same prefix. This considerably reduces the
size of the database in memory. With “FP-Tree” or “Trie”, it becomes possible
to represent transactions containing the same item in one path. This is because
they share the same prefix. But the difference between these two structures is
that, unlike “trie” which only links a node with its children, “FP-Tree” estab-
lishes links between nodes of different branches to quickly compute the frequency
of the patterns. Since we do not want to compute this latter, we suggest using
“trie”[27] to have a compact representation of the database in memory. The

6 Diop et al

“Trie” data structure is widely used in the field of text mining [28]. Other au-
thors have used the trie structure for frequent pattern mining with Apriori [29].
Through the previous works, we note that trie is much more parsimonious in
storage cost on transactional databases than on text databases. This is because
the depth of the tree depends exclusively on the size of the longest chain. In the
case of text mining, characters can repeat themselves multiple times in the same
string where they follow an order, which is not the case with transactions. These
are considered as sets of items, and therefore no transaction contains duplicated
items.

In this paper, we propose an original multi-step pattern sampling, the first
approach based on compact structure. We will see that the goal of using the
compact structure is not only for memory problem but for the reprocessing when
the user changes the utility measure too: the flexibility on utility change.

3. Preliminaries and problem statement

In this section, we present first some necessary basic notions and definitions
for the understanding of the subject. We end it with a formalization of the
problem that we address in this paper.

3.1. Basic definitions

Let I = {e1, · · · , eN} be a finite set of literals called items. We assume that
there is an arbitrary total order >I between items : e1 >I · · · >I eN . An
itemset (or pattern), denoted by ϕ = {ei1

, · · · , ein
} (or simply ϕ = ei1

· · · ein
),

with n ≤ N , is a none empty subset of I, ϕ ⊆ I. The set of all patterns that
we can generate from I is called the pattern language denoted by L = 2|I| \ ∅.
The length of a pattern ϕ ∈ L denoted by |ϕ| is the number of items it contains
(its cardinality). A transactional database T is a multi-set of itemsets (called
transactions) where each of them has a unique identifier j ∈ N. We denote by
tj = e1 · · · en a transaction identified by j of length |t| = n defined in I, and L(T)
the set of all patterns that appear in T . For example, Table 1 is a transactional
database built from the set of four items I = {A, B, C, D}. In the rest of this
paper, we use this dataset to give some illustrations.

Originally, the goal of a pattern sampling technique is to access the pattern
space L by an efficient sampling procedure simulating a distribution π: L → [0; 1]
which is defined with respect to some interestingness measure m : π(·) = m(·)/Z
where Z is a normalization constant, the sum of the interest of all pattern ϕ ∈ L
in the dataset T , defined by Z =

∑
ϕ∈L m(ϕ, T). The sampling of k patterns

of the language L according to a distribution proportional to an interestingness
measure m in the database T can be formulated as follows:

Sampℓek(L, T , m) =

k⋃

i=1

{ϕi ∼ m(L, T)}

where ϕ ∼ m(L, T) means that the pattern ϕ is drawn with a probability pro-
portional to its interest m. Formally, ϕ ∼ m(L, T)⇔ π(ϕ) = m(ϕ, T)/Z.

In another word, the main objective of the output sampling methods is to have
a sample of patterns representative of the set of patterns that can be extracted

Trie-based Output Space Itemset Sampling 7

Table 1. A transactional database T
tid Itemsets

t1 A B
t2 A C
t3 B C
t4 A B C D

from the database. For example, if a pattern ϕ1 has an interest twice as higher
than that of a pattern ϕ2 according to the interestingness measure chosen by
the user, then ϕ1 is twice as likely to be in the sample as the pattern ϕ2. In the
literature, there are several interestingness measures, but the most used of them
is the frequency measure.

Definition 1 (Frequency of a pattern). Given a dataset T and its language
L. The frequency of the pattern ϕ ∈ L in T is defined as follows:

freq(ϕ, T) = |{ti ∈ T : ϕ ⊆ ti}|.

Let m(·) = freq(·) for example, if ϕ1 and ϕ2 are two patterns of the lan-
guage L having respective frequencies freq(ϕ1, T) and freq(ϕ2, T) such that
freq(ϕ1, T) = 2× freq(ϕ2, T), then the probability to draw ϕ1 according to the
frequency is twice that of ϕ2.

Example 1. Figure 1 gives all patterns defined in T and their corresponding
frequency. The normalization constant Z is the sum of the pattern frequency:
Z =

∑
ϕ∈L(T) freq(ϕ, T) = 24.

Within the dataset T , we have freq(AB, T) = |{t1, t4}| = 2 and freq(AD, T) =
|{t4}| = 1. This means that π(AB,L(T)) = 2/24 and π(AD,L(T)) = 1/24. So,
the probability to draw AB is twice that of AD in the dataset T .

By definition, if there are in the language L at least two patterns having prob-
abilities not null, then the operator Samplek, with k > 0, is non-deterministic.
In other words, two draws with the same interestingness measure in the same
database may not return the same k patterns. Let’s also note that drawing
k = k1 + k2 patterns following an interestingness measure m in the language L
of a database T with Sampℓek(L, T , m), comes down to draw k1 patterns in L
according to m with Sampℓek1

(L,D, m), then k2 patterns of L according to m
with Sampℓek2

(L,D, m). However, this does not mean that Sampℓek(L,D, m)
and Sampℓek1

(L,D, m)∪Sampℓek2
(L,D, m) return the same sample of patterns.

It is also common to give a utility to an itemset and to combine the frequency
of an itemset with its utility. In this paper, we deal with length-based utility
measures [10].

Definition 2 (Length-based utility measures). A utility u defined from L
to R is called a length-based utility if there exists a function fu from N to R such
that u(ϕ) = fu(|ϕ|) for each ϕ ∈ L. Given the set U of length-based utilities,
M is the set of interestingness measures mu such that for every pattern ϕ and
database T , mu(ϕ, T) = freq(ϕ, T)× u(ϕ) with u ∈ U .

For example, with the frequency, the utility function ufreq(ϕ) = 1 for all pattern
in L. If we consider the utility function uarea(ϕ) = |ϕ|, we obtain the area

8 Diop et al

ϕ A B C D AB AC AD BC
freq 3 3 3 1 2 2 1 2

marea 3× 1 3× 1 3× 1 1× 1 2× 2 2× 2 1× 2 2× 2
mdecay 0.3 0.3 0.3 0.1 0.02 0.02 0.01 0.02

ϕ BD CD ABC ABD ACD BCD ABCD
freq 1 1 1 1 1 1 1

marea 1× 2 1× 2 1× 3 1× 3 1× 3 1× 3 1× 4
mdecay 1× 0.12 1× 0.12 1× 0.13 1× 0.13 1× 0.13 1× 0.13 1× 0.14

Fig. 1. Pattern language of T : L(T), α = 0.1 for mdecay

T
tid Itemsets

1 A B
2 A C
3 B C
4 A B C D

ǫ

A

B,1

C

D,1

C,1

B

C,1

Fig. 2. Representation of a database T as a trie

measure: freq(ϕ, T) × |ϕ|. If udecay(ϕ) = α|ϕ|, we get an exponential decay in
α ∈]0, 1]. More generally, we consider the class of interestingness measures of the
form freq(ϕ, T) × u(ϕ) where u exclusively depends on the length of itemsets
[10]. It is also possible to combine many utility functions to form another one.

3.2. Key ideas, challenges and problem statement

We first focus on some interesting key ideas and challenges to situate our
work before reformulating the questions we should properly answer in order to
achieve our goal. Finally, we reformulate the problem that we want to solve in
this paper.

Key idea. As we have pointed out, drawing a pattern is one of the most impor-
tant steps in pattern sampling, especially in the case of user-centered mining. In
this paper, we propose to use a trie structure to build the pattern space while
guaranteeing good flexibility on reprocessing in utility change.

Definition 3 (Trie [27]). A trie is a data structure in the form of a rooted tree
such that for any node, its descendants have the common prefix.

Example 2. We represent the database T as a trie in Figure 2. To do this, each
node of the trie is associated with a value which is the number of transactions
of which it is the last element according to the order of insertion of the items,
the number of times its label terminates a transaction of the dataset.

It is important to note that many representations of the database T as a trie are
possible according to the insertion order of the items (decreasing order of their
frequencies, ascending order, lexicographic order, etc.).

Trie-based Output Space Itemset Sampling 9

Challenges in trie-based pattern sampling. Sampling pattern in trie struc-
ture is far from easy. In addition to guaranteeing an exact draw of a pattern (with
a probability proportional to its weight), we need also to cleverly consider to new
length-based utility to avoid time-consuming reprocessing. In that case, the main
challenges that we need to solve are as follows:

– efficiently build and weight the trie that corresponds to the database,

– draw a pattern directly from the trie according to a probability proportional
to its interest in the database.

Problem statement. These main challenges can be finally solved by answering
the following questions that we formulate here.
Let T be a transactional database, u, u′ ∈ U two length-based utilities, and µ
and M two positive integers such that µ < M .

1. What additional information should be added to a (classical) trie to be able to
directly sample patterns without needing to use the underlying transactional
database?

2. How to draw a pattern ϕ from the language L[µ..M] proportionally to mu(ϕ, T)
directly from the weighted trie?

3. How to compute Sampℓek1
(L[µ..M], T , mu) and Sampℓek2

(L[µ..M], T , mu′),
with 0 < k1 ≤ k2, without rebuilding the trie of occurrences?

Now, we are going to solve carefully question (1) in Section 4, and questions
(2) and (3) in Section 5.

4. TPSpace: Trie-based Pattern Space

According to Figure 2, two occurrences of the same pattern may occur in
different paths of a trie, for example AC within the path A → B → C and AC
within the path A→ C. But they can also be merged, in the case of occurrences
of the pattern AB (appearing in transactions of identifiers 1 and 4) which are
represented in a single path of the trie. According to this analysis, the approach
that we will present in this paper is based on two fundamental notions which are
pattern occurrence (or occurrence for short) and language of occurrences.

In the rest of this section, we present first the necessary elements to define
a trie of occurrences. Then, we present the algorithm named TPSpace which
designs a weighted trie of occurrences. We end it with an illustrative example
for building a trie of occurrences.

Definition 4 (Occurrence and language fo occurrences). Let T be a
transactional database and L[µ..M] its pattern language under minimum µ and
maximum M length constraints. If there is a transaction t of identifier i in
T that contains the pattern ϕ ∈ L[µ..M], then we denote by ϕi the occur-
rence of ϕ in the transaction ti. The set of occurrences in T under length con-
straint µ and M forms a language of occurrences denoted by Lo

[µ..M]. Formally,

Lo
[µ..M] = {ϕi : (∃(ϕ, ti) ∈ L[µ..M] ×T)(ϕ ⊆ ti)}. The length of an occurrence ϕi

of a pattern ϕ ∈ L is equal to the length of ϕ.

Note that Lo is a set of occurrences while L is a set of patterns, and, unlike a
pattern, an occurrence belongs to one and only one transaction. The frequency

10 Diop et al

of a pattern in L is the cardinality of the set of its occurrences in Lo. In other
words, it is the number of transactions in T containing one of its occurrences.

Example 3. If we consider the patterns of length 2, then we note that AB1

and AB4 are 2 occurrences of the pattern AB in the database T because AB
is contained in transactions of identifier 1 and 4. The frequency of AB is there-
fore equal to 2. Similarly, AC2 and AC4 are 2 occurrences of the pattern AC.
BC3 and BC4 are 2 occurrences of BC. Patterns AD, BD, and CD have sin-
gle occurrences in transaction t4. In this example, to draw a pattern of length
2 proportionally to its frequency in T , it suffices to uniformly draw an occur-
rence in the set Lo

[2..2](T) = {AB1, AB4, AC2, AC4, BC3, BC4, AD4, BD4, CD4}.

Thus, the probability of drawing the pattern AB in the set S is equal to
π(AB,L[2..2](T)) = π(AB1,Lo

[2..2](T)) + π(AB4,Lo
[2..2](T)) = 2

9 .

Property 1. Let T be a transactional database, L and Lo the pattern language
and occurrence language of T respectively, and ℓ a positive integer. The proba-
bility to draw a pattern ϕ from L is computed from the occurrence language as
follows:

π(ϕ,L[ℓ..ℓ](T)) =
∑

i

π(ϕi,L
o
[ℓ..ℓ](T)).

By convention, π(ϕi,L
o
[ℓ..ℓ](T)) = 0 if ϕi 6∈ L

o
[ℓ..ℓ](T).

Proof. The proof of Property 1 is trivial and stem from the fact that Lo
[µ..M] =

{ϕi : (∃(ϕ, ti) ∈ L[µ..M] × T)(ϕ ⊆ ti)} by definition.

From Property 1, we know how to draw a pattern of length ℓ proportionally
to its frequency among the set of patterns of the same length using a uniform
drawing of occurrences. In this case, if we know how to draw a length ℓ propor-
tionally to the sum of the utilities of patterns of length ℓ, so we know how to
sample a pattern proportionally to its interest in the database.

4.1. Definition of a trie of occurrences

In Figure 2, we can obtain another trie that represents the data by starting
with the reverse order for instance. This shows that a trie of a transactional
dataset changes shape according to the total order relation considered on the
items. Thus, we start by defining the total order relations used in this paper
before talking about the identifier and the content of a node.

Definition 5 (Total order relation between items). Let I be a set of
items or literals on which the transactional dataset T is defined.

–A total order relation on literals is said a lexicographic-based order and de-
noted by >lexico

I , if it orders the literals of I according to lexicographic order.

–A total order relation on literals is said a frequency-based order and denoted

by >freq
I if it orders the elements of I according to the descending order of

their frequencies in T and according to the lexicographic order in case of equal
frequency.

In the following we denote >I a total order relation between the items of a

Trie-based Output Space Itemset Sampling 11

dataset. Note that there are other types of total order relations in the literature
that can be applied to literals. However, we will limit ourselves to the two total
order relations previously defined as examples, even if our approach works with
any total order relation on literals.

Example 4. Considering the dataset T , we have freq(A, T) = 3, freq(B, T) =
3, freq(C, T) = 3 and freq(D, T) = 1. In this case, we can already say that

A >freq
I D, B >freq

I D and C >freq
I D because freq(A, T) = freq(B, T) =

freq(C, T) > freq(D, T). Now, if we consider the lexicographic order between
the items, we have A >lexico

I B >lexico
I C. So, continuing with the order relation

>freq
I , we have A >freq

I B >freq
I C >freq

I D.

We are now going to define the notion of an identifier of a node in a trie. It is
a concept that will allow us to enrich the trie of occurrences from a transactional
dataset.

Definition 6 (Node identifier). Given a set of items I = {e1, · · · , en} and a
symbol ǫ 6∈ I, a trie τ defined on I is a tree where every node η ∈ τ except the
root contains a label denoted by η.label belonging to I, η.label ∈ I, and where
the root r of the trie contains the label ǫ, r.label = ǫ. Thus, any node η ∈ τ can
be identified by the sequence of node labels on the path from the root of τ to
the node η. If P = ǫei1

. . . eik
is this sequence, we write it down more simply

P = ei1
. . . eik

for a node that is not the root, and we write P̃ = eik
the label of

the identified node η, P̃ = η.label.

Example 5. Considering the trie of the dataset T in Figure 2, the node con-
taining the label B resulting from the transaction t4 is identified by P1 = AB.
This same node represents the item B coming from t1. Besides, the item B of
the transaction t3 is represented by the identifier node P2 = B.

In the following, we will often use the concept of sub-trie of a trie defined
below:

Definition 7 (Sub-trie). Let τ be a trie and P the identifier of a node. We
denote by τP the sub-trie of τ whose root is the node identifier P .

We now define the concatenation operator ◦ as follows:

Definition 8 (Concatenation operator ◦). Let ϕ and ϕ′ be two itemsets de-
fined in I and ordered according to the total order relation >I , ϕ◦ϕ′ = ϕ∪{e′ ∈
ϕ′ : (∀e ∈ ϕ)(e >I e′)}.

If >I is the lexicographic order, then we have B ◦ AC = BC and A ◦BC =
ABC. This concatenation operator allows us to define the notion of prefix that
we are going to use in the definition of a projected database.

Definition 9 (Prefix). Let t be a transaction defined in I and P an itemset
defined in I and ordered according to the total order relation >I . P is a prefix
of transaction t if there is an itemset ϕ ⊆ I such as t = P ◦ ϕ.

In the dataset T in Figure 2, P = AB is a prefix of the transaction t4 =
ABCD but P is not a prefix of the transaction t3 = BC.

According to Definition 9, transactions with a common prefix can be grouped.
To identify where the occurrences of a pattern are represented in a trie, i.e. in

12 Diop et al

which sub-trie. We are now going to introduce the notion of a projected database.
Our definition is an adaptation of the notion introduced by [30].

Definition 10 (Projected database). Let >I be a total order relation on all
the items I, T a transactional database, and P the identifier of a node. A pro-
jected database of T on P , denoted by TP , is a transactional database which
contains for any transaction t of T with prefix P a copy of this transaction with-

out the items of t preceding P̃ . Formally, the projected database of T on P is
defined by:

TP = {(i, P̃ ◦ ϕ) ∈ N× L : (i, t) ∈ T ∧ t = P ◦ ϕ}

Example 6. Let us consider the trie of the transactional database T in Fig.
2. Occurrences in the projected database TAB are the occurrences stored in the
sub-trie whose root is identified by the prefix AB: B1, B4, BC4, BD4, CD4,
BCD4. Occurrences in the projected database TAC are the occurrences stored
in the sub-trie whose root is identified by the prefix AC: C2.

Now, we will define precisely which are the pattern occurrences represented
at the level of the projected database of T on the prefix P , by partitioning these
sets of occurrences by their length.

Definition 11 (Computing weights Φ−
ℓ and Φ+

ℓ). Let T be a transactional
database and P a prefix. The set of occurrences of the projected database on the
prefix P and having a length equal to ℓ is defined by:

φℓ(P, T) = {(i, ϕ) ∈ N× L : (i, ϕ′) ∈ TP ∧ ϕ ⊆ ϕ′ ∧ |ϕ| = ℓ}

Φℓ(P, T) denotes the total number of occurrences of length equal to ℓ in the
projected database TP : Φℓ(P, T) = |φℓ(P, T)|. The set of occurrences φℓ(P, T)
can be split into two parts:

–The set of occurrences of the database projected on the prefix P , having a

length equals to ℓ and containing the item P̃ is defined by:

φ+
ℓ (P, T) = {(i, ϕ) ∈ φℓ(P, T) : P̃ ∈ ϕ}. Its cardinality is denoted by Φ+

ℓ (P, T) =

|φ+
ℓ (P, T)|.

–The set of occurrences of the database projected on the prefix P , having a

length equals to ℓ and not containing the item P̃ is defined by:

φ−
ℓ (P, T) = {(i, ϕ) ∈ φℓ(P, T) : P̃ 6∈ ϕ}. Its cardinality is denoted by Φ−

ℓ (P, T) =

|φ−
ℓ (P, T)|.

As P̃ is not defined if P is the empty prefix, we consider by convention that
φ−

ℓ (ǫ, T) = φℓ(ǫ, T), while φ+
ℓ (ǫ, T) = ∅.

Example 7. Let us consider the projected database
TA = {(1, AB), (2, AC), (4, ABCD)}, we have φ+

2 (A, T) =
{(1, AB), (2, AC), (4, AB), (4, AC), (4, AD)} and φ−

2 (A, T) =
{(4, BC), (4, BD), (4, CD)} on the other hand. Then Φ+

2 (A, T) = 5 and
Φ−

2 (A, T) = 3.

Subsequently, at the level of the node identified by P of a trie, we will store as
weight the cardinalities of these sets, distinguishing the subsets of occurrences

of length ℓ containing or not the item P̃ .

Trie-based Output Space Itemset Sampling 13

ǫ
10 9 4

A
Φ+

ℓ 3 5 3
Φ−

ℓ 5 3 1

B
2 2 1
2 1 0

C
1 1 0
1 0 0

D
1 0 0
0 0 0

C
1 0 0
0 0 0

B
1 1 0
1 0 0

C
1 0 0
0 0 0

Fig. 3. Enriched trie of the trie provided by Figure 2

After having introduced the necessary notions and notations for the enrich-
ment of a classic trie to a trie of occurrences, we will explicitly define the latter.
In the remainder of this chapter, the notation τ denotes a trie of occurrences.

Definition 12 (trie of pattern occurrences). Given a transactional
database, a trie of occurrences for T , denoted by τ , is a tree where each node
η ∈ τ contains:

–a label denoted by η.label belonging to I ∪ {ǫ}, ǫ being the label reserved for
the root.

–a list of children denoted by η.child. Subsequently, we denote |η.child| the
number of children of node η and η.child[i] the i-th child of η for i ∈ [1..k]
with k = |η.child|.

–an array of positive weights denoted by η.Φ+. If P is the identifier of the node
η in τ , then η.Φ+[ℓ] = Φ+

ℓ (P, T) for ℓ ∈ [µ..M], µ and M being the minimum
and maximum length constraints considered during the construction of the
trie.

–an array of negative weights denoted by η.Φ−. If P is the identifier of the node
η in τ , then η.Φ−[ℓ] = Φ−

ℓ (P, T) for ℓ ∈ [µ..M], µ and M being the minimum
and maximum length constraints considered during the construction of the
trie.

Example 8. Let us consider the transactional database of Figure 2, the mini-
mum µ = 1 and maximum M = 3 length constraints, we build the enriched trie
according to the total order relation >I in Figure 3.

In this example, the set of labels for the children of the root r is {A, B}. The

14 Diop et al

number of patterns of length ℓ = 2 in the trie τ is equal to r.Φ−[2] = 9. Let η
be the identifier node P = ǫA. Then we have η.Φ+[2] = 5 and η.Φ−[2] = 3 to
say that the sub-trie τA contains 5 pattern occurrences of length 2 with the item

P̃ = A (AD4, AC4, AB4, AB1, AC2) and 3 occurrences of length 2 without the

item P̃ = A (CD4, BD4, BC4).

4.2. TPSpace: Algorithm for building a trie of occurrences

Now, we show how to build a trie of occurrences from a transactional database
to efficiently take into account any type of length-based utility measure. Note
first that this construction is done iteratively by adding the transactions one
by one to the trie. In our case, we need to compute the positive and negative
contributions of each transaction t within each node of identifier P such that P
is a prefix of t.

Property 2. Let T = {t1, · · · , tn} be a transactional database. We denote by
Ti the subset of transactions defined by Ti = {tk ∈ T : 1 ≤ k ≤ i}. If P is a
prefix of ti, then we have:

Φ⋆
ℓ (P, Ti) = Φ⋆

ℓ (P, Ti−1) +

(
|ti| − |P |

ℓ− ǫ

)
, ǫ =

{
1 if ⋆ = +
0 if ⋆ = −

By convention, Φ−
ℓ (P, T0) = 0 whatever the identifier P . If P is the root identifier,

P = ǫ, then |P | = 0 and in this case, we set that Φ+
ℓ (P, T) = 0.

Proof. From Definition 11, we know that on the one hand Φ+
ℓ (P, Ti) =

Φ+
ℓ (P, Ti−1) + Φ+

ℓ (P, {ti}) and on the other hand Φ−
ℓ (P, Ti) = Φ−

ℓ (P, Ti−1) +

Φ−
ℓ (P, {ti}). If P is a prefix of ti, then according to Definition 9, there is an item-

set ϕ′ such that ti = P ◦ ϕ′. So, Φ+
ℓ (P, {ti}) = |{P̃ ◦ ϕ : ϕ ⊆ ϕ′ ∧ |ϕ| = ℓ− 1}|.

Then we have Φ+
ℓ (P, {ti}) =

(
|ti|−|P |

ℓ−1

)
. On the other hand, Φ−

ℓ (P, {ti}) =

|{ϕ ⊆ ϕ′ : |ϕ| = ℓ}|. Then we also have Φ−
ℓ (P, {ti}) =

(
|ti|−|P |

ℓ

)
. Hence the re-

sult.

When adding the transaction ti in the trie τ , the terms
(

|ti|−|P |
ℓ−1

)
and

(
|ti|−|P |

ℓ

)

are called respectively the positive and the negative contribution of ti to the
occurrences of length ℓ of the node identified by the prefix P .

Example 9. Let us continue with Example 7 by computing the weights
Φ+

2 (A, T) and Φ−
2 (A, T) but this time using Property 2. By definition, we have

TA = {(1, AB), (2, AC), (4, ABCD)}.

According to Property 2, we have: Φ+
2 (A, T1) = 0 +

(
|t1|−1
2−1

)
=

(
2−1

1

)
=

(
1
1

)
=

1. Then, by adding t2 we have Φ+
2 (A, T2) = Φ+

2 (A, T1) +
(

|t2|−1
2−1

)
= 1 +

(
2−1

1

)
=

1 +
(

1
1

)
= 1 + 1 = 2. Adding transaction t3 does not affect the weights of the

identifier node P = A because, in this case, P is not a prefix of t3. So we
have Φ+

2 (A, T3) = Φ+
2 (A, T2) = 2. Finally, by adding transaction t4, we have

Φ+
2 (A, T4) = Φ+

2 (A, T3) +
(

|t4|−1
2−1

)
= 2 +

(
4−1

1

)
= 2 +

(
3
1

)
= 2 + 3 = 5.

We also have Φ−
2 (A, T1) = 0 +

(
|t1|−1

2

)
=

(
2−1

2

)
=

(
1
2

)
= 0. With adding

transaction t2 we have Φ−
2 (A, T2) = Φ−

2 (A, T1) +
(

|t2|−1
2

)
= 0 +

(
2−1

2

)
=

(
1
2

)
=

Trie-based Output Space Itemset Sampling 15

0. Likewise, adding transaction t3 does not affect the weights of the identifier
node P = A. So we have Φ−

2 (A, T3) = Φ−
2 (A, T2) = 0. Finally, by adding the

transaction t4, we have Φ−
2 (A, T4) = Φ−

2 (A, T3) +
(

|t4|−1
2

)
= 0 +

(
4−1

2

)
=

(
3
2

)
= 3.

We need now to introduce some basic functions for creating, adding, or finding
a node when inserting the items of a transaction into a trie.

– Let CreateNode the function defined by η ← CreateNode(e) where η is a node
such as η.label = e, η.child = ∅ where ∅ represents here an empty list of nodes
and η.Φ+[ℓ] = η.Φ−[ℓ] = 0 for ℓ ∈ [µ..M].

– Let SearchChild the function defined by η.child[i]← SearchChild(e, η) if there
is i such as η.child[i].label = e, null otherwise.

– Let AddChild be the function allowing to add a child to a node. More precisely,
if η is a node such as k = |η.child|, we will consider that after execution of
AddChild(c, η), we have |η.son| = k + 1 and η.child[k + 1] = c.

In the following, t[j], with j > 0, is the jth item of transaction t according the
total order relation >I .

Algorithm 1 TPSpace

1: Input: A transactional database T , the minimum µ and maximum M length
constraints

2: Output: A trie of occurrences τ
3: τ ← CreateNode(ǫ) ⊲ Creation of the trie root node
4: for t ∈ T do
5: for ℓ← µ to M do

6: τ.Φ−[ℓ]← τ.Φ−[ℓ] +
(

|t|
ℓ

)

7: η ← τ
8: for j ← 1 to |t| do
9: c← SearchChild(t[j], η)

10: if c = null then ⊲ If c is not child of node η
11: c← CreateNode(t[j]) ⊲ so we create it
12: AddChild(c, η)

13: for ℓ← µ to M do

14: c.Φ+[ℓ]← c.Φ+[ℓ] +
(

|t|−j
ℓ−1

)

15: c.Φ−[ℓ]← c.Φ−[ℓ] +
(

|t|−j
ℓ

)

16: η ← c

17: return τ

Algorithm 1 describes the TPSpace method to create a trie of occurrences of
an input database T according to a total order relation >I . We initialize the trie
of occurrences (line 3) by creating an empty node with the CreateNode function.
For each transaction t of the input database whose items follow the order relation
>I , we start at the root then, using Property 2, we compute its total contribution
in the trie according to the lengths which we add to the root (line 6). Then, for
each item t[j] of the transaction being inserted in the trie, if there is not a child
node c labelled with the item t[j] according to the SearchChild function (line 9),
we create it using the function CreateNode (line 11) then we add it among the
children of η with the function AddChild (line 12). Finally, we add the positive

16 Diop et al

and negative contributions of the transaction t to the node c (lines 13 to 15)
using Property 2. We now go to node c (line 16) and the process starts again
with the item at position j +1 in t. Finally, line 17 returns the trie of occurrences
τ for the transactional database T .

Example 10. In this example, we show how to build a trie of occurrences with

Algorithm 1. Let’s consider the total order relation >freq
I between the items, let

us construct the trie of occurrences corresponding to the transactional database
T given in Figure 2.

First, we compute the frequency of each item, and then we fix the order of

the items. By scanning the database T , we have A >freq
I B >freq

I C >freq
I D

according to the example 4. All the items of each transaction in the database
must follow this order. Note that this order is important since each path of the
trie also follows it.

Assuming now that we want to sample patterns of length between µ = 1
and M = 3, we start the construction of the trie by creating the root with the
function CreateNode(ǫ). We do not mention the exhaustive list of computations
of the weights, but Figure 4 gives all intermediate results for the construction of
the trie of occurrences τ corresponding to the database T . Now, we show step
by step how to insert transactions into the trie by computing the weight of each
node each time an occurrence is counted in it.

1. insert(t1) : We compute the weights of the root r: r.Φ−[ℓ] ←
(

|AB|
ℓ

)
, with

ℓ ∈ [1..3] (lines 5 and 6). It gives the following results r.Φ−[1]← 2, r.Φ−[2]← 1
and r.Φ−[3] ← 0. The insertion of the transaction t1 = AB, according to

the total order relation >freq
I , adds to nodes in the trie. Since the root has

no children yet, then the function SearchChild(A, r) returns “null” (line 9).
So that, just after the root, a node with the label A is created using the
function CreateNode, c ← CreateNode(A) (line 11) is added as first node of
the root thanks to the function AddChild(c, r) (line 12). In this node, we have

c.Φ+[1]←
(

|AB|−1
0

)
= 1, c.Φ−[1]←

(
|AB|−1

1

)
= 1, c.Φ+[2]←

(
|AB|−1

2−1

)
= 1 and

the other weights are zero (lines 13 and 15). We go to the node c by pointing
the variable η there, η ← c (line 16). The node η has no child carrying the
next item of the transaction because SearchChild(B, η) = null, then we create
node c← CreateNode(B) (line 11) then we add it to the children of η with the

function AddChild(c, η) (line 12). In this node, we have c.Φ+[1]←
(

|AB|−2
1−1

)
= 1

and the other weights are zero.

2. insert(t2) : We add the number of occurrences of length equals to ℓ ∈ [1..3] to

the weights of the root of τ (lines 5 and 6) : r.Φ−[1] ← r.Φ−[1] +
(

|AC|
1

)
= 4,

r.Φ−[2] ← r.Φ−[2] +
(

|AC|
2

)
= 2 and r.Φ−[3] ← r.Φ−[3] +

(
|AC|

3

)
= 0. Then,

we have SearchChild(A, r) 6= null (line 9), so the weights of the node c are

updated as follow: c.Φ+[1] ← c.Φ+[1] +
(

|AC|−1
1−1

)
= 1 + 1 = 2 et c.Φ−[1] ←

c.Φ−[1] +
(

|AC|−1
1

)
= 1 + 1 = 2 (lines 13 and 15). For the next and last item

of t2, we have η ← c (line 16) and SearchChild(C, η) = null (line 9), then
we create the child of the node η with the label C, c ← CreateNode(C) (line
11). We add the node c to the children of η, AddChild(c, η) (line 12), and we
compute its weights (lines 13 to 15).

3. insert(t3) : After adding the number of occurrences of length ℓ ∈ [1..3] of the

Trie-based Output Space Itemset Sampling 17

insert(t1)

ǫ

2 1 0

A

Φ+

ℓ
1 1 0

Φ−

ℓ
1 0 0

B

1 0 0
0 0 0

ǫ

4 2 0

A

Φ+

ℓ
2 2 0

Φ−

ℓ
2 0 0

B
1 0 0
0 0 0

C

1 0 0
0 0 0

insert(t2)

insert(t3)

ǫ

6 3 0

A

Φ+

ℓ
2 2 0

Φ−

ℓ
2 0 0

B
1 0 0
0 0 0

C
1 0 0
0 0 0

B

1 1 0
1 0 0

C

1 0 0
0 0 0

insert(t4)

ǫ

10 9 4

A

Φ+

ℓ
3 5 3

Φ−

ℓ
5 3 1

B

2 2 1
2 1 0

C

1 1 0
1 0 0

D

1 0 0
0 0 0

C
1 0 0
0 0 0

B
1 1 0
1 0 0

C
1 0 0
0 0 0

Fig. 4. Steps of building the trie of occurrence corresponding to T with ℓ ∈ [1..3]

18 Diop et al

transaction t3 to the weights of the root of τ (lines 5 and 6), we note that
there is no child of the root having the label B because SearchChild(B, r) =
null (line 9). Now we create the node c = CreateNode(B) (line 11) and
we add it to the children of the root AddChild(c, r) (line 12). Finally, we
compute the weights of c (lines 13 to 15). Let η ← c (line 16), we have
SearchChild(C, η) = null (line 9), then we create the node labelled with the
item C, c← CreateNode(C) (line 11), and we add it to the children of η with
the function AddChild(c, η) (line 12). Finally, we compute the weights of the
node c (c.Φ+[1]← 1 and the other weights are 0) (lines 13 to 15).

4. insert(t4) : After adding the number of occurrences of length ℓ ∈ [1..3] of the
transaction t4 to the weights of the root of the trie τ (lines 5 and 6), we note
that SearchChild(A, r) 6= null (line 9), we update the weights of the node c
identified by ǫ→ A (lines 13 to 15): in one hand c.Φ+[1]← c.Φ+[1] +

(
4−1
1−1

)
=

2 + 1 = 3, c.Φ+[2] ← c.Φ+[2] +
(

4−1
2−1

)
= 2 + 3 = 5 and c.Φ+[3] ← c.Φ+[3] +(

4−1
3−1

)
= 0 + 3 = 3, in another hand c.Φ−[1] ← c.Φ−[1] +

(
4−1

1

)
= 2 + 3 = 5,

c.Φ−[2]← c.Φ−[2]+
(

4−1
2

)
= 0+3 = 3 et c.Φ−[3]← c.Φ−[3]+

(
4−1

3

)
= 0+1 = 1.

Now, we compute the weights of the node identified by ǫ → A → B by
following the same reasoning applied to the previous node. Using functions
CreateNode (line 11) and AddChild (line 12), we create the nodes identified
by ǫ → A → B → C and ǫ → A → B → C → D that do not yet exist in the
trie according to the function SearchChild (line 9). Finally, we add these last
nodes in their place while computing their respective weights (lines 13 to 15).

5. Finally, we return the obtained trie τ (line 16).

Finally, we have a total of 10 occurrences having a length equal to 1, 9 occurrences
have a length equal to 2 and 4 occurrences have a length equal to 3.

As we have built the trie of occurrences, if we keep the minimum and maxi-
mum length constraints already used during the construction, we will see in the
next section that the user can apply any length-based utility measure m ∈ M
without rebuilding the trie. This is because the trie weights only each length to
make an exact draw. So, when the maximal length constraint M don’t change,
we just iterate on the top array of the trie that has M −µ+1 values to reprocess
the database for a new utility. Let’s recall that the maximal length constraint
M should not be too large to avoid the long tail problem.

5. TPSampling: Trie-based Pattern Sampling

This section begins by introducing some basic notions relating to the trie of
occurrences to better present our approach. Then, it presents the TPSampling

algorithm for the exact draw of a pattern proportionally to a given interestingness
measure.

5.1. Drawing approach

To draw a pattern of length ℓ proportionally to a length-based utility mul-
tiplied by its frequency in the database, we can uniformly draw an occurrence
among the set of occurrences of length ℓ. To do this, we first need to draw an

Trie-based Output Space Itemset Sampling 19

Table 2. Ranking occurrences of length 2
ϕi CD4 BD4 BC4 AD4 AC4 AB4 AB1 AC2 BC3

rank2 1 2 3 4 5 6 7 8 9

integer ℓ ∈ [µ..M] proportionally to Φℓ(ǫ, T)× fu(ℓ) with a length-based utility
u. Second, we uniformly draw a length ℓ of an occurrence among the set of length
ℓ of occurrences in the database, but directly from the trie.

The drawing of an occurrence of a given length is not trivial because we do
not know a priori where it is in the trie. This means that it is necessary to cleverly
scan the nodes of the trie to find the sought occurrence. Of course, there already
exist numbering systems for tree traversal (like prefix or postfix orders) but in
our case, the goal is not to number the nodes of the trie, but the occurrences of
patterns represented by the trie. The intuition of the numbering system that we
use can be summarized as follows:

– It is a recursive and postfix traversal (in depth and from left to right). At the
level of the occurrences represented in a sub-trie, they are numbered from left
to right, the children of a root of a sub-trie being ordered,

– At the level of a sub-trie, from the root identified by a prefix P , we give a

lower rank to occurrences without the label P̃ than others containing P̃ .

Definition 13 (Ranking occurrences by length). If ϕj is an occurrence of
length ℓ from a database T and τ is a trie constructed from T , we denote
rankℓ(ϕj , τ) = rankℓ(ϕj , τ ǫ) the rank of this occurrence relative to the trie τ .
This rank can be defined recursively as follows:

–If ϕj ∈ φ−
ℓ (P, T), and more precisely if ϕj ∈ φℓ(P ◦ ei, T) where ei =

τP .child[i], then rankℓ(ϕj , τP) =
∑i−1

k=1 Φℓ(P ◦ ek, τ) + rankℓ(ϕj , τP ◦ei
).

–If ϕj ∈ φ+
ℓ (P, T), then ϕj = P̃ ◦ ϕ′

j . And in this case, if ϕ′
j ∈ φℓ−1(P ◦ ei, T)

where ei = τP .child[i], then rankℓ(ϕj , τP) = Φ−
ℓ (P, τ)+

∑i−1
k=1 Φℓ−1(P ◦ek, τ)+

rankℓ−1(ϕ′
j , τP ◦ei

).

–Finally, if ϕj is an occurrence of length 1, we define rank1(ϕj , τP) by:
rank1(ϕj , τP) = rank>I

(ϕj , φ1(P, T)) where >I defined on items is extended
to occurrences of length 1 as follows: (i, e) >I (j, e′) if e′ >I e or e = e′ and
i > j.

Example 11. Considering only the patterns of length 2 and the total order

relation >freq
I , the list in Table 2 gives the rank of each occurrence in the trie of

Figure 3:
φ2(ǫ, T) = {CD4, BD4, BC4, AD4, AC4, AB4, AB1, AC2, BC3}. We know
that CD4 ∈ φ−

2 (A, T), then rank2(CD4, τ ǫ) = rank2(CD4, τA) =
rank2(CD4, τAB) = rank2(CD4, τABC) = Φ−

2 (ABC, τ) + rank1(D, τABC) =
0 + rank

>
freq

I

(D, {D}) = 1.

Let us compute rank2(AB4, τ ǫ). We know that AB4 ∈ φ+
2 (A, T),

then rank2(AB4, τ ǫ) = Φ−
2 (A, τ) + 0 + rank1(B4, τAB) = 3 +

rank
>

freq

I

(B4, {B1, B4, C4, D4}). Or (4, D) >freq
I (4, C) >freq

I (4, B) >freq
I

(1, B), then rank
>

freq

I

(B4, {B1, B4, C4, D4}) = 3, so rank2(AB4, τ ǫ) = 3+3 = 6.

In this list of occurrences, to draw a pattern proportionally to its frequency, it

20 Diop et al

suffices to uniformly draw a rank between 1 and the highest rank, and return the
occurrence which has that rank. For example, we have 2 occurrences of AB in
ranks 6 and 7. This means that the probability of drawing the pattern AB among
the set of patterns of length exactly equal to 2 is 2

9 , therefore proportional to
its frequency. If the user chooses the frequency as interestingness measure, then
from the trie of occurrences, we draw ℓ = 2 with a probability of 9

23 . Therefore,
we can note that the pattern AB is drawn in the trie with a probability equal
to 9

23 ×
2
9 = 2

23 , therefore proportional to its frequency in the database.

5.2. Trie-based pattern sampling algorithm

Algorithm 2 takes as input a trie of occurrences τ , a length-based utility
u ∈ U , and minimum µ and maximum M length constraints. It returns a pattern
ϕ drawn proportionally to its interest in the database corresponding to the trie.
Draw a length ℓ between µ and M . Line 4 draws an integer ℓ between µ and
M proportionally to the number of occurrences of length ℓ, i.e. τ.Φ−[ℓ] multiplied
by the utility of a length ℓ, fu(ℓ).
Uniform drawing of an occurrence of length ℓ. To sample an occurrence
of length ℓ, we uniformly draw a rank x in the interval [1..τ.Φ−[ℓ]] (line 5). To
find the occurrence corresponding to x, we scan the trie in depth-first search
from left to right by looking for the nodes that satisfy the system of inequalities
in line 7 which is based on Definition 13. This system of inequalities makes it
possible to find the rank of the occurrence from the trie of root τ . Whenever
we encounter a node verifying the system of inequalities, we test whether the
item it contains is a candidate for the pattern to be returned (line 9), and we
add it to the pattern if necessary (line 10). In line 13, we consider the sub-trie
whose node satisfying the system of inequalities is the root. Thus, the new rank
to visit is the one obtained by subtracting from the old value of x the sum of
the weights of the i − 1 first children of the current node, father of ηi, (line 8)
and the negative input to node ηi (line 11). We will then look for the remaining
ℓ− 1 items of the pattern to be returned in the sub-trie of root ηi. The process
is iterated until the current value of ℓ is equal to 0. The set of items selected
at the different visited nodes form the pattern to return at line 14. So, given a
positive integer k1, Sampℓek1

(L[µ..M], T , mu), where mu = fu(|ϕ|)× freq(ϕ, T),
is computed by repeating lines 3-14 of Algorithm 2 k1 times. Furthermore, given
a length-based utility u′, we just need to replace fu(ℓ) by fu′(ℓ) in line 4 in order
to compute efficiently Sampℓek2

(L[µ..M], T , mu′), with 0 < k2.
Example 12 shows a case of execution of Algorithm 2 for drawing a pattern

proportionally to the frequency.

Example 12. Having uniformly drawn a rank x = 5 of an occurrence among
those of length 2, we are going to show at Figure 5, with Algorithm 2, how to
find the corresponding occurrence in the trie of occurrences of Figure 3.

The search for the fifth occurrence among the set of occurrences of length 2
requires 3 iterations. During the first iteration, we select the first child c of the
root of the trie τ of identifier P = A because 0 < x ≤ (c.Φ−[2]+ c.Φ+[2] = 3+5)
(line 7), and also we have x > c.Φ−[2] at line 9. Therefore, item A is part of the
occurrence to be returned as output and the current content of the occurrence
is ϕ = A. The value of ℓ becomes 1 because we are now going to look at the
patterns of length ℓ−1 = 1 considering the sub-trie τA then return the 5−3 = 2-

Trie-based Output Space Itemset Sampling 21

Algorithm 2 TPSampling

1: Input : A trie τ of occurrences of a database T , a length-based utility u ∈ U
and the minimum and maximum length constraints µ and M

2: Output : A pattern ϕ drawn proportionally to its interest ϕ ∼ fu(|ϕ|) ×
freq(ϕ, T)

3: ϕ← ∅
4: Draw a length ℓ proportionally to τ.Φ−[ℓ]× fu(ℓ) where ℓ ∈ [µ..M]
5: Draw uniformly a rank x in [1..τ.Φ−[ℓ]]
6: while (ℓ > 0) do
7: Find the ith child ηi ∈ τ.child such that :

∑

1≤k<i

(
τ.child[k].Φ+[ℓ] + τ.child[k].Φ−[ℓ]

)
< x ≤

∑

1≤k≤i

(
τ.child[k].Φ+[ℓ] + τ.child[k].Φ−[ℓ]

)

8: x← x−
∑

1≤k<i (τ.child[k].Φ+[ℓ] + τ.child[k].Φ−[ℓ])

9: if (x > ηi.Φ
−[ℓ]) then ⊲ Check if the label of the current node is part of

the pattern
10: ϕ← ϕ ∪ ηi.label
11: x← x− ηi.Φ

−[ℓ]
12: ℓ← ℓ− 1
13: τ ← ηi

14: return ϕ

ℓ← 2 et x← 5
1st iteration 2nd iteration 3rd iteration
L7: 0 < x ≤ 5 + 3 L7: 0 < x ≤ 2 + 2 L7: 0 < x ≤ 1 + 1
L8: x← 5− 0 = 5 L8: x← 2− 0 = 2 L8: x← 2− 0 = 2
L9: x > 2 L9: x 6> 2 L9: x > 1
L10: ϕ← A L10: ϕ← AC
L11: x← 5− 3 = 2 L11: x← 2− 1 = 1
L12: ℓ← 2− 1 = 1 L12: ℓ← 1− 1 = 0

L13: r ← r.fils[1] = τA L13: r ← r.fils[1] = τAB L13: r ← r.fils[1] = τABC

Fig. 5. Example of drawing an occurrence under length constraint returning AC4

nd occurrence of length 1 in τA. In the second iteration, we select the first
child c of the root of the sub-trie τA of identifier P = AB because 0 < x ≤
(c.Φ−[1] + c.Φ+[1] = 2 + 2) (line 7), and also we have x < c.Φ−[1] at line 9 and
therefore item B is not part of the occurrence to return, the value of ℓ is always the
same. During the 3rd iteration, we select the first child c of the root of the sub-trie
τAB of identifier P = ABC because 0 < x ≤ (c.Φ−[1] + c.Φ+[1] = 1 + 1) (line 7).
We then note that x > c.Φ−[1] and therefore, the item C is part of the occurrence
to be returned. The current content of the occurrence is equal to ϕ = AC. The
value of ℓ is now equal to 0 (line 12) which means that TPSampling stops and
returns the pattern ϕ = AC. We also note that the fifth occurrence of length 2
is indeed AC in Table 2.

22 Diop et al

6. Theoretical analysis

This section makes a theoretical study of our approach for sampling from a
trie of occurrences. First, it presents the proof of the correctness of drawing a
pattern. Secondly, it shows the space complexity (i.e., memory storage) of the
trie of occurrences. Third and last, it presents the temporal complexities of our
two algorithms for building a trie of occurrences by TPSpace and for drawing
a pattern from a trie of occurrences by TPSampling.

6.1. Correction

Property 3 shows that our sampling method TPSampling does an exact
draw of a pattern.

Property 3. Let τ a trie of occurrences from a transactional database and u a
length-based utility, Algorithm 2 draws a pattern ϕ according to a probability
proportional to its frequency weighted by its utility.

Proof. Let ϕi be an occurrence of a pattern of length ℓ. The probability that ϕi is
returned is π(ℓ)×π(ϕi/ℓ). Let Z =

∑
ℓ fu(ℓ)×τ.Φ−[l]. We know from line 4 that

π(ℓ) = fu(ℓ)×τ.Φ−[l]/Z. According to line 5, the rank of an occurrence ℓ is drawn
uniformly among the ranks of the occurrences of the same length. Lines 9 to 12
use the definition 13 in order to access the occurrence of a given rank. So from

lines 6 to 13, we have π(ϕi/ℓ) = 1/τ.Φ−[l]. It follows that π(ϕi) = fu(ℓ)×τ.Φ−[l]
Z

×
1

τ.Φ−[l] . So π(ϕi) = fu(ℓ)
Z

. Which ultimately gives π(ϕ) = fu(ℓ)
Z
× freq(ϕ, T).

Hence the result.

6.2. Space complexity

The size of memory occupied by the trie of occurrences is not negligible, espe-
cially with large datasets. However, it can be optimized during the preprocessing
phase by reducing the number of nodes. For example, considering that the items
are ordered according to the decreasing order of their frequencies, the number
of nodes in the trie is much lower than the upper bound which is in O(2|I|). In
that case, a tight upper bound of the number of nodes is detailed in [31].

The size of a trie of occurrences also depends on the information stored in
the nodes. In our case, the higher the maximum length constraint, the larger
the arrays and the greater the memory size. This means that if the number of
nodes in the trie of occurrence is z, µ and M the minimum and maximum length
constraints respectively, then the size in memory of the trie is in O(z × 2 ×
(M − µ)). Fortunately, the maximum length constraint must generally be small
to avoid the long tail problem. It is also important to note that, to have a good
practical consumption of memory storage, we do not materialize the columns of
tables that only contain zero values. This trick counterbalances the impact of
the maximum length constraint increase.

Example 13. Figure 6 is a version of the trie of occurrences that we represented
in Figure 3. In this case, we have omitted the columns that contain only zeros
(0).
If we take a maximum length constraint M = 4, then only the array of the node

Trie-based Output Space Itemset Sampling 23

ǫ
10 9 4

A
Φ+

ℓ 3 5 3
Φ−

ℓ 5 3 1

B
2 2 1
2 1 0

C
1 1
1 0

D
1
0

C
1
0

B
1 1
1 0

C
1
0

Fig. 6. Storage in practice of the enriched trie in Figure 3

of identifier A and that of the root will be impacted. We will have in particular
one more column at the identifier node A containing 1 at the index 1 (to count
the pattern ABCD of size 4) and 0 at the index 2. At the root, we will have
one more square to count the pattern 4. If now, we have M = 5, then the trie
remains unchanged because no pattern of length 5 appears in any transaction of
the database T .

As can be seen, this optimization can make it possible to have a significant
gain on the size in memory of a trie of occurrences compared to the theoretical
representation where all the columns are materialized.

6.3. Time complexity

The time complexity of our method can be divided into two steps: the pre-
processing time of the construction of the trie of occurrences and the drawing
time of an occurrence.

Preprocessing time. It is the most expensive phase of TPSpace. A first pass
on the database is necessary to retrieve the items from the database T and
compute their frequencies in O(||T ||) where ||T || is the sum of the lengths trans-
actions from the database T . The previously retrieved items are ordered ac-
cording to the total order relation chosen >I in O(|I| × log(|I|)). Then, before
adding a transaction to the trie, we order its items according to the total or-
der relation >I in O(Tmax × log(Tmax)) where Tmax is the maximum length
of transactions in the database T . Finally, if z is the total number of nodes

24 Diop et al

in the trie following the total order relation >I , µ and M the minimum and
maximum length constraints respectively, then the weighting of the nodes is
done in O(z × 2 × (M × µ)). Thus, the total complexity for building the trie
of occurrence of the transactional database T built on the set of literals I is
in O(||T || + |I| × log(|I|) + |T | × Tmax × log(Tmax) + z × (M × µ)). However,
remember that this preprocessing of a database is done only once.

Reprocessing time for utility change. When the utility changes without
updating the length constraints µ and M , the complexity of the reprocessing
time is in O(M − µ), which is particularly fast. This is because only the array
of the root of the trie is traveled to compute the new weight of each length
ℓ ∈ [µ..M].

It’s clear that in this paper we deal only with utility change for the reprocess-
ing because we suppose that M is large and no longer needed to be increased to
avoid the long tail problem. But, when the user needs to increase the maximum
length constraint from M to M ′, the complexity of the reprocessing is bounded
by O((M ′ −M) × z), where z is the total number of nodes in the trie. In fact,
the weights of M + 1 can be deduced from those of M , and those of M ′ from
those of M ′ − 1.

Drawing time of an occurrence. Let us denote by d the degree (number of
children) of a node of the trie and by dmax the maximum degree of the trie,
dmax ≤ |I|. Line 7 of TPSampling finds ith node in O(log(dmax)). Thus, by
going deeply through the trie of occurrences, TPSampling draws an occurrence
in O(Tmax× log(dmax)). So, a sample of k patterns is obtained by TPSampling

in O(k × Tmax × log(dmax)). This complexity is comparable to that of the two-
step algorithm [4] (with length constraints) which draws a sample of k patterns
in O(k × Tmax × log(|T |)).

7. Experiments

This experimental section aims to assess the efficiency of our approach to
large transactional datasets. It’s important to note that our main goal is not to
compare pattern sampling algorithms with exhaustive pattern mining methods
based on compact structure [32, 33]. Previous works [3, 12, 10] already justi-
fied the advantages of output pattern sampling over exhaustive pattern mining.
The difficulties encountered in exhaustive pattern mining, such as setting the
threshold or controlling the output size, are not resolved by the compact repre-
sentation.

So, we first evaluate the memory size occupied by the trie of occurrences
according to the maximum length constraint and the total order relation on

the items >I∈ {>
freq
I , >lexico

I }. Second, we study the building time of a trie of
occurrences according to the maximum length constraint on different datasets
and then evaluate the speed of drawing a pattern by TPSampling. Finally, we
show the scalability of TPSampling on large databases. The experiments were
conducted with 4 UCI databases for Connect, Pumsb, Susy, and USCensus. We
also used 2 synthetic datasets built with the IBMGenerator1 T10I4D2000K and

1 https://github.com/zakimjz/IBMGenerator

Trie-based Output Space Itemset Sampling 25

Table 3. Characteristics of datasets
T |I| |T | |t|min |t|max |t|avg

Connect 129 67,557 43 43 43.00
Pumsb 2,113 49,096 74 74 74.00
USCensus 396 1,000 K 25 68 68.00
Susy 190 5,000 K 19 19 19.00
T10I4D2000K 2,719 2,000 K 10 30 20.11
T10I6D3000K 3,952 3,000 K 10 35 22.61

Table 4. Characteristics of tries of the datasets
Nb of nodes in the trie Gain (in %)

>freq
I >lexico

I
Nblexico−Nbfreq

Nblexico

Connect 359,291 1,014,837 64.60
Pumsb 1,126,154 2,629,640 57.17
USCensus 312,808 607,611 48.52
Susy 10,424,240 12,630,372 17.47
T10I4D2000K 9,957,321 − −
T10I6D3000K 10,617,309 − −

T10I6D3000K. These synthetic datasets allow us to evaluate our approach with
large transactional databases. Table 3 details on the one hand the characteris-
tics of the benchmarks according to the number of items, of transactions, and
the maximum and the average length of the transactions. On the other hand,
it presents the number of nodes in the trie corresponding to each database and
according to the total order of the items. For sampling with length constraint,
the value of the minimum length constraint is fixed at µ = 1 throughout the
experiments. The prototype of our method is implemented in Python version 3
and all the experiments are performed on a 2.71 GHz 2 Core CPU with 12 GB
RAM. All experimental data sets used, as well as the source code, are available
at https://github.com/TPSampling/TPSampling. We also implement an ap-
proach combining the two-step algorithm [4] with maximum length constraints
as a baseline.

7.1. Storage cost of the trie of occurrences

The cost2 of storing a trie of occurrences in a database depends on both the
total order relation >I and the maximum length constraint.

As we can see in Table 4, the number of nodes depends on the order in which
the items are inserted in the trie. Overall, we noted that the number of nodes is

much smaller with the >freq
I relation than with the >lexico

I relation according to
the gain obtained in the last column. For example, with the Connect database,

the number of nodes in the trie built with the order relation >freq
I is 64.6%

less than the number of nodes in the trie built with the total order relation

2 Computed with the python package asizeof http://code.activestate.com/recipes/
546530-size-of-python-objects-revised/

https://github.com/TPSampling/TPSampling
http://code.activestate.com/recipes/546530-size-of-python-objects-revised/
http://code.activestate.com/recipes/546530-size-of-python-objects-revised/

26 Diop et al

>lexico
I . This characteristic is very important in our proposal because each node

must contain two arrays whose size depends on the maximum length constraint.
Thus, the smaller the number of nodes, the lower the storage cost. With the gain
obtained in Table 4, we can already note that the total order relation plays a very
important role in optimizing the cost of memory storage, especially with large
datasets like Susy, T10I4D2000K, and T10I6D3000K. In the two last datasets,
it is not possible to run TPSampling with le lexicographical order due to an
exception of “Out of memory”.

Figure 7 shows the evolution of the memory size required by the tries of
each database according to the maximum length constraint M ∈ [2..10] and
the chosen order relation. We take as a baseline the storage cost of the tabular
representations of the databases weighted according to the maximum length
constraints of the two-step method [4](with length constraints).
We first observe that the memory size of tries of occurrences increases according
to the maximum length constraint. Indeed, the two-dimensional matrixes that
make it possible to count the patterns by length increase in size according to the
maximum length constraint. This increase is more remarkable in the case where
we considered the relation of total order >lexico

I because the number of nodes in
the trie constructed with the relation of total order >lexico

I is higher than that

of the trie built with the relation >freq
I . Therefore, the size of the trie is more

expensive with the >lexico
I relation than with the >freq

I relation. Thus, in the
case where the database is very large, for example with Susy, T10I4D2000K, and
T10I6D3000K, it is preferable to insert the items of the instances of the database

in the trie following the relation total order >freq
I . The evolution of the size

of the trie according to the maximum length constraint in memory is almost
stationary with the UCI datasets Connect, Pumsb, USCensus, and Susy. When
the maximum length constraint is greater than 6, T10I4D2000K becomes more
expensive than Susy while the latter has more nodes in its trie of occurrences.
This is because T10I4D2000K has more nodes near the root of its trie than that
of Susy. These experimental results show that our approach is sensitive to the
total number of items on which the database is built. For instance, TPSampling

+>freq
I returns an “Out of memory” exception with T10I6D3000K when the

maximum length constraint is greater than 7. We also noted that if the database
is large Connect (67,557 instances having an average length of 43.0) and Pumsb
(49,096 instances having an average length of 74.0), the memory size of the trie

of occurrences constructed according to the order relation >freq
I is 200 times

smaller than that of the representation of the database used by the two-step
approach [4]. The implementation of the two-Step method generates an “Out of
memory” exception with Susy, while both Two-Step and TPSampling +>lexico

I
return “Out of memory” exception with T10I4D2000K and T10I6D3000K.

7.2. Speed of the approach

This section studies also the speed of our trie-based sampling method by dis-
tinguishing between preprocessing time, reprocessing time, and that of drawing a
pattern. We will start evaluating the preprocessing time of each dataset of Table
3 and then compare it with that of the two-step method. We finish by computing
the average time to draw a pattern with TPSampling in the 6 datasets accord-
ing to the maximum length constraint and the chosen interestingness measure.

Trie-based Output Space Itemset Sampling 27

 0

 100

 200

 300

 400

 500

 600

 700

 2 3 4 5 6 7 8 9 10

S
iz

e
 i
n

 m
e

m
o

ry
 (

M
B

)

Maximal length constraint

connect

Trie with frequency order
Trie with lexicographic order

Two−Step

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 3 4 5 6 7 8 9 10

S
iz

e
 i
n

 m
e

m
o

ry
 (

M
B

)

Maximal length constraint

pumsb

Trie with frequency order
Trie with lexicographic order

Two−Step

 0

 50

 100

 150

 200

 250

 300

 350

 2 3 4 5 6 7 8 9 10

S
iz

e
 i
n

 m
e

m
o

ry
 (

M
B

)

Maximal length constraint

uscensus

Trie with frequency order
Trie with lexicographic order

Two−Step

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 3 4 5 6 7 8 9 10

S
iz

e
 i
n

 m
e

m
o

ry
 (

M
B

)

Maximal length constraint

susy

Trie with frequency order
Trie with lexicographic order

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 3 4 5 6 7 8 9 10

S
iz

e
 i
n

 m
e

m
o

ry
 (

M
B

)

Maximum lenght constraint

T10I4D2000K

Trie with frequency order

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 3 4 5 6 7 8 9 10

S
iz

e
 i
n

 m
e

m
o

ry
 (

M
B

)

Maximum lenght constraint

T10I6D3000K

Trie with frequency order

Fig. 7. Evolution of the memory size of the tries according to the length constraint

Evaluation of the preprocessing time. Interestingly, the time to build a
trie of occurrences is independent of any length-based interestingness measure.
In our experiments, we consider the maximum length constraints M ∈ {2, 6}.
These values seem sufficient to avoid drawing patterns from the long tail. Table
5 presents the preprocessing times for the construction of the tries of occurrences
and those for weighting the databases with the two-step algorithm according to
the maximum length constraint. Each experiment is repeated 10 times to have
the average preprocessing times and the standard deviations.

As we can see, the two-step method is faster than the trie-based method for

28 Diop et al

Table 5. Preprocessing times in seconds according to the measures (A = Area,
D = Decay, F = Freq) and (M ∈ {2, 6})

Two-Step ([4]+ constraints) TPSampling (>freq
I

) TPSampling (>lexico
I

)
T m M=2 M=6 M=2 M=6 M=2 M=6

Connect

A 0.44 ± 0.02 0.44 ± 0.04

9.98 ± 0.30 13.33 ± 3.45 15.57 ± 0.37 25.72 ± 0.69
D 0.44 ± 0.03 0.44 ± 0.04
F 0.43 ± 0.04 0.45 ± 0.03

Pumsb

A 0.54 ± 0.04 0.53 ± 0.03

18.66 ± 0.40 24.12 ± 5.62 78.89 ± 1.65 94.79 ± 3.24
D 0.54 ± 0.04 0.54 ± 0.04
F 0.56 ± 0.04 0.53 ± 0.04

USCensus

A 0.01 ± 0.00 0.01 ± 0.00

5.26 ± 1.85 7.39 ± 0.17 8.09 ± 0.32 12.27 ± 1.27
D 0.01 ± 0.00 0.01 ± 0.00
F 0.01 ± 0.00 0.01 ± 0.00

Susy

A − −

347.99 ± 8.01 593.01 ± 44.24 532.01 ± 41.65 910.45 ± 65.47
D − −
F − −

T10I4D2000K

A − −

356.54 ± 9.31 418.87 ± 24.13 − −
D − −
F − −

T10I6D3000K

A − −

792.56 ± 45.21 1094.49 ± 51.42 − −
D − −
F − −

weighting a database. This can be explained by the fact that the preprocessing of
the two-step method is done in one pass on the database with linear complexity
relative to the size of the database. Contrariwise, TPSpace needs 2 passes in the
case where we want to insert the items following a total order relation >I . To this,
is added the time to insert the items of each transaction in the trie of occurrence
according to the total order relation chosen by the user. We recall that with Susy,
T10I4D2000K, and T10I6D3000K databases, an “Out of memory” exception was
thrown by the implementation of the two-step algorithm because of their very
large sizes after preprocessing which do not hold in memory. With the largest
database, T10I6D3000K, the construction of the trie of occurrences according

to the total order relation >freq
I lasts on average 13 and 18 minutes with the

maximum length constraints M = 2 and M = 6 respectively.Interestingly, we
do this preprocessing once only, then we can use the resulted trie of occurrences
with any length-based utility.

Evaluation of the reprocessing time for utility change. Our approach
allows users to draw patterns according to any length-based utility measures
that do not change the minimum µ and the maximum M length constraints.
The reprocessing time, when utility changes, depends only on the minimum
and maximum length constraint. It is linear to the difference between the min-
imum and the maximum length constraints whatever the size of the database
because of the reusability of the trie of occurrences. Utility measures like fre-
quency, area, and exponential decay have not a notorious impact on the speed of
the reprocessing phase. Contrariwise, Two-Step [4]+length constraint should do
a new preprocessing when utility changes. Table 6 shows that in the reprocessing
phase when the utility changes while our approach needs a few time, less than
10× 10−6 seconds with M = 10. Decay is more consuming than Freq and Area
due to the cost of the power function. Interestingly, the reprocessing time is the

Trie-based Output Space Itemset Sampling 29

Table 6. Reprocessing times in seconds (×10−6 for TPSampling) according to
the measures (A = Area, D = Decay, F = Freq) and (M ∈ [2..10])

Two-Step ([4]+ constraints) TPSampling (>freq
I) ×10−6

M Datasets A D F A D F

2
Connect 0.44 0.44 0.43

1.47 2.08 1.51Pumsb 0.54 0.54 0.56
USCensus 0.01 0.01 0.01

3
Connect 1.06 1.23 0.95

2.08 2.78 1.93Pumsb 1.11 1.05 1.12
USCensus 0.26 0.33 0.26

4
Connect 1.08 1.24 1.02

2.73 3.76 2.53Pumsb 1.15 1.39 1.03
USCensus 0.33 0.33 0.29

5
Connect 1.09 1.26 1.09

3.33 4.44 3.17Pumsb 1.17 1.41 1.09
USCensus 0.39 0.42 0.41

6
Connect 1.13 1.34 1.12

3.98 5.39 3.73Pumsb 1.22 1.48 1.03
USCensus 0.39 0.43 0.40

7
Connect 1.17 1.39 1.17

4.69 6.28 4.33Pumsb 1.23 1.48 1.09
USCensus 0.42 1.46 0.41

8
Connect 1.28 1.43 1.24

5.30 7.14 4.94Pumsb 1.26 1.52 1.10
USCensus 0.43 0.48 0.43

9
Connect 1.29 1.45 1.27

5.87 7.91 5.50Pumsb 1.31 1.54 1.21
USCensus 0.44 0.51 0.44

10
Connect 1.37 1.46 1.31

6.50 9.09 6.09Pumsb 1.36 1.55 1.29
USCensus 0.45 0.57 0.46

same for all datasets with the same length constraints. These results show how
important is the trie data structure for user-centered pattern mining.

Evaluation of the drawing time per pattern. Now, we will evaluate the
speed of drawing a pattern with our approach on the 6 datasets of Table 3.
Precisely, we are going to compute the average drawing time of a pattern ac-
cording to the maximum length constraint belonging to the interval [1..10] and
an exponential decay with a fixed value α = 0.1. Figure 8 shows the evolution
of the average drawing time of a pattern by TPSampling compared to that
of the two-step method with length constraints. Each average value is obtained
by repeating, for each value of M ∈ [1..10], 100 times the draw of a pattern.
Standard deviations are omitted as they are very small.

As we can see, with the TPSampling method, the drawing times are less
than 0.2 millisecond on Connect, Pumsb, USCensus, and Susy datasets used with
a maximum length constraint M ∈ [1..10]. With large databases T10I4D2000K
and T10I6D3000K, TPSampling lasts at most 2.5 milliseconds to draw a pattern

30 Diop et al

 0

 0.05

 0.1

 0.15

 0.2

 1 2 3 4 5 6 7 8 9 10

D
ra

w
in

g
 t

im
e

 p
e

r
p

a
tt

e
rn

 (
m

s
)

Maximum length constraint

Area

TPSampling(Connect)
Two−Step(Connect)

TPSampling(Pumsb)
Two−Step(Pumsb)

TPSampling(USCensus)
Two−Step(USCensus)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10

D
ra

w
in

g
 t

im
e

 p
e

r
p

a
tt

e
rn

 (
m

s
)

Maximum length constraint

Area

TPSampling(Susy)
TPSampling(T10I4D2000K)
TPSampling(T10I6D3000K)

 0

 0.05

 0.1

 0.15

 0.2

 1 2 3 4 5 6 7 8 9 10

D
ra

w
in

g
 t

im
e

 p
e

r
p

a
tt

e
rn

 (
m

s
)

Maximum length constraint

Decay

TPSampling(Connect)
Two−Step(Connect)

TPSampling(Pumsb)
Two−Step(Pumsb)

TPSampling(USCensus)
Two−Step(USCensus)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10

D
ra

w
in

g
 t

im
e

 p
e

r
p

a
tt

e
rn

 (
m

s
)

Maximum length constraint

Decay

TPSampling(Susy)
TPSampling(T10I4D2000K)
TPSampling(T10I6D3000K)

 0

 0.05

 0.1

 0.15

 0.2

 1 2 3 4 5 6 7 8 9 10

D
ra

w
in

g
 t

im
e

 p
e

r
p

a
tt

e
rn

 (
m

s
)

Maximum length constraint

Freq

TPSampling(Connect)
Two−Step(Connect)

TPSampling(Pumsb)
Two−Step(Pumsb)

TPSampling(USCensus)
Two−Step(USCensus)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10

D
ra

w
in

g
 t

im
e

 p
e

r
p

a
tt

e
rn

 (
m

s
)

Maximum length constraint

Freq

TPSampling(Susy)
TPSampling(T10I4D2000K)
TPSampling(T10I6D3000K)

Fig. 8. Evolution of the average of drawing time per pattern according to M
(α = 0.1 for the exponential decay)

while M ∈ [1..7]. When M > 7, TPSampling returns an “Out of memory” ex-
ception with T10I6D3000K dataset. On Connect, Pumsb, and USCensus datasets,
we can note that the speeds of the two methods are almost equal. Indeed, for the
drawing of a pattern of length ℓ within a transaction t, the two-step algorithm
exactly visits ℓ items of t. Conversely, TPSampling can visit more than ℓ nodes
before returning the corresponding pattern. We note on the one hand that the
drawing times of TPSampling+Area and TPSampling+Freq evolve almost

Trie-based Output Space Itemset Sampling 31

in the same way. On the other hand, the drawing time of a pattern increases
slightly according to the maximum length constraint with Connect, Pumsb, and
USCensus. We can say that TPSampling is almost as fast as the two-step algo-
rithm to draw thousands of patterns per second.

8. Conclusion

This paper proposed a new method of output pattern sampling based on a
compact data structure called “trie”. Considering a trie of occurrence built by
our first algorithm TPSpace, it shows how to directly sample patterns according
to any length-based utility measure with the second algorithm TPSampling. It
is a generic algorithm that draws patterns from a trie of occurrences follow-
ing a distribution proportional to a length-based utility measure chosen by the
user. Experiments show that TPSpace is very parsimonious in storage cost and
TPSampling is as good as the two-step method with length constraints to draw
thousands of patterns per second. Unfortunately, the effectiveness of TPSpace

decreases when the distinct items used in the database are very numerous. But
unlike the two-step approaches, the trie of occurrences is the same for any length-
based utility measure provided that the same values are kept for the maximum
length constraint. For instance, once the trie of occurrences is built with a given
minimum and maximum length constraints, the user can then draw patterns
with frequency, area, and any exponential decay α ∈]0, 1] with the same built
trie. They also show that our proposed method scales very well with large trans-
actional databases.

In future work, we would like to draw sequential patterns from a trie of
occurrences. Indeed, the pattern numbering system we used to draw a sample
proportionally to a length-based utility measure is a promising avenue for avoid-
ing the rejection method used for sequential pattern mining [12]. By resolving
the problem of rejection in sequential pattern sampling, the numbering system
we present in this paper becomes a very promising perspective to draw a rep-
resentative set of patterns from the sequential data stream. In that case, each
sequence arriving into the system is processed like a trie with one branch where
a pattern can be drawn just by having its number among the set of distinct
sub-sequences within the sequence.

References

[1] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules between sets of items
in large databases,” in Proceedings of the 1993 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’93, 1993, pp. 207–216.

[2] P. Fournier-Viger, A. Gomariz, T. Gueniche, E. Mwamikazi, and R. Thomas, “Tks: effi-
cient mining of top-k sequential patterns,” in International Conference on Advanced Data
Mining and Applications. Springer, 2013, pp. 109–120.

[3] M. Al Hasan and M. J. Zaki, “Output space sampling for graph patterns,” Proc. of the
VLDB Endowment, vol. 2, no. 1, pp. 730–741, 2009.

[4] M. Boley, C. Lucchese, D. Paurat, and T. Gärtner, “Direct local pattern sampling by
efficient two-step random procedures,” in Proc. of the 17th ACM SIGKDD, 2011, pp. 582–
590.

[5] A. Giacometti and A. Soulet, “Anytime algorithm for frequent pattern outlier detection,”
International Journal of Data Science and Analytics, vol. 2, no. 3-4, pp. 119–130, 2016.

[6] M. van Leeuwen, Interactive Data Exploration Using Pattern Mining. Berlin,

32 Diop et al

Heidelberg: Springer Berlin Heidelberg, 2014, pp. 169–182. [Online]. Available:
https://doi.org/10.1007/978-3-662-43968-5_9

[7] V. Dzyuba, M. v. Leeuwen, S. Nijssen, and L. De Raedt, “Interactive learning of pattern
rankings,” Int. Journal on Artificial Intelligence Tools, vol. 23, no. 06, p. 32 pages, 2014.

[8] A. Giacometti and A. Soulet, “Interactive pattern sampling for characterizing unlabeled
data,” in Proc. of IDA 2017. Springer, 2017, pp. 99–111.

[9] V. Dzyuba, M. van Leeuwen, and L. De Raedt, “Flexible constrained sampling with guar-
antees for pattern mining,” Data Mining and Knowledge Discovery, pp. 1266–1293, 2017.

[10]L. Diop, C. T. Diop, A. Giacometti, and A. Soulet, “Pattern sampling in distributed
databases,” in Advances in Databases and Information Systems, J. Darmont, B. Novikov,
and R. Wrembel, Eds. Cham: Springer International Publishing, 2020, pp. 60–74.

[11]L. Diop, C. T. Diop, A. Giacometti, D. Li Haoyuan, and A. Soulet, “Sequential Pattern
Sampling with Norm Constraints,” in IEEE International Conference on Data Mining
(ICDM), Singapore, Singapore, Nov. 2018.

[12]L. Diop, C. T. Diop, A. Giacometti, D. Li, and A. Soulet, “Sequential pattern sampling
with norm-based utility,” Knowledge and Information Systems (KAIS), Oct. 2019.

[13]J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate generation,”
SIGMOD Rec., vol. 29, no. 2, pp. 1–12, May 2000.

[14]L. Diop, C. T. Diop, A. Giacometti, and A. Soulet, “Pattern on demand in transactional
distributed databases,” Information Systems, vol. 104, p. 101908, 2022.

[15]M. Boley, T. Gärtner, and H. Grosskreutz, “Formal concept sampling for counting and
threshold-free local pattern mining,” in Proc. of SDM 2010. SIAM, 2010, pp. 177–188.

[16]M. Bhuiyan, S. Mukhopadhyay, and M. A. Hasan, “Interactive pattern mining on hidden
data: a sampling-based solution,” in Proc. of ACM CIKM, 2012, pp. 95–104.

[17]M. Boley, S. Moens, and T. Gärtner, “Linear space direct pattern sampling using coupling
from the past,” in Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2012, pp. 69–77.

[18]G. Li and M. J. Zaki, “Sampling minimal frequent boolean (DNF) patterns,” in Proceedings
of the 18th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2012, pp. 87–95.

[19]S. Moens and B. Goethals, “Randomly sampling maximal itemsets,” in Proc. of IDEA
Workshop 2013, 2013, pp. 79–86.

[20]S. Moens and M. Boley, “Instant exceptional model mining using weighted controlled pat-
tern sampling,” in Proc. of IDA 2014. Springer, 2014, pp. 203–214.

[21]A. A. Bendimerad, M. Plantevit, and C. Robardet, “Unsupervised exceptional attributed
sub-graph mining in urban data,” in Proc. of ICDM 2016. IEEE, 2016, pp. 21–30.

[22]A. Giacometti and A. Soulet, “Dense neighborhood pattern sampling in numerical data,”
in Proc. of SDM 2018, 2018, pp. 756–764.

[23]M. Gueguen, O. Sentieys, and A. Termier, “Accelerating itemset sampling using satisfi-
ability constraints on FPGA,” in IEEE/ACM Design, Automation and Test in Europe
(DATE), 2019.

[24]A. Giacometti and A. Soulet, “Reservoir pattern sampling in data streams,” in Machine
Learning and Knowledge Discovery in Databases. Research Track, N. Oliver, F. Pérez-Cruz,
S. Kramer, J. Read, and J. A. Lozano, Eds. Cham: Springer International Publishing,
2021, pp. 337–352.

[25]P. Efraimidis and P. Spirakis, Weighted Random Sampling. Boston, MA: Springer US,
2008, pp. 1024–1027. [Online]. Available: https://doi.org/10.1007/978-0-387-30162-4_478

[26]K.-H. Li, “Reservoir-sampling algorithms of time complexity o(n(1 + log(n/n))),” ACM
Transactions on Mathematical Software, vol. 20, pp. 481–493, 1994.

[27]D. E. Knuth, the Art of Computer Programming. Reading, Massachusetts: Addison–
Wesley, 1968, Third edition, 1997.

[28]A. Ferrández and J. Peral, “Mergedtrie: Efficient textual indexing,” PLOS ONE, vol. 14,
no. 4, pp. 1–19, 04 2019.

[29]F. Bodon and L. Rónyai, “Trie: An alternative data structure for data mining algorithms,”
Mathematical and Computer Modelling, vol. 38, no. 7, pp. 739 – 751, 2003, hungarian
Applied Mathematics.

[30]J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without candidate generation:
A frequent-pattern tree approach,” Data mining and knowledge discovery, vol. 8, no. 1, pp.
53–87, 2004.

[31]N. Shahbazi and J. Gryz, “Upper bound on the size of fp-tree,” in Advances in Databases

https://doi.org/10.1007/978-3-662-43968-5_9
https://doi.org/10.1007/978-0-387-30162-4_478

Trie-based Output Space Itemset Sampling 33

and Information Systems, J. Darmont, B. Novikov, and R. Wrembel, Eds. Cham: Springer
International Publishing, 2020, pp. 23–33.

[32]F. Bodon, “A trie-based apriori implementation for mining frequent item sequences,”
in Proceedings of the 1st International Workshop on Open Source Data Mining:
Frequent Pattern Mining Implementations, ser. OSDM ’05. New York, NY,
USA: Association for Computing Machinery, 2005, p. 56–65. [Online]. Available:
https://doi.org/10.1145/1133905.1133913

[33]E. Ansari, G. Dastghaibyfard, M. Keshtkaran, and H.Kaabi, “Distributed frequent itemset
mining using trie data structure,” IAENG International Journal of Computer Science,
vol. 35, 01 2008.

https://doi.org/10.1145/1133905.1133913

	Introduction
	Related works
	Pattern sampling techniques
	Data structures for pattern mining

	Preliminaries and problem statement
	Basic definitions
	Key ideas, challenges and problem statement

	TPSpace: Trie-based Pattern Space
	Definition of a trie of occurrences
	TPSpace: Algorithm for building a trie of occurrences

	TPSampling: Trie-based Pattern Sampling
	Drawing approach
	Trie-based pattern sampling algorithm

	Theoretical analysis
	Correction
	Space complexity
	Time complexity

	Experiments
	Storage cost of the trie of occurrences
	Speed of the approach

	Conclusion
	References

