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Abstract—Spontaneous reporting systems (SRS) have been 

developed to collect adverse event records that contain personal 

demographics and sensitive information like drug indications 

and adverse reactions. The release of SRS data may disclose the 

privacy of the data provider. Unlike other microdata, very few 

anonymyization methods have been proposed to protect 

individual privacy while publishing SRS data. MS(k, θ*)-

bounding is the first privacy model for SRS data that considers 

multiple individual records, mutli-valued sensitive attributes, 

and rare events. PPMS(k, θ*)-bounding then is proposed for 

solving cross-release attacks caused by the follow-up cases in the 

periodical SRS releasing scenario. A recent trend of microdata 

anonymization combines the traditional syntactic model and 

differential privacy, fusing the advantages of both models to 

yield a better privacy protection method. This paper proposes 

the PPMS-DP(k, θ*, ε) framework, an enhancement of PPMS(k, 

θ*)-bounding that embraces differential privacy to improve 

privacy protection of periodically released SRS data. We 

propose two anonymization algorithms conforming to the 

PPMS-DP(k, θ*, ε) framework, PPMS-DPnum and PPMS-DPall. 

Experimental results on the FAERS datasets show that both 

PPMS-DPnum and PPMS-DPall provide significantly better 

privacy protection than PPMS-(k, θ*)-bounding without 

sacrificing data distortion and data utility.  

Keywords—privacy-preserving data publishing, periodical 

data publishing, multiple released tables, differential privacy, 

spontaneous reporting system 

I. INTRODUCTION  

Since the Covid-19 pandemic ranged the globe in 2020, a 

skyrocketed amount of adverse events (AEs) related to Covid-

19 vaccines or drugs has been reported to the spontaneous 

reporting system (SRS), like the USA FDA Adverse Drug 

Event Reporting System(FAERS) [6] and MedEffect Canada 

[3]. For example, the size of reports to US VAERS (Vaccine 

Adverse Event Reporting System) in 2021 is 623.19MB, 

nearly 15 times the size in 2020 (41.73MB) [7]. These adverse 

event records are valuable resources for researchers to analyze 

and detect actual adverse drug/vaccine event signals to 

monitor the safety of marketing drugs or vaccines. However, 

the SRS data collect patients’ individual information, such as 

name, phone number, age, and gender, in addition to the drug 

information and reported indication. Hence, organizations or 

data holders need to consider privacy problems before 

releasing the records to specific researchers or the public. 

One of the basic strategies to protect privacy is de-

identification, i.e., removing explicit identifiers (ED) [13] that 

can be directly linked to the record owner, such as name and 

SSN. For example, the HIPPA privacy rule [1] requires the 

removal of 16 specific identifiers for publishing medical and 

health microdata. Even so, some attributes essential for signal 

detection are left, including quasi-identifiers (QID) such as 

age, gender, and sensitive attributes like drug information, 

drug indication, and adverse reaction. Researchers have 

shown that various privacy threats still exist for the de-

identified medical and health microdata and proposed many 

privacy protection models and anonymization methods, such 

as k-anonymity [27], l-diversity [22], and t-closeness [18]. 

Lin et al. [20] first noticed some unique characteristics of 

SRS data that would paralyze previously proposed privacy 

protection methods. For example, most AE reports contain 

multivalued sensitive attributes, such as reaction and 

indication, meaning the anonymity models must consider 

several sensitive attributes while protecting a record. Besides, 

rare-event reports exist in the SRS data. Most anonymization 

methods would cause significant distortion for rare events and 

overlook AE signals related to rare events. Lin et al. [20] 

adjusted the mechanisms used in k-anonymity and l-diversity, 

proposing the MS(k, θ*)-bounding model and the MS-

anonymization algorithm. Later, Wang and Lin [28] observed 

the scenario of periodical publishing for SRS data. That is, the 

SRS data are released periodically, usually in a quarter, like 

FAERS. Besides, many follow-up cases containing 

complement or correction information of the original report 

are assigned the same CaseID for tracking purposes. The 

periodical publishing scenario along with follow-up CaseID 

opens the door for attackers to perform cross-release attacks. 

Wang and Lin identified three types of attacks, namely 

Backward-attack, Forward-attack, and Latest-attack, 

collectedly named BFL-attack, that will crack patients’ 

privacy by joining different timestamped released tables 

through QID and CaseID. To protect periodical publishing 

SRS data from BFL-attack, they proposed the PPMS(k, θ*)-

bounding model and PPMS-Anonymization algorithm. 

These models mentioned above are called syntactic 

anonymity methods [9], which require knowing the 

background information held by the attackers and aiming to 

defend against specific attacks, thus barely handling unknown 

types of attacks. Differential privacy, an emerging privacy 

protection model initially proposed by Dwork [10][11] for 

interactive query of databases, can protect privacy without 

assuming attackers’ background knowledge. But differential 

privacy usually yields significant data distortion, making it 

unfeasible for medical and health microdata. This deficiency 

leads to an alternative trend by combing the syntactic 

anonymity model and differential privacy, such as (k, β)-

SDGS [19], (k, ε)-anonymity [15], and IMDAV-DP [25][26]. 

Lin and Shen proposed MSDP(k, θ*, ε) [21], an extension of 

MS(k, θ*)-bounding by incorporating differential privacy to 

protect SRS data. However, MSDP(k, θ*, ε) is designed for a 

single release of SRS data, not considering the privacy threat 

caused by follow-up cases in different releases. 



In this paper, we propose a new differentially private 

protection method more suitable for protecting periodically 

released SRS data. The proposed model is PPMS-DP(k, θ*, ε), 

a hybrid of differential privacy and PPMS(k, θ*)-bounding. 

We also designed two anonymization methods conforming to 

the PPMS-DP(k, θ*, ε) model: PPMS-DPnum and PPMS-DPall. 

A series of experiments conducted on the FAERS data show 

that PPMS-DPnum and PPMS-DPall exhibit better privacy 

protection than PPMS++ [28], i.e., the best implementation of 

PPMS-Anonymization achieving PPMS(k, θ*)-bounding, 

without sacrificing data utility for ADR detection. 

The remainder of this paper is organized as follows. 

Section 2 introduces some background knowledge and related 

work. Section 3 presents our proposed two hybrid 

anonymization methods, PPMS-DPnum and PPMS-DPall. The 

empirical evaluation of our methods is described in Section 4. 

Finally, Section 5 summarizes the conclusion and presents 

some promising future work. 

II. BACKGROUND KNOWLEDGE 

A. Privacy-Preserving Data Publishing 

In the study of privacy-preserving data publishing of 

microdata, we can split attributes into four types [13]: explicit 

identifiers (EIDs), quasi-identifiers (QIDs), sensitive 

attributes (SAs), and non-sensitive attributes (NSAs). EIDs are 

personal information that can identify the record owners, such 

as name, SSN, and an exact address. QIDs are also personal 

information that cannot identify the record owners directly but 

can be linked with other data to raise the possibility of record 

identification, like gender, age, country, and job. SAs are 

sensitive information that record owners do not let others 

know. Most SAs denote health situations, medical treatment, 

or financial ability, such as drug indications, diseases, and 

salaries. NSAs refer to none of the above types of attributes, 

which would not cause privacy problems. These attributes 

usually are ignored in the course of data anonymization.  

Sweeney first demonstrated how the attackers could 

identify the record owners through QID even without EIDs. 

This attack is known as record linkage attack [27], causing 

privacy threats by joining two released tables. That is, the 

attackers re-identify a record’s owner with external 

knowledge. Sweeney proposed the k-anonymity model that 

requires each group of records with the same QID value, also 

known as an equivalence class or QID-group, should contain 

at least k records, limiting the possibility of successfully re-

identifying the target record to at most 1/k.  

Although k-anonymity protects microdata from re-

identification, it is inept at protecting the sensitive values of 

the target. This kind of attack focusing on SAs is known as 

attribute disclosure, also called attribute linkage attack. To 

prevent attribute disclosure, Machanavajjhala et al. [22] 

proposed the l-diversity model, a k-anonymity extension that 

requires each QID-group containing at least l different 

sensitive values.  

B. Differential Privacy 

Differential privacy [10] is an emerging privacy model 

with a rigorous theoretical foundation, aiming to prevent 

privacy disclosure from repeated query results of databases. 

The kernel concept of differential privacy is to maintain the 

query result not being affected by the existence or not of a 

specific record. Given a positive number ε, we say a 

randomized function A satisfying ε-differential privacy, if for 

any two data sets D1 and D2 differing in at most one record for 

all possible generated result S of A, we have  

𝑃𝑟[𝐴(𝐷1) ∈ 𝑆]

𝑃𝑟[𝐴(𝐷2) ∈ 𝑆]
≤ 𝑒𝜀 ≈ 1 + 𝜀. 

In brief, differential privacy ensures the difference 

between A(D1) and A(D2) is no more than ε. The smaller the 

privacy budget ε is, the higher the requested privacy level. 

The primary mechanism to achieve differential privacy is 

adding noise to the query result, which may cause the dilation 

of an attribute domain. The role of privacy budget ε is to limit 

the dilation and avoid mass distortion. Generally, the noise is 

randomly generated according to the maximal difference of 

the query result from D1 and D2, called sensitivity. That is, 

given a function f: D → Rd, the L1-sensitivity of f is 

∆𝑓 = max
𝐷1,𝐷2

‖𝑓(𝐷1) − 𝑓(𝐷2)‖1 

Dwork et al. [11] proposed a noise-adding mechanism, the 

Laplace mechanism, which adds random noise following 

Laplace distribution to numerical attributes or query results of 

microdata. They showed that the Laplace mechanism satisfies 

ε-differential privacy. Consider a numerical attribute x in 

microdata. The amount of noise added to x is, 

𝐴(𝑥) = 𝑥 + Lap (
∆𝑓

𝜀
), 

where Lap(x) denotes a Laplace distribution with zero mean 

and scale x. 

The Laplace mechanism cannot add random noises to 

categorical attributes or non-numerical query results. 

McSherry and Talwar [23] proposed the exponential 

mechanism to determine the result of anonymized categorical 

attributes. The candidate results of a categorical QID attribute, 

which refer to a taxonomy tree, are nodes of the minimal 

subtree containing all values in the QID-group. Given a set of 

input data D and the range R of possible results, the probability 

of each anonymized result r ∈ R, d ∈ D is 

exp (
𝜀𝑞(𝐷, 𝑟)

2∆𝑞
), 

where q(D, r) denotes the quality function to calculate the 

utility score between D and r, and ∆q denotes the sensitivity 

of quality function q. 

III. REVIEW OF BFL-ATTACK AND PPMS(k, *)-

BOUNDING 

Lin et al. [20] presented several unique characteristics, 

such as rare events, multiple individual records, multivalued 

sensitive attributes, and missing values of SRS data that would 

paralyze traditional anonymization methods, like k-anonymity, 

l-diversity, etc. Another characteristic of SRS data is 

periodically releasing, which was first studied by Wang and 

Lin [28]. For example, USA FDA collects AE reports and 

publishes the FAERS data quarterly. They pointed out the 

problem of anonymizing each release independently, mainly 

caused by follow-up records in different-timestamped releases 

sharing identical CaseID. The attackers may use the CaseID 



to track a patient’s history in different anonymized releases 

and perform cross-release attacks, namely BFL-attack. For 

illustration, consider a series of three anonymized tables 

shown in Table 1 that satisfy MS(4, 0.5)-bunding, which 

means every QID-group contains at least four records and the 

frequency of each sensitive value in the group is no more than 

0.5.   

Backward-Attack. Assume the attacker knows his 

neighbor Bob’s QID is <Male, 37> and Bob’s adverse event 

is in R3. Then, CI for Bob is {1, 3, 7, 12}, where cases 1 and 3 

occur in R1 and R2, while case 7 appears in R1. Combining the 

information in R1 and R2, cases 1, 3, and 7 in R1 fail to cover 

Bob’s QID, so Bob’s record is case 12 in R3, revealing Bob 

has Diabetes and Flu. 

Forward-attack. Assume the attacker knows his neighbor 

John’s QID is <Male, 44> and John has an adverse event in 

R2. Then, CI of John in R2 is {1, 3, 8, 9}, of which cases 1 and 

3 appear in R3 as well. Since the age of cases 1 and 3 in R3 fail 

to cover John’s age, the attacker can exclude cases 1 and 3 

from CI and concludes John has Diabetes. 

Latest-attack. Assume the attacker knows his neighbor 

John’s QID is <Male, 44> and Jane, female and age 30. 

Besides, the attacker knows Jane’s adverse event first appears 

in R3. Then, the matched CaseIDs of Jane in R3 is {13, 14, 15, 

16}. By checking previous releases R1 and R2, the attacker can 

exclude cases 13 and 14 and conclude Jane has Breast Cancer. 

TABLE I.  A SERIES OF THREE ANONYMIZED TABLES SATISFYING 

MS(4, 0.5)-BUNDING. 

(a) Anonymized SRS table R1                 (b) Anonymized SRS table R2 

CaseID Gender Age Disease 

1 Male [20-30] HIV, Fever 

2 Male [20-30] Flu 

3 Male [20-30] HIV 

4 Male [20-30] Flu 

5 Any [30-35] HIV 

6 Any [30-35] HIV 

7 Any [30-35] Diabetes, Flu 

8 Any [30-35] Diabetes, Flu 

(c) Anonymized SRS table R3 

CaseID Gender Age Disease 

1 Male [20-40] HIV, Fever 

3 Male [20-40] HIV 

7 Male [20-40] Diabetes, Flu 

12 Male [20-40] Diabetes, Flu 

13 Female [20-45] HIV, Flu 

14 Female [20-45] Diabetes 

15 Female [20-45] Breast Cancer 

16 Female [20-45] Breast Cancer 

 

To prevent BFL-attack, Wang and Lin [28] proposed the 
PPMS(k, θ*)-bounding privacy model and the PPMS-
Anonymization algorithm.  

Definition 1. (PPMS(k, θ*)-bounding) [28] Let S = {s1, s2, …, 

sm} be the set of all possible sensitive values in SA and * = 

(1, 2, …, m) the probability thresholds for S, where 0  j  

1,  for 1  j  m. A series of anonymized SRS data releases R1, 

R2, …, Rn satisfy PPMS(k, *)-bounding if  

(1) The size of the candidate QID-group of each record v in 

Ri after excluding all vulnerable records leading to BFL-

attack is no less than k, and  

(2) The probability of inferring v having any sensitive value 

sj  S is no larger than j.  

In practice, most sensitive values in SRS data are not so 

sensitive that they require high-level protection, such as 

common diseases like fever and headache. For this reason, 

PPMS(k, θ*)-bounding allows a non-uniform setting of θ*; 

different sensitive values are specified to different confidence 

thresholds. The benefit is to reduce information loss, paying 

more attention to providing better protection for highly 

sensitive values such as HIV. 

PPMS-Anonymization used two strategies, QID-bounding 

and NC-bounding, to prevent BFL-attack. F-attack occurs 

when the attacker can obtain a more detailed QID value from 

the current release to narrow the target range in some 

previously released table. Hence, F-attack can be prevented if 

the QID value of the target in the current release can cover all 

of its clones in previously released tables. This strategy is 

called QID-bounding.  

Definition 2 (QID-bounding). Given a series of 

previously released tables R1, …, Rn, the current table Ri 

satisfies QID-bounding if the QID value of every record in Ri 

covers that of its old cases in R1, …, Rn. 

Note that we cannot change the published dataset once a 

release is anonymized and published. B-attack and L-attack, 

unlike F-attack, crack the target’s privacy in the current table 

via previously released tables that are unchangeable. 

Generalizing a record in the current table to a higher level is 

thus useless. Instead, new-CaseID records, as they have no 

corresponding old cases in the previous releases, will not be 

cracked by cross-release linkage and so can provide reliable 

protection in a QID-group. In this context, NC-bounding 

requires each QID-group in the currently released table 

containing at least k new CaseID records to provide 

comparable performance as k-anonymity. 

Definition 3 (NC-bounding). For each QID-group g in a 

released table R anonymized with k-anonymity, R satisfies 

NC-bounding if |gnew| ≥ k, where gnew denotes the set of new 

records (with new CaseIDs) in g. 

The main steps of PPMS-Anonymization are described as 

follows. 

Step 1. Combine individual records with identical CaseID 

into a super record to solve multiple individual records 

and multivalued sensitive-attribute problems. 

Step 2. Generalize each old CaseID record to cover its earliest 

anonymized clone as QID-bounding requires. 

Step 3. Perform a clustering step to group super records into 

QID-groups, each of which satisfies PPMS(k, θ*)-

bounding and NC-bounding. Each QID-group g grows 

by including an isolated record r with minimal ΔIL(g, 

r) × PR(g, r). 

Step 4. Generalize super records in the same QID-group to 

become an equivalence class with the same QID value. 

IV. THE PROPOSED METHOD 

This section presents the PPMS-DP method, an 

enhancement of PPMS-Anonymization that incorporates 

CaseID Gender Age Disease 

1 Any [30-45] HIV, Fever 

3 Any [30-45] HIV 

8 Any [30-45] Diabetes, Flu 

9 Any [30-45] Diabetes 

10 Female [20-45] HIV 

11 Female [20-45] Flu 

13 Female [20-45] HIV, Flu 

14 Female [20-45] Diabetes 



differential privacy to yield better protection for periodically 

released SRS data. We first introduce the basic concept of how 

to embrace differential privacy to the PPMS-Anonymization. 

Then we propose two algorithms based on the PPMS-DP 

framework, PPMS-DPnum and PPMS-DPall. 

A. Basic Concept 

Since PPMS-Anonymization is a syntactic-based method 

that protects a record by hiding it in a crowd, the attacker can 

easily infer the QID-group where the record resides via the 

QID value of a target. To improve PPMS-Anonymization for 

better privacy protection without further assumption of 

external knowledge, we apply differential privacy to perturb 

some QID attributes to thwart the attacker’s confidence in 

identifying the group in which the target resides identified by 

QID values. We choose to apply local differential privacy to 

each QID-group because it leads to less data distortion than 

global differential privacy and tends not to suppress rare 

events [8]. Furthermore, previous work has shown that 

achieving local differential privacy on QID-groups may 

provide sufficient privacy protection [15].  

In light of the above discussion, we focus on revising the 

QID-grouping procedure of PPMS-Anonymization, applying 

different approaches for perturbing QID-group via differential 

privacy. Two options of differential privacy-based 

perturbation for QID attributes were considered, i.e., only 

disturbing numerical QID or all QID attributes, namely 

PPMS-DPnum and PPMS-DPall, respectively. To ease the 

discussion, we divide QID attributes into categorical ones 

QIDC and numerical ones QIDN. 

B. Algorithm PPMS-DPnum 

Algorithm PPMS-DPnum is a variant of PPMS-

Anonymization that adds noises only to numerical QID 

attributes, i.e., QIDN. To meet this strategy, we revise the 

kernel procedure of PPMS-Anonymization for dividing the 

records into QID-groups against BFL-attack and satisfying 

MS(k, θ*)-bounding.  

First, the revised grouping procedure divides the records 

in the current release Ri into the set of new case records NC 

and the set of old case records OC. Then, perform the grouping 

function used in PPMS-Anonymization on NC, obtaining a set 

of QID-groups, each of which is composed of only new cases 

and a size of at least k. This result meets the NC-bounding 

strategy used in [28] to defend BL-attack. 

Next, we assign the isolated new and all old cases into their 

most appropriate QID-group following the same criterion 

used in PPMS-Anonymization, i.e., minimizing ΔIL(g, r)×
PR(g, r), where ΔIL(g, r) represents the increase of 

information loss of a QID-group g due to the inclusion of 

record r, while PR(g, r) the privacy risk of QID-group g 

caused by including r. The readers can refer to [28] for details 

of these formulas. We name this revised QID-grouping 

procedure New-Case-Core Grouping, shortly NCC-Grouping. 

Fig. 1 illustrates the concept of this procedure.  

 

Fig. 1. An illustration of NCC-Grouping. 

After the QIDC-covering procedure, we first generalize the 

QIDC value within each QID-group. The reason for not 

considering QIDN is that noise addition will later be applied to 

QIDN values. The distortion of QIDN attributes will be 

enlarged if we perform generalization on them. Then, an 

additional group merging procedure is applied to merge any 

QID-groups with identical QIDC value to increase the 

diversity of QIDN value for each QID-group so as to enlarge 

the sensitivity of the QIDN attribute and improve the 

protection provided by applying the Laplace mechanism to 

QIDN. We name this procedure QIDC–Gen&Merging. 

Finally, for each QID-group, we compute the local 

sensitivity of each QIDN attribute within that group, denoted 

by Δf(q), for q ∈ QIDN. Then, we perform the Laplace 

mechanism to add random noise to the attribute of each record 

r. That is, 

𝑣(𝑞𝑟) = 𝑣(𝑞𝑟) + 𝐿𝑎𝑝 (
∆𝑓(𝑞)

𝜀
), 

where v(qr) denotes the value of record r for attribute q. 

Fig. 2 describes the main steps of PPMS-DPnum, where we 

assume the life span of follow-up cases is at most x. 

Algorithm 1.  PPMS-DPnum 
Input: The current dataset Di, the previous anonymized releases R ={Ri-

x, …, Ri-1}, parameter k, confidence threshold θ*, and safety budget ε 
Output: An anonymized dataset Ri  
1. D’ ← the result of combining all records in Di with the same CaseID 
into a super record.; 
2. G ← {}; // The set of QID-groups. 
3. G ← NCC-Grouping(R, D’, k, θ*); 
4. G ← QIDC-Covering(G); 
5. G ← QIDC-Gen&Merging(G); 
6. G ← LaplacePerturbation(G, ε); 
7. Ri ← all records in G are down posed to their original ones. 
8. D’ ← all records recovered from super records in G; 
9. return Ri; 

Fig. 2. A summary of algorithm PPMS-DPnum 

C. Algorithm PPMS-DPall 

Algorithm PPMS-DPall adds noise to all QID attributes 

instead of QIDN only. To apply differential privacy on QIDC, 

we modify some phases in PPMS-DPnum. First, PPMS-DPall 

does not need to consider QID-bounding. QIDC generalization 

is replaced by QIDC noise addition to preventing F-attack. 

Hence, we remove the QIDC-Covering function. 

Second, we replace the QIDC-Gen&Merging function with 
a new function, VirtualGen&Merging. Unlike QIDC-
Gen&Merging, we do not generalize the QIDC value of all 
QIDC-groups, because these values will be sanitized later by 
an exponential mechanism. That is, we merge QIDC-groups if 



their “virtually” generalized QIDC value is identical. This way 
can avoid unnecessary data distortion.  

Example 1. Table II(a) shows a part of the clustering 

result, composed of two groups. Assume we can obtain the 

same categorical QID values {Gender = Any, Age = Young 

Adult} from group 1 and group 2 by generalization. Then both 

groups can merge due to having the same generalized 

categorical QID values. Table II(b) shows the final result of 

the merging. 

TABLE II.  AN EXAMPLE OF VIRTUAL GENERALIZING AND GROUP 

MERGING  

(a) Two QID groups                        (b) The resulting group 

GID Gender Age Weight  GID Gender Age Weight 

1 Male Young Adult 70  1 Male Young Adult 70 

1 Female Young Adult 69  1 Female Young Adult 69 

1 Male Young Adult 75  1 Male Young Adult 75 

2 Male Young Adult 65  1 Male Young Adult 65 

2 Female Young Adult 60  1 Female Young Adult 60 

2 Female Young Adult 55  1 Female Young Adult 55 

 

Third, we apply an extra noise addition function 

Exponential-Perturbation to QIDC, following the concept of 

exponential mechanism [25][26], which replaces the original 

value of a categorical QID attribute with a randomly chosen 

value from all possible results of that attribute. Consider a 

QID-group g and one of its categorical attributes Ci. Let 

dom(Ci, g) denote the set of values of Ci in group g, T the 

taxonomy tree of Ci, and Tc be the minimal taxonomy tree that 

covers all attribute values in dom(Ci, g). Then the set of 

candidate noise values for Ci in group g, denoted by (Ci, g), 

includes all values in dom(Ci, g) and their ancestors in Tc, that 

is, 

ψ(𝐶𝑖, 𝑔) = 𝑑𝑜𝑚(𝐶𝑖, 𝑔)⋃ 𝑎𝑛𝑐(𝑣, 𝑇𝑐)
𝑣∈𝑑𝑜𝑚(𝐶𝑖,𝑔)

 

where anc(v, Tc) represents the set of ancestors of v in tree Tc. 

Next, we define the quality q(v, ) of a noise value v in (Ci, 

g) as the total distortion (information lost) caused by replacing 

all values in dom(Ci, g) by v.   

𝑞(𝑣,ψ) = ∑ 𝐼𝐿𝑐(𝑢, 𝑣)

𝑢∈𝑑𝑜𝑚(𝐶𝑖,𝑔)

 

where ILc() is defined below; c(v) denotes the set of ancestors 

of value v in Tc including v itself, i.e.,  c(v) = anc(v, Tc)  {v}. 

𝐼𝐿𝑐(𝑢, 𝑣) =
|𝜑𝑐(𝑢) ∪ 𝜑𝑐(𝑣)| − |𝜑𝑐(𝑢) ∩ 𝜑𝑐(𝑣)|

|𝜑𝑐(𝑢) ∪ 𝜑𝑐(𝑣)|
 

The sensitivity q of quality function q can be defined as the 

difference between the maximum and minimum of ILc(u, v).  

Δ𝑞 = max
𝑢∈𝑑𝑜𝑚(𝐶𝑖,𝑔),𝑣 ∈(𝐶𝑖,𝑔)

𝐼𝐿𝑐(𝑢, 𝑣)

− min
𝑢∈𝑑𝑜𝑚(𝐶𝑖,𝑔),𝑣 ∈(𝐶𝑖,𝑔)

𝐼𝐿𝑐(𝑢, 𝑣) 

Then a noise value is randomly chosen following the 

exponential probability distribution exp( 𝜀 × −𝑞(𝑣,)/2Δ𝑞). 

In short, the proposed noise perturbation for categorical 

attributes fuses generalization and exponential mechanism. 

Example 2. Consider the Age taxonomy tree in Fig. 3 and 

the group in Table III. Then dom(Age, g) = {Child, In-school, 

Adolescent}. The Tc of dom(Age, g) is shown in Fig. 4. We 

have (Age, g) = {Child, In-school, Adolescent, Non-adult}. 

To perform the proposed exponential mechanism to sanitize 

the Age attribute of group g, we need to compute q(v, ) for 

every v in (Age, g). For example,  

q(Child, ) = ILc(Child, In-school) + ILc(Child, Adolescent) + 

ILc(Child, Non-adult)  

 = (3 – 2)/3 + (3 – 1)/3 + (2 – 1)/2 = 1.5 

In the same way, we compute ILc for all other values and 

obtain   

max
𝑢∈𝑑𝑜𝑚(𝐶𝑖,𝑔),𝑣 ∈(𝐶𝑖,𝑔)

𝐼𝐿𝑐(𝑢, 𝑣) = 0.75 

min
𝑢∈𝑑𝑜𝑚(𝐶𝑖,𝑔),𝑣 ∈(𝐶𝑖,𝑔)

𝐼𝐿𝑐(𝑢, 𝑣) = 0.5 

Hence, q = 0.25. Assume  = 0.1. The probability of 

replacing the Age value of group g with “Child” according to 

our designed exponential mechanism is  

exp (
0.1 × −1.5

2 × 0.5
) = 0.86 

 

Fig. 3. The taxonomy tree for Age. 

TABLE III.  A QID-GROUP AFTER CLUSTERING. 

GID Gender Age Weight 

1 Female Child 30 

1 Female In-school 35 

1 Female Adolescent 45 

 

Fig. 4. The corresponding Tc of the QID-group in Table III. 

Finally, we adopted a new information loss (IL+), which is 

more feasible for measuring data distortion caused by noise 

addition perturbation and generalization. The definition of 

IL+(g) is as follows. 

∑

(

  
 

∑
|(𝑟 ′

𝑗 , 𝑁𝑖) − (𝑟𝑗 , 𝑁𝑖)|

𝑚𝑎𝑥(𝑁𝑖) − 𝑚𝑖𝑛(𝑁𝑖)

𝑚

𝑖=1

+

∑
|𝜑((𝑟 ′

𝑗 , 𝐶𝑖)) ∪ 𝜑((𝑟𝑗 , 𝐶𝑖))| − |𝜑((𝑟
′
𝑗 , 𝐶𝑖)) ∩ 𝜑((𝑟𝑗 , 𝐶𝑖))|

|𝜑((𝑟 ′
𝑗 , 𝐶𝑖)) ∪ 𝜑((𝑟𝑗 , 𝐶𝑖))|

𝑛

𝑖=1 )

  
 

|𝑔|

𝑗=1

 

where max(Ni) and min(Ni) denote the maximal and minimal 

value of numerical attribute Ni, function (rj, Ni) ((rj, Ci)) 

represents the value of record rj in Ni (Ci), r’j is the anonymized 

rj, |g| denotes the size of group g, and ((rj, Ci)) denotes the 

set of ancestors of (rj, Ci) along with (rj, Ci) in taxonomy 

tree Ti of Ci. The main steps of PPMS-DPall are described in 

Fig. 5. 



Algorithm 2. PPMS-DPall 
Input: The current dataset Di, the previous anonymized releases R ={Ri-

x, …, Ri-1}, parameter k, confidence threshold θ*, and privacy budget ε 

Output: An anonymized dataset Ri  
1. D’ ← the result of combining all records in Di with the same CaseID 
into a super record.; 
2. G ← {}; // Initialize the set of QID-groups. 
3. G ← NCC-Grouping(R, D’, k, θ*); 
4. G ← VirtualGen&Merging(G); 
5. G ← LaplacePerturbation(G, QIDN, ε); // for QIDN 
6. G ← ExponentialPerturbation(G, QIDC, ε); // for QIDC 
7. Ri ← all records in G are down posed to their original ones. 
8. D’ ← all records recovered from super records in G; 
9. return Ri; 

Fig. 5. A summary of algorithm PPMS-DPall. 

V. EMPIRICAL EVALUATION 

A. Experimental Design 

To evaluate the performance of our proposed methods, we 

considered four aspects of measurement, including 

information loss, record disclosure risk, attribute disclosure 

risk, and signal bias. We used the FAERS dataset from 

2004Q1 to 2011Q4. To simplify the complexity, we chose the 

following attributes, drug name (DRUGNAME), CaseID 

(CSAEID), age (AGE), gender (GNDR_COD), weight (WT), 

reaction (PT), and drug indication (INDI_PT) by joining the 

related tables through PRIMARYID. The drug names were 

standardized following the procedure in [29]. All records 

containing missing values in any attribute were excluded. For 

each record, we used {Gender, Age} as categorical QIDs and 

{Weight} as numerical QID. Sensitive values include drug 

indication (INDI_PT) and drug reaction (PT); both are 

multivalued attributes. Besides, we simulated the BFL-attack 

on released tables by linking records with the same CaseID to 

evaluate the privacy risk yielded by each anonymization 

method.  

To evaluate the data distortion caused by anonymization, 

we used Normalized Information Loss (NIL) to calculate the 

average differences for each record before and after 

anonymization. We adopted the information loss used in [28]. 

𝑁𝐼𝐿(𝐷′) =
∑ 𝐼𝐿∗(𝑔)𝑔∈𝐷′

|𝑄𝐼𝐷| × |𝑔|
, 

where D’ represents the anonymized version of dataset D, g 

denotes a group in D’, |QID| is the cardinality of QID, and |g| 

is the number of records in group g. And, IL* is a generalized 

version of IL+ on accounting for generalized numerical values. 

Let U and L denote the lower and upper bounds of a 

generalized value of rj at attribute Ni. IL* replaces the 

difference (r’j, Ni) – (rj, Ni) used in IL+ as 

(𝑟′𝑗 , 𝑁𝑖) − (𝑟𝑗 , 𝑁𝑖) =
∫ |𝑥 − (𝑟𝑗 , 𝑁𝑖)|𝑑𝑥
𝑈

𝐿

𝑈 − 𝐿
. 

The two types of privacy disclosure risk, record identify 

and attribute disclosure risk, are measured by RR and AR. The 

RR, proposed in [25], calculates the total risk on record 

linkage disclosure as 

𝑅𝑅(𝐷′) =
∑ 𝑃𝑟(𝑟′)𝑟′∈𝐷′

|𝐷′|
, 

where r’ denotes the anonymized version of record r, D’ the 

anonymized dataset of D, and Pr() is the probability of 

successfully identifying the target’s record, defined as 

𝑃𝑟(𝑟′) = {
0      if 𝑟′ ∉ 𝐺
1

|𝐺|
  if 𝑟′ ∈ 𝐺

, 

where G is the set of records in D’ with the minimum 

difference from r. That is, G represents the set of possible 

anonymized versions of r, each of which is very similar to r. 

There have been some different measurements of attribute 

disclosure risk, for example, DSR [28] and AR [21]. To 

achieve a more reasonable measure, we propose a revised 

version of AR, namely ARrev, which calculates the probability 

that the attacker can successfully infer any anonymized 

record’s sensitive values. ARrev is defined as below, an average 

over all the Ar for all records in D’. 

𝐴𝑅rev(𝐷
′) =

∑ 𝐴𝑟(𝑟′)𝑟∈𝐷′

|𝐷′|
. 

For this purpose, we have to measure Ar(r’), the probability 

of successfully inferring any sensitive value of r’, which is 

defined as follows. 

𝐴𝑟(𝑟′) = {

0, if 𝑟′ ∉ 𝐺
∑ max{1/|𝐺|, 𝑃𝑟𝐺(𝑠)}𝑠∈𝑆𝐺

|𝑆𝐺|
, if 𝑟′ ∈ 𝐺

, 

where PrG(s) denotes the frequency of sensitive value s in 

group G, and SG is the set of sensitive values in G. This 

function fuses two concepts, record identity and attribute 

disclosure. The sensitive value is also explored if an attacker 

can infer the target’s record. This yields the probability 1/|G|, 

similar to RR. Besides, the attacker also can infer the sensitive 

value s with probability PrG(s). So the resulting probability is 

max{1/|𝐺|, 𝑃𝑟𝐺(𝑠)}. 

The data utility measures how reliable the results analyzed 

from anonymized data are. In the context of ADR signal 

detection, we considered the following severe adverse drug 

reaction caused by AVANDIA, calculating the signal 

differences between the original dataset and the anonymized 

version. 

AVANDIA, age > 18 
→ 𝐶𝐸𝑅𝐸𝐶𝐵𝑅𝑂𝑉𝐴𝑆𝐶𝑈𝐿𝐴𝑅 𝐴𝐶𝐶𝐼𝐷𝐸𝑁𝑇 

There have been several methods for measuring the strength 

of ADR signals [24]. In this study, we adopted the most 

common PRR [12], defined below. 

PRR =
𝑎/(𝑎 + 𝑏)

𝑐/(𝑐 + 𝑑)
, 

where a, b, c, d are the observed occurrences in the 

contingency table in Table II. 

TABLE IV.  CONTINGENCY TABLE FOR ADR SIGNAL. 

 Reaction R Other reactions 

Drug D a b 

Other drugs c d 

 

Three parameters would affect the performance of each 

method. They are the size of anonymous group k (k = 5, 10, 

15, 20), confidence bounding (θ* = 0.2, 0.4, level-wise), and 

privacy budget ε (ε = 0.1, 1, 10). The level-wise setting for θ* 

followed the concept in [20]. We divided all sensitive values 



into two types, sensitive and non-sensitive. Sensitive values 

include most information about sexually transmitted diseases, 

such as HIV and related medicine. Due to similar results 

observed, we omit k = 10, 15, and ε = 1. Besides, the 

performance resulting from θ* = level-wise is very similar to 

θ* = 0.4. We also skip the level-wise setting. 

B. Results on NIL 

In this section, we show the results of data distortion 

measured by NIL with confidence bounding θ* = 0.2, 0.4 and 

privacy budget ε = 0.1 and 10. Note parameter ε is not 

applicable for PPMS++, which is applied only on PPMS-

DPnum and PPMS-DPall. 

As shown in Fig. 6, we observe that PPMS-DPnum and 

PPMS-DPall produce much more information loss than PPMS-

anonymization. However, the difference decreases as the 

privacy budget ε increases. Besides, the data distortion caused 

by PPMS-DPnum and PPMS-DPall is nearly not affected by k, 

even though different k’s would lead to different clustering 

results.  

Although the difference in NIL for PPMS-DPnum and 

PPMS-DPall is not significant, in general, PPMS-DPall yields 

less information loss than that of PPMS-DPnum. This is 

because PPMS-DPall adopts the proposed fusion of 

generalization and exponential mechanism, which maintains 

better semantic information and prevents a more considerable 

distortion caused by the more general generalization 

performed by PPMS-DPnum. 

 

    

 (a) k = 5, θ* = 0.2, ε = 0.1 (b) k = 5, θ* = 0.2, ε = 10 (c) k = 5, θ* = 0.4, ε = 0.1 (d) k = 5, θ* = 0.4, ε = 10 

   

    

 (e) k = 20, θ* = 0.2, ε = 0.1 (f) k = 20, θ* = 0.2, ε = 10 (g) k = 20, θ* = 0.4, ε = 0.1 (h) k = 20, θ* = 0.4, ε = 10 

Fig. 6. Comparison on NILs (k = 20, θ* = 0.2, 0.4, ε = 0.1, 1, 10). 

C. Results on RR and AR 

 Next, we present the results of privacy protection 

measured by RR and AR. According to Figs. 7 and 8, we 

observe that PPMS++ is significantly worse than PPMS-

DPnum and PPMS-DPall, either on the results of RR or AR. In 

the worst case, PPMS++ generates more than 3% of record 

risk and attribute risk. On the other hand, either RR or AR 

yielded by PPMS-DPnum and PPMS-DPall is less than 0.6%, 

even with a larger privacy budget ( = 10). PPMS-DPnum and 

PPMS-DPall exhibit similar results on AR and RR, but PPMS-

DPall performs slightly better than PPMS-DPnum. 

D. Influence on ADR Signal 

Finally, we present the result of signal bias with k = 5, 20, 

ε = 0.1, 10, and θ* = 0.2, 0.4. From Fig. 9, we observe that the 

results between PPMS-DPnum and PPMS++ are overlapping in 

most of the time. Only when k is large (k = 20), we can observe 

the difference. It may be because both algorithms use a similar 

bounding strategy caused by similar clustering results. PPMS-

DPall outperforms PPMS-DPnum and PPMS++ in nearly all 

situations. 
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 (a) k = 5, θ* = 0.2, ε = 0.1 (b) k = 5, θ* = 0.2, ε = 10 (c) k = 5, θ* = 0.4, ε = 0.1 (d) k = 5, θ* = 0.4, ε = 10 

Fig. 7. Comparison on RRs (k = 5, θ* = 0.4, ε = 0.1, 1, 10). 

    

 (a) k = 5, θ* = 0.2, ε = 0.1 (b) k = 5, θ* = 0.2, ε = 10 (c) k = 5, θ* = 0.4, ε = 0.1 (d) k = 5, θ* = 0.4, ε = 10 

Fig. 8. Comparison on ARs (k = 5, θ* = 0.2, 0.4, ε = 0.1, 1, 10). 

    

 (a) k = 5, θ* = 0.2, ε = 0.1 (b) k = 5, θ* = 0.2, ε = 10 (c) k = 5, θ* = 0.4, ε = 0.1 (d) k = 5, θ* = 0.4, ε = 10 

    

 (e) k = 20, θ* = 0.2, ε = 0.1 (f) k = 20, θ* = 0.2, ε = 10 (g) k = 20, θ* = 0.4, ε = 0.1 (h) k = 20, θ* = 0.4, ε = 10 

Fig. 9. Comparison on ADR signal bias 

 

E. Evaluation on Medical Background Knowledge 

As differential privacy is well known for providing more 

robust protection without knowing the background knowledge 

held by the attacker, we conducted another experiment to 

examine whether our differential privacy fusing algorithms 

can prevent further attacks by utilizing some common medical 

knowledge. For this purpose, diseases related to specific 

gender and age group were considered additional background 

knowledge to the attacker. Female-related diseases include 

Breast Cancer, Cervitivis, and Polycystic. Male-related 

diseases include Prostate Cancer and Hernia. Also, elderly-

related diseases reveal extra age knowledge, including 

Chronic Obstructive Pulmonary Disease (COPD) and 

Alzheimer’s disease. In this experiment, we generated a new 

dataset combining 2009Q2, 2010Q1, and 2010Q3. 
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Fig. 10 shows the RR bias between the results with and 

without extra background knowledge. Our two methods yield 

nearly zero bias even with extra medical knowledge, but 

PPMS++ exhibits additional privacy risk. Similar results are 

observed for AR bias in Fig. 11. 

 

 

   

 (a) PPMS(k, θ*) (b) PPMS-DPnum(k, θ*, ε) (c) PPMS-DPall(k, θ*, ε)  

Fig. 10. Comparison of RR bias considering health background knowledge. 

   

 (a) PPMS(k, θ*) (b) PPMS-DPnum(k, θ*, ε) (c) PPMS-DPall(k, θ*, ε)  

Fig. 11. Comparison of AR bias considering health background knowledge. 

VI. CONCLUSION 

Hybrid anonymization methods that combine the syntactic 

model and differential privacy have become a new research 

trend in privacy protection of microdata. However, very few 

works have considered anonymizing SRS data in a periodical 

releasing scenario. Considering the BFL-attack noticed by 

Wang and Lin, in this paper, we have proposed a new privacy 

framework embracing differential privacy, called PPMS-DP(k, 

θ*, ε). This framework enhances PPMS(k, θ*)-bounding by 

leveraging the power of differential privacy to provide better 

privacy protection against BFL-attack in the periodical 

publishing scenario of SRS data. Based on the PPMS-DP(k, 

θ*, ε) framework, we have also developed two algorithms, 

PPMS-DPnum and PPMS-DPall, to anonymize a new release of 

SRS data. The main difference between these two algorithms 

is that PPMS-DPnum adds differential noise only to the 

numerical QID values and applies generalization on 

categorical QID values, while PPMS-DPnum performs 

differential perturbation to all QID values. To evaluate our 

proposed methods, we have conducted a series of experiments 

using the well-known FAERS data. We have considered four 

performance measures, including information loss, record risk, 

attribute risk, and impact on ADR signal. Results show that 

PPMS-DPnum and PPMS-DPall provide significantly better 

privacy protection than PPMS-Anonymization without 

sacrificing data utility for signal strength. Noteworthily, 

PPMS-DPall suffers lesser privacy threat from BFL-attack than 

PPMS-DPnum and induces less information loss. PPMS-DPall, 

which adopts a clever way to fuse differential perturbation to 

all QID values, is more suitable for the periodical released 

publishing of SRS data.  

Another critical characteristic of SRS data is containing a 

lot amount of missing values. Unfortunately, most 

contemporary anonymization approaches overlook the impact 

of missing values [16]. We will extend the proposed methods 

to manage missing values. 
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