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Abstract—Understanding and measuring the predictability of
consumer purchasing (basket) behaviour is of significant value.
While predictability measures such as entropy have been well
studied and leveraged in other sectors, their development and
application to very large multi-dimensional data sets present in
the retailing sector are less common. While a small number of
methods exist, we demonstrate they fail to accord with intuition,
leading to the potential for misunderstandings between those
who conduct the analysis and those who act on the insights. We
delineate the requirements for such a measure in this domain
to demonstrate these issues in context. A novel measure is then
developed based on entropy to directly measure the predictability
of basket composition. The measure is designated as bundle
entropy (zero denotes a bundle’s total predictability, one the
total unpredictability). We empirically compare the proposed
bundle entropy against existing measures using two large-scale
real-world transactional data sets, each including more than
2,000 households (frequent shoppers) over two years. First, we
demonstrate how the proposed measure is the only measure that
behaves according to the desired properties. Second, we show
empirically that bundle entropy differs noticeably from the other
measures. Finally, we consider some use case analyses and discuss
the utility of the proposed measure in practice.

Index Terms—bundle entropy, systematic choices, systematic
customers, consumer behaviour, basket analysis

I. INTRODUCTION

Measuring and understanding the predictability of human
behaviour is of growing value to scholars and commercial or
policy decision makers alike. Measures of predictability, and
their importance to both policy and the economy, are well
studied within domains such as human mobility [1], [2], with
a wide range of application areas from advertising [3] and
service provision [4] to intelligent agents [5]. However, the
study of predictability to understand and leverage regularity in
other behaviours, such as purchasing patterns, is comparatively

limited. This is despite large-scale transactional data sets now
being routinely collected as part of our digital footprint, and
processed as part of loyalty programmes and online purchase
platforms.

The potential to leverage behavioural big data for practical
purposehighs, as well as academic ones, is self-evident [6],
[7]. For instance, systematic or predictable consumers can be
more readily provided with relevant offers or new products and
services with significant efficiency (and financial) gains for
the retailer and increased utility for the household/consumer.
Conversely, unpredictable households and consumers might
be appropriate for targeting with innovations / new products
and/or provided with more varied direct offers. The ability to
assign a household or consumer with a predictability score,
that can be incorporated into retail segmentation, descriptive,
and predictive analytics [8], creates greater opportunities for
personalising responses and offers. This accompanies the
fact that the framing and messaging of direct-to-consumer
marketing communications are increasingly informed by be-
havioural and propensity scores, ensuring that communication
is congruent with consumer needs.

Motivated by the potential value for behavioural academics,
retailers, and policymakers we focused on measuring the
predictability of basket purchases from transactional big data.
We acknowledge that this has been the focus of prior work
in [9], and to a lesser extent, work on related measure-
ments of variety, and diversity [10]–[12]. However, as will be
demonstrated below, existing measures do not accord with an
intuitive definition of basket predictability or are parameter
dependent/unstable. This directly affects their actionability.
While this is discussed in detail in §IV, the examples pre-
sented in Figure 1 illustrate both this work’s goal and current
approaches’ drawbacks.

We note that measuring predictability at the basket level is



The purchasing patterns of five customers are listed below.
Each basket (set) in a purchase history represents a distinct
shopping visit, featuring one or more of the following
items: milk: 𝑚, bread: 𝑏, paper: 𝑝, sandwich: 𝑠, coffee: 𝑐,
jam: 𝑗 :

𝐶1 = {𝑚, 𝑏, 𝑗}, {𝑚, 𝑏, 𝑗}, {𝑚, 𝑏, 𝑗}, {𝑚, 𝑏, 𝑗}, {𝑚, 𝑏, 𝑗}
𝐶2 = {𝑚, 𝑏, 𝑝}, {𝑚, 𝑏, 𝑝}, {𝑚, 𝑏, 𝑝}, {𝑚, 𝑏}, {𝑚, 𝑏}
𝐶3 = {𝑚}, {𝑚, 𝑏}, {𝑚, 𝑝}, {𝑚, 𝑠}, {𝑚, 𝑐}
𝐶4 = {𝑚, 𝑏}, {𝑏, 𝑝}, {𝑝, 𝑠}, {𝑠, 𝑐}
𝐶5 = {𝑚}, {𝑏}, {𝑝}, {𝑠}, {𝑐}

Intuitively the behaviour of customer 𝐶1 is the most pre-
dictable, given their purchasing of the same items each
visit. 𝐶2 remains relatively predictable, given they always
purchase milk and bread, but only occasionally a paper. The
basket composition of 𝐶3 is more unpredictable yet again,
with only milk being consistently purchased. 𝐶4 and 𝐶5 are,
however, the hardest to predict, although 𝐶4 at least demon-
strates some commonality across baskets. For a measure
which quantified predictability across these customers, we
would therefore wish it to produce the following ordering:

Low ← Unpredictability → High
Expected: C1 C2 C3 C4 C5

Yet existing measures one might apply do not match
this intuition. Symbol (item) entropy fails to reflect the
expected ordering altogether, whereas both Joint (Basket
Level) entropy and Guidotti et al’s measure [9] fail to
distinguish the fact that C1 < C2 < C3 < C4 < C5 (even
across various parameterizations).

Item Entropy 1.0 0.98 0.81 0.97 1.0
Basket Entropy 0.0 0.97 1.0 1.0 1.0
[9] (low param) 0.0 0.97 1.0 1.0 1.0
[9] (med param) 0.0 0.97 0.0 1.0 1.0
[9] (high param) 0.0 0.0 0.0 1.0 1.0

The inability, even in toy examples, of existing measures
to match applied intuitions has motivated this work.

Fig. 1: Examples of consumer purchasing behaviour where
the effectiveness of current approaches to measure basket
predictability are insufficient.

also a goal of [9]. Specifically, we wish to consider someone
as predictable based on the extent to which it is possible
to predict the composition of either their basket or a sub-
basket. This reflects the utility that can be derived from having
certainty that a customer’s next basket will contain certain
items, with more utility being gained from being able to
be certain about more and more items. It also reflects the
real-world conditions where repeated baskets with the same
content are uncommon due to variety seeking, cross-retailer
shopping, group purchasing, and other factors. Failure to

consider regularity due to a small number of random items in
a basket risks labelling many customers as being unpredictable
- when in fact the opposite is true.

This paper is organised as follows. In §II we briefly review
related measures that attempt to quantify the predictability
of purchases from transactional data, highlighting the differ-
ent definitions of predictability these measures encode and
postulate that none correctly quantifies the predictability of
basket purchases. Subsequently, in §III, we motivate and list
the properties that such a measure would need to follow. In
§IV, §V and §VI we theoretically detail the shortcomings
of existing approaches against these, propose a new measure
Bundle Entropy (BE) and then empirically demonstrate its
utility compared to existing approaches on two real-world data
sets. A conclusion is provided in §VII.

II. RELATED WORK

While many studies focus on explaining (often sequential)
product choice through fitting latent models (e.g [13]–[24])
or building predictive models to predict subsequent visit
behaviour (e.g [25]–[27]), limited work exists on directly
quantifying the predictability of human (basket) purchases
from transactional data to identify people for actionable inter-
ventions. The first attempt at this could perhaps be considered
an attempt at quantifying variety via simple counts of distinct
products [28]. Later the concept of entropy, more directly
measuring predictability via the notion of uncertainty [2],
[29], was proposed to consider the variety of products within
a single group [30]. While other methods of variety have
been proposed, i.e., the Hirschman-Herfindahl and the Gini
coefficient, entropy’s link with prediction provides a stronger
actionable link in this context, with [10] additionally noting
the utility of entropy measures in encoding desirable aspects
related to the distribution, rareness, and commonness of the
products contained in the group compared to these other
measures.

Defined for a single group, however, entropy describes the
difficulty (uncertainty) one faces in predicting a single item
observed randomly from this group (say, the next item an
individual might add to their basket). As such, it does not
quantify the predictability of baskets (groups of items). A very
simple example of this can be seen by considering an individ-
ual who always (say over 3 visits) buys a basket consisting of
milk (𝑚), coffee (𝑐) and a sandwich (𝑠) leading to a purchase
sequence of [{𝑚, 𝑐, 𝑠}, {𝑠, 𝑐, 𝑚}, {𝑐, 𝑠, 𝑚}]. Viewing this as
a single unordered group ([𝑚, 𝑐, 𝑠, 𝑠, 𝑐, 𝑚, 𝑐, 𝑠, 𝑚]) predicting
what a random item would be next is almost impossible, and
entropy captures this by reporting maximum entropy. However,
considering these purchases at the basket level, the same basket
is always purchased (𝑚, 𝑐, 𝑠) and is 100% predictable - i.e., it
should have reported zero uncertainty.

Motivated by this [9] develop a measure they term Basket
Revealed Entropy (BRE) to provide a direct, individual-level
measure of “how unpredictable ... [an individual’s] basket
composition [is]”. By mining frequent patterns within cus-
tomers’ baskets (with some additional steps) and then com-



puting the entropy based on these common sub-baskets, the
authors implicitly indicate their view that the direct application
of entropy is not appropriate. Notably, the reasons one would
reject the direct application of entropy in this context are
directly related to what is meant by predictability (i.e., the
predictability of what?), which directly impacts the ability
to formulate and take any subsequent action in a business
context. Specifically, BRE considers predictability as the task
of exactly predicting sub-baskets (the set of which is de-
fined algorithmically and will be discussed shortly), ignoring
any extra context (items in the basket). This contrasts the
predictability defined as the task of exactly predicting an
individual’s complete basket composition; the task encoded if
one was to consider the entropy based on a symbol set where
each symbol represented a distinct basket. We subsequently
refer to this as Basket Level Entropy (BLE)1. This is different
from the aforementioned application of entropy at an item level
(losing the attribution of items to baskets), where a symbol is
then an item, and the prediction task is predicting which item
I will select to put in my basket at any arbitrary time point.

The utility of these different measures of “predictability”
must then be considered in context. Similarly to [9] in
this work, we are interested in understanding customers to
positively affect KPIs within the retail sector. Specifically,
our discussion focuses on the fast-moving consumer goods
sector, though the discussion is likely more generalizable.
Considering such a sector, while [9] provides a good first
attempt, we argue that their measure (1) does not accord
to the most actionable properties and (2) lacks clarity in its
definition of predictability due to its algorithmic definition and
parametrization.

III. MEASURING THE PREDICTABILITY OF BASKET
COMPOSITION

To underpin a measure of purchasing behaviour, that cap-
tures the predictability of basket composition while corre-
sponding to intuition and the needs of real-world applications
(see Fig 1), we propose the following three properties. Let
B = [𝑏0, 𝑏1, . . . , 𝑏𝑛] be an individual’s list of baskets, where
baskets are sets of distinct items 𝑏𝑥 = {𝛾0, 𝛾1, . . .}, andM(B)
the value of the measure assigned to a given B. Then:

P0: Sequences of baskets where all baskets contain the
same items should have a score of zero; Sequences,
were no basket shares any items with any other,
should have a score of one (or the maximal value
if not normalised - see later discussion). Thus:
M(B) = 0 if 𝑏0 = 𝑏1 = . . . = 𝑏𝑛
M(B) = 1 if 𝑏0 ∩ 𝑏1 ∩ . . . ∩ 𝑏𝑛 = ∅

P1: Increased (decreased) presence of common sub-
baskets in a purchasing sequence should result in a
lower (higher) score. Formally, if Γ is any arbitrary
combination of items that was not previously present
in every basket of B (i.e. ∃𝑏𝑘 : Γ ⊄ 𝑏𝑘), and we add

1This is equivalent to the Joint Entropy of baskets with all items represented
by indicator binary variables indicating if the item was in the basket or not.

Γ to each basket to produce B′, then so long as B
wasn’t already totally predictable:
M(B′) <M(B) if B′ = [𝑏0 ∪ Γ, 𝑏1 ∪ Γ, . . . ]

P2: Sequences with larger systematic sub-baskets should
result in a lower score than sequences with smaller
sub-baskets (relative to any basket size) unless the
sequence is already fully predictable meeting 𝑃0.
M(B∗) <M(B′) if
B′ = [𝑏0 ∪ Γ, 𝑏1 ∪ Γ, . . . , ]
B∗ = [𝑏0 ∪ Γ ∪ Γ′, 𝑏1 ∪ Γ ∪ Γ′, . . . , ]
where Γ and Γ′ are (different) arbitrary combination
of items and B does not meet 𝑃0.

These properties are adapted from those expected with
regard to BLE. 𝑃0 defines the expected behaviour in the
extremes. If all baskets are identical, then the prediction of
a (random next) basket is trivial - there is no uncertainty and
the measure should equal zero. Conversely, if no baskets share
any items, then there is maximal uncertainty as to what a
subsequent basket should be, and the measure should reflect
this. Such properties accord to those encoded by BLE as
the task degrades into predicting a set of identical baskets
(symbols/composition unimportant) or unique baskets (sym-
bols/composition unimportant).

In contrast, 𝑃1 encodes a relaxed view on uncertainty
concerning individuals with repeated sub-baskets. This con-
trasts to the use of joint entropy (BLE) which would not
consider the predictability gains accrued when the baskets
observed in a consumer’s purchase history contain repeated
sub-baskets. BLE takes an ‘all-or-nothing’ perspective to the
prediction task, where sub-basket regularity is orthogonal to
the sole task of predicting the entire basket. Relaxing this
all-or-nothing view, 𝑃1 encodes the fact that being able to
predict a sub-basket holds significant utility to a decision-
maker. Furthermore, 𝑃2 acknowledges the fact that having
a larger predictable sub-basket provides greater insights into
real-world applications. The larger the size of predictable
components within any purchase history, the more certain
one can be about the composition of that customer’s future
purchasing behaviour (and likely their overall spending). 𝑃2
therefore further formalises this relaxation.

Finally, we note that entropy-based measures of predictabil-
ity are often normalised. This acknowledges that the com-
plexity of a prediction task increases as the number of output
possibilities (the overall number of symbols in the case of en-
tropy) increases. As such non-normalised versions of entropy-
based measures, when used to compare individuals, conflate a
measure of the individuals’ uncertainty within a bounded set
of choices (relative predictability across what they have access
to) and measures of access to larger choice sets. Concerning
the use case of consumer goods purchasing, the latter is often
driven and/or constrained by factors such as household size
and income [31], [32]. As such, it is generally desirable for
a measure to remain independent of these covariates, often
normalising against some measure of choice set size (i.e.,
the number of unique baskets or number of unique items).
Following [9] we normalise our measure by dividing by the



number of unique baskets2. We note that, if desired by a
practitioner, the non-normalised version of the measure we
propose could be used, maintaining all motivating properties
and with their associated proofs still holding (see Appendix
A).

IV. FAILURE OF EXISTING METHODS

To consider the measures mentioned above (entropy at the
basket level, entropy at the item level, BRE) in more depth,
we first introduce some notation.

Let B = [𝑏0, 𝑏1, . . . , 𝑏𝑛] be an individual’s list of baskets,
where baskets are sets of distinct items 𝑏𝑥 = {𝛾0, 𝛾1, . . .}.
Let 𝑝(𝛾) be the probability of 𝛾 appearing in a basket in B.
Further, let 𝑝(𝑏) be the probability of 𝑏, an observed basket
in B; and 𝐵 be the set of distinct baskets in B. Finally let
𝐼 =

⋃
𝑏∈B be the set of distinct items purchased (and in all

cases 0 log2 0 is taken to be 0 as per convention)

Normalized Entropy at the item level is then defined
as:

𝐼𝐸 (B) = − 1
log2 |𝐼 |

∑︁
𝛾∈𝐼

𝑝(𝛾) log2 𝑝(𝛾) (1)

Normalized entropy at basket level (which we refer to
as BLE) can be defined as:

𝐵𝐿𝐸 (B) = − 1
log2 |𝐵 |

∑︁
𝑏∈𝐵

𝑝(𝑏) log2 𝑝(𝑏) (2)

In contrast, BRE, as proposed by Guidotti et al. [9],
is defined by first constructing a new list of baskets,
B′ = [𝑏′0, 𝑏

′
1, . . . , 𝑏

′
𝑛], which replaces each basket 𝑏 ∈ B

with a common sub-basket 𝑏′ according to the following
algorithm:

1) first identifying a set of candidate common sub-baskets
via the Apriori algorithm [33] with a user-defined min-
imum support parameter

2) replacing each basket with a single common sub-basket
based on the following rules (expanding the set of
common sub-baskets as required):

a) the longest common sub-basket contained in the
basket currently under consideration 3 [RULE 1]

b) if no common sub-basket is contained, which may
occur depending on the minimum support value
defined by the user, then the full basket being
considered, and this new symbol added to the
common sub-basket list [RULE 2].

2We also note that other versions of normalisation could be included to
achieve invariance to slightly different aspects or definitions of choice group
sets. The definition in this work is chosen to align with that used in BLE
and BRE to enable better evaluation of the proposed measure with regard to
properties (P0-P2). Exploration of other variants is left as future work.

3additional rules exist for tie-breaking, see [9]

Let 𝐵′ be the set of distinct baskets in B′.
BRE is then defined as:

𝐵𝑅𝐸 (B′) = − 1
log2 |𝐵′ |

∑︁
𝑏′∈𝐵′

𝑝(𝑏′) log2 𝑝(𝑏′) (3)

Framing BRE as a measure of basket entropy of assigned
common sub-baskets and considering its behaviour as its pa-
rameterization, the minimum support (minsup) for the Apriori
algorithm is varied and highlights two key points: (1) When
minsup tends towards zero then all baskets become part
of the candidate common sub-basket set and all 𝑏′𝑥 = 𝑏𝑥
(due to RULE 1); (2) When minsup tends towards 1 then
it depends on the data. If a common sub-basket exists in
all baskets (i.e., {𝑚, 𝑏, 𝑝}, {𝑚, 𝑠, 𝑐}, {𝑚, 𝑏, 𝑗} ), then RULE
1 will apply, leading to all 𝑏′𝑥 being all the same (𝑚 in the
example), though in most real-world cases this will not be true
(i.e., {𝑚, 𝑏, 𝑝}, {𝑚, 𝑠, 𝑐}, {𝑠, 𝑐, 𝑗}). In this case the candidate
common sub-basket set will contain no candidates (as minsup
is close to 1) and all 𝑏′𝑥 = 𝑏𝑥 via RULE 2. Given that the
entropy is then computed, considering each unique common
sub-basket as a symbol, for the most common two of the three
cases, the BRE degenerates to entropy at a basket level (BLE).

A. Property violations in existing measures

We now assess where existing predictability measures do
not accord to the intuitive properties laid out in §III. First,
theoretically item level entropy (IE) does not accord to 𝑃0,
while BLE and BRE do. The violation of this property by IE
can be highlighted by considering the trivial example from
Figure 1 with an equivalent discussed in §II. BLE accords as
when all baskets are identical 𝐵 = {𝑏}, 𝑝(𝑏) = 1 and therefore
BLE equals zero. Equally when all baskets are unique BLE is
trivially maximised with all 𝑏 ∈ 𝐵 having 𝑝(𝑏) = 1

|𝐵 | .
BRE accords, under any parameterization, as when all

baskets share the same items under any parameterization,
the entire repeated basket composition is always mined as a
common sub-basket by the Apriori algorithm. Equally, when
all baskets are unique, then there are no possible common sub-
baskets, and by RULE 2, the original basket is always used.
In both cases, the computation proceeds with the same input
as BLE.

Further, Item Entropy (IE) violates 𝑃1, with the inclu-
sion of systematic behaviour at the basket level having the
potential to lead to an increase in item entropy in some
cases. Consider the example of {𝑚, 𝑏}, {𝑏, 𝑝}, {𝑏, 𝑝}, {𝑏, 𝑝}
vs {𝑚, 𝑏}, {𝑚, 𝑏, 𝑝}, {𝑚, 𝑏, 𝑝}, {𝑚, 𝑏, 𝑝}, a clear increase the
presence of systematic sub-baskets. Item Entropy in the first
case (4x 𝑏, 3x 𝑝, 1x 𝑚) is 0.887 compared to after adding the
systematic sub-basket: 0.992 (4x 𝑏, 3x 𝑝, 4x 𝑚).

BLE also violates 𝑃1. Consider another trivial example.
Let {𝑚, 𝑏, 𝑝}, {𝑚, 𝑏, 𝑠}, {𝑚, 𝑏, 𝑐}, {𝑚, 𝑏, 𝑗} denote a basket
sequence. Increasing the presence of systematic sub-baskets
(𝑃1) will not change the fact that at a basket level all baskets
will stay unique resulting in a maximal BLE score.

For BRE, the exact behaviour is dependent
on the chosen parameter. Consider the case of



B = {𝑝, 𝑠}, {𝑝, 𝑠}, {𝑐, 𝑗}, {𝑐, 𝑗} vs. the case where {𝑚, 𝑏}
has been systematically added to each basket to form
B′ = {𝑝, 𝑠, 𝑚, 𝑏}, {𝑝, 𝑠, 𝑚, 𝑏}, {𝑐, 𝑗 , 𝑚, 𝑏}, {𝑐, 𝑗 , 𝑚, 𝑏} . When
the minsup is set such that both {𝑝, 𝑠} and {𝑐, 𝑗} are mined as
frequent patterns then in B: {𝑝, 𝑠} becomes a distinct symbol
common sub-basket 1 (X), and {𝑐, 𝑗} becomes a distinct
symbol common sub-basket 2 (Y) and by RULE 1 and BRE
is evaluated as the BLE of {𝑋, 𝑋,𝑌,𝑌 }. For the same minsup
threshold for B′, many two-item frequent patterns exist,
but so do the longer common sub-baskets {𝑝, 𝑠, 𝑚, 𝑏} and
{𝑐, 𝑗 , 𝑚, 𝑏}. By RULE1 it is these, and only these, that will
then be selected to represent the baskets (as distinct symbols)
and again BRE is evaluated as the BLE of {𝑋, 𝑋,𝑌,𝑌 }. This
clearly violates 𝑃1 with no decrease reported by the measure.

Finally, considering 𝑃2. 𝑃2 is an extension of 𝑃1, effec-
tively clarifying the expected behaviour based on the repeated
application of 𝑃1. Measures failing 𝑃1 inherently cannot meet
𝑃2. As an immediate consequence Item Entropy, 𝐵𝐿𝐸 and
𝐵𝑅𝐸 cannot fully accord to 𝑃2.

V. BUNDLE ENTROPY

Having discussed the failure of Item Entropy, BLE and
BRE to meet the properties we seek to practically describe
human predictability, we now propose a new method, Bundle
Entropy (BE), that does accord to properties 𝑃0 to 𝑃2.
Bundle Entropy is realised as a conceptual extension of BLE.
We define bundles as a collection (set) of products bought
simultaneously. To expand on the definition of BLE we recast
BLE’s formulation as the (normalised) mean information for
all baskets:
Let B = [𝑏0, 𝑏1, . . . , 𝑏𝑛] be the list of baskets for an individ-
ual, where baskets are sets of distinct items.
Let 𝐵 = 𝑠𝑒𝑡 (B) and 𝑝(𝑏𝑘) denote the empirical probability of
basket 𝑏𝑘 given B.
Then:

𝐼 (𝑏𝑘) = − log2 (𝑝(𝑏𝑘)) (4)

Where 𝐼 (𝑏𝑘) is the well known measure of self-information,
measuring the amount of surprise we receive when 𝑏𝑘 is
observed given we expected 𝑏𝑘 with probability 𝑝(𝑏𝑘). Given
𝐼 (𝑏𝑘), BLE is then:

𝐵𝐿𝐸 (B) = 1
log2 |𝐵 |

∑︁
𝑏∈𝐵

𝑝(𝑏)𝐼 (𝑏)

=
1

log2 |𝐵 |
×
∑

𝑏∈B 𝐼 (𝑏)
|B| (5)

Note the distinction between 𝐵 and B in the above. Ig-
noring the normalisation term, the final line highlights that
non-normalised 𝐵𝐿𝐸 represents the average amount of self-
information over the observed data (typically assumed to be
representative of population statistics).

Returning to the definition of self-information, we note that,
given 𝑝(𝑏𝑘) is computed from an empirical probability, an
alternative way of considering 𝐼 (𝑏𝑘) is how surprised (and
unhappy if one had taken action on) one might be if one
predicted 𝑏𝑘 and then observed the set of baskets (B), getting

the predictions (exactly) correct only 𝑝(𝑏𝑘) × |B| times4. So
formally, the computation of 𝐼 (𝑏𝑘) is based on the empirical
probability, which can be written as:

𝑝(𝑏𝑘) =
∑

𝑏𝑞∈B 𝟙(𝑏𝑘 = 𝑏𝑞)
|B| (6)

Leveraging this prediction point of view in the context
of the desired concept of Basket Entropy, we note that in
wanting to capture the predictability of sub-baskets, we wish to
incorporate the fact that we would be happy with a prediction
even if it is not exactly correct, by measuring the predictions
partial worth based on some measure of expected utility.
Assuming utility is gained from the correct prediction of sub-
baskets, with utility increased proportionally to the relative
size of the sub-basket correctly predicted, and given we
consider baskets as sets of items, such a measure corresponds
to a set similarity measure such as Jaccard [34] or Overlap
[35]. Notably, these measures match the exact match similarity
function in the extremes (zero: no partial match, one: exact
match). In this work, we propose the use of a variant of the
Overlap coefficient, specifically:

S(𝑏𝑘 , 𝑏𝑞) =
|𝑏𝑘 ∩ 𝑏𝑞 |

𝑚𝑎𝑥( |𝑏𝑘 |, |𝑏𝑞 |)
(7)

Similarly to Jaccard and Overlap the measure is defined as the
proportion of items shared between the predicted and truth
sets with the numerator being the number of shared items
between these sets. Differing is the denominator - Overlap
is the proportion of the smaller basket ( |𝑏𝑘∩𝑏𝑞 |

𝑚𝑖𝑛( |𝑏𝑘 | , |𝑏𝑞 | ) ) and
fails to penalise, for instance, over-predictions. In contrast,
Jaccard sets the denominator to be the number of matched plus
unmatched items between the prediction and truth ( |𝑏𝑘∩𝑏𝑞 |

|𝑏𝑘∪𝑏𝑞 | ) ).
These double counts the incorrect prediction of an item as
the incorrectly predicted symbol and the true symbol are
both unmatched. Ensuring over-predictions are penalised while
only counting incorrect predictions once results in the overlap
variant in Equation 7.

Substituting this measure (Equation 7) into Equation 4 via
Equation 6 by replacing the exact match indicator function
(𝟙(𝑏𝑘 = 𝑏𝑞)) with the similarity function ( |𝑏𝑘∩𝑏𝑞 |

𝑚𝑎𝑥 ( |𝑏𝑘 | , |𝑏𝑞 | ) )
we get our alternative definition of bundle self-information,
information like measure which we term regret (𝑅(𝑏𝑘)). The
interpretation of this measure is no longer one of how surprised
one is when 𝑏𝑘 is observed, but a measure quantifying how
much regret one might feel if they had assumed it was going
to be 𝑏𝑘 .

R(𝑏𝑘) = − log2
©­«
∑

𝑏𝑞∈B
|𝑏𝑘∩𝑏𝑞 |

𝑚𝑎𝑥 ( |𝑏𝑘 | , |𝑏𝑞 | )

|B|
ª®¬

R(𝑏𝑘) = − log2
©­«
∑︁
𝑏𝑞∈𝐵

𝑝(𝑏𝑞)
|𝑏𝑘 ∩ 𝑏𝑞 |

𝑚𝑎𝑥( |𝑏𝑘 |, |𝑏𝑞 |)
ª®¬ (8)

4Alternatively if one assumes the empirical 𝑝 ( ·) is the true generative
distribution then 𝐼 (𝑏𝑘 ) is how unhappy one would be on average if one
predicted 𝑏𝑘 over an infinite amount of time.



The proposed regret based bundle entropy is therefore
defined as:

𝐵𝐸 (B) = 1
log2 |𝐵 |

×
∑︁
𝑏𝑘 ∈𝐵

𝑝(𝑏𝑘)𝑅(𝑏𝑘) (9)

The measure meets all properties, 𝑃0 − 𝑃2. Proofs are
provided in Appendix A. As 𝐵𝐸 (B) accords to these proper-
ties it performs as expected in the aforementioned examples,
specifically as shown in Figure ??

VI. EVALUATION

The section is divided into three parts. The first illustrates
empirically how bundle entropy meets the desirable proper-
ties described in §III) while the others do not. The second
demonstrates empirically that the proposed measure differs
noticeably from each other, highlighting that the choice of
measure will lead to differences in conclusions when used by
practitioners. The final part considers some exemplar analyses,
demonstrating the utility of the measure and replicating and
comparing to the relevant parts of a case study from [9].

Each part compares and contrasts bundle entropy with the
related measures of consumers’ buying behaviour predictabil-
ity previously identified: Item Level Entropy (IE), Bundle
Level Entropy (BLE), and Bundle Revealed Entropy (BRE).
We used three different parametrizations of minsup for BRE,
10%, 24%, and 70%. This value directly affects the set of
common sub-baskets that are used to represent the purchase
history (see §IV for more information). A Minsup of 24% is
selected as it is the value that [9] recommends. However, since
our data is different in size and context, we also test BRE with
minsup of 10% and 70%.

The evaluations are based on two different, real-world,
mass transactional data sets. The first is Dunnhumby - The
complete Journey a freely available5 data set. The data set
includes grocery purchases at a household level over two years
from 2,500 frequent shoppers, providing a cohort for tracking
systematic choices over time. The data set contains over 2.5
million records of ‘what’, ‘how much’, ‘where’, and ‘when’
each transaction was made by each household. All code to
replicate experiments presented on this data set has been made
available6. The second data set is a large transactional data
set from 2,181 loyalty card holders over 20 months (between
2014 and 2016) from a large UK grocery retailer. Similarly to
the Dunnhumby data set, the data set records of ‘what’, ‘how
much’, ‘where’, and ‘when’ each transaction with transactions
linked to a customer via their loyalty card7.

A. Quasi-synthetic Data

This section empirically considers how BE, BLE, BRE, and
IE accord to the desired properties P1 and P2 listed in §III. P0
is not considered as it stipulates desired edge cases to which
IE clearly does not meet as it measures predictability of a

5https://www.dunnhumby.com/source-files/
6https://github.com/nlab-admin/bundle-entropy
7This second data set is unavailable for public release

different conceptual level (items rather than baskets), with the
remaining measures all meeting the property.

P1 states that baskets with systematic sub-baskets should
result in a lower score than those without. We investigate
the performance of the measures based on this by adding
systematic sub-baskets to each basket in each household from
the Dunnhumby data set. For measures that accord to property
1, these values will consistently strictly8 lower bound the
measure computed from the original basket set. Overall results
are shown in Table I, indicating the percentage of households,
per measure, accorded to this property. As expected, the
proposed bundle entropy measures always and accords while
item entropy typically accords with minor exceptions. In
contrast, BLE never accords due to a failure with respect to
𝑃1, with the addition of the systematic baskets not altering
the number of unique baskets and hence not lowering the
BLE score. As discussed in §III, the violation of 𝑃1 by
BRE is data and threshold dependent, and the results in
Table I column 2 show that violations are not uncommon in
practice, though the violations only appear to occur at lower
minsup levels. Investigating this behaviour further, scores for
individual households were considered and three are shown as
illustrative examples in Figure 2. The results are generally as
expected. An exception is the scores when adding systematic
sub-baskets (lower orange dots) for BRE with a minsup=70%
(and household 2 in BRE with a minsup=24%). In these cases,
we see the introduction of systematic sub-baskets incorrectly,
causing the household to be considered 100% predictable. This
is due to the systematic sub-basket (that was added to each
original basket) representing all baskets in the BRE algorithm.
As such, while the measure strictly holds to the 𝑃1 property
it does so in a degenerate way. To quantify the extent of
this effect we compute the number of times this occurs as a
percentage of all households for each measure. This is shown
in column three of Table I. The results clearly highlight that
as the minsup of BRE is increased helping it to meet 𝑃1 it
overwhelmingly does so in this degenerate way significantly
degrading the utility of the measure.

TABLE I: Measures vs. Properties 0 & 1 and the percentage
of households considered as fully predictable.

% Households
Property accorded to measure considered

Measures P0 P1 (% Households) fully predictable
Bundle entropy ✓ 100.0 0.0
Entropy ✗ 99.0 0.0
BLE ✓ 0.0 0.0
BRE 10% ✓ 70.9 5.2
BRE 24% ✓ 63.2 5.1
BRE 70% ✓ 99.8 98.8

P2 states that sequences with larger systematic sub-baskets
should result in a lower score than smaller sub-baskets relative
to basket size (and vice versa). To investigate the empirical

8Unless an individual’s basket sequence is already maximally predictable
meeting 𝑃0, something that did not occur in this data set. See the definition
of 𝑃1 in §III for more information.



Fig. 2: Illustrative examples of three household’s scores for
the evaluated measures when adding systematic bundles to the
household’s purchases.

performance of the measures regarding this property, we
selected all the baskets from a random sample of 1,000
households9 and incrementally added systematic bundles of
different sizes (from one to ten items) to each household’s
baskets. After every iteration, we computed the mean score
per measure across all households. These results are shown in
Figure 3. Once again, as expected, bundle entropy accords to
P2 decreasing as the size of the systematic bundle added to
each household’s basket is increased.

In contrast, BLE, BRE10, BRE24, and BRE70 remain
indifferent to the added bundles at different score levels. This
indifference can be explained by further considering how the
minsup affects the mining of common sub-baskets considering
the new sub-basket component that has to be introduced to
all baskets at each (x-axis) point. In the case of BRE70 the
threshold is high enough that no sub-baskets are being found
in the original data and as soon as the sub-basket of length 1
is introduced this is almost invariably mined as the common
basket. Subsequently, all baskets are then represented by this
making the behaviour appear almost completely predictable.
Conversely when a minsup of 24% or 10% is set other sub-
baskets that were already considered common are extended
with these new sub-basket components. These extended sub-
baskets are now typically longer than the original but, given
they exist within the same proportion of baskets, have identical
support. This results in no changes to the symbol set and
the baskets are then mapped to and subsequently, no change
to the score computed in the subsequent entropy calculation.
Interestingly, entropy is the only one with similar behaviour
to bundle entropy. However, this is a consequence of its item-
level aggregate approach, where adding larger systematic bun-
dles also increases the overall probabilities of each item added,

9A large sample was taken due to computational costs.

lowering the overall entropy. We reiterate that conceptually in
this case what is being measured is significantly different.

Fig. 3: Comparing measures by increasing the size of system-
atic bundles added to all baskets.

B. Rank similarities in practice

Having shown that the proposed measure accords in theory
and practice with the desired properties while other measures
do not, we now demonstrate that the selection of BE over
the other measures will have a notable real-world impact
on analysis and subsequent actions. To demonstrate this, we
consider how similarly the measures rank households and
customers in our two real-world data sets. This is achieved by
computing all previously discussed measures/measure variants
(BE, IE, BLE, BRE10, BRE24, BRE75) for all households (the
Dunnhumby data set) and customers (the Large UK grocery
retailer data set). For each measure/variant and data set pair,
a ranked list of the households/customers according to the
measure is then generated. For each data set, we then make
pairwise comparisons of all lists computing the Kendall Tau
Rank Agreement and the Mean Rank Difference.

The Kendall Tau Rank Agreement indicates the difference
between the probability that pairs of households (customers)
will be in the same rank order according to both measures
and the probability that the pairs will have a different rank
order [36]. The Mean Rank Difference provides a similar,
more conceptually straightforward indication of rank similar-
ity, measured by (1) matching the two lists by households
(customers), (2) taking the differences in rank before (3)
computing the mean of these differences. The results are
shown in Figure 4.

The results, as expected, show the measures are all related
to some degree, though the measures are noticeably data set
dependent. Also, as expected (see IV), BRE with a high min-
sup (70%) is highly correlated with the BLE measure. While
the measures show notable agreement, they also highlight non-
trivial differences, with the proposed BE measure differing in
mean rank difference by 194 to 560 (out of 2,213 households)
for Dunnumby and 287 to 411 (out of 2,181 customers)



for the large UK grocery retailer. This evidences that the
measures’ different properties lead to differences in practice,
with the potential to arrive at different conclusions within
any analytics based on them. The results highlight differences
between the proposed measure, with its clear interpretation
and theoretical properties, and the others across the different
parameterizations of BRE. This indicates the sensitivity of the
BRE measure to the minsup parameter, with different choices
able to directly influence the outcome of any analytics, making
its selection and motivation crucial to any interpretation and/or
subsequent action.

C. Case Study / Exemplar Analysis

Finally, we consider the utility of the proposed measure
in practice. The utility of a measure for understanding the
predictability (or systematic nature) of an individual’s baskets
can be grouped into two main groups. The first is its use as an
explanatory variable to describe an individual and/or segment.
For instance, if one knew that an individual (or segment) was
highly predictable, then one may appeal to this regularity in the
wording of any communication. This requires the measure to
match the practitioner’s understanding/intuition of the measure
and has motivated the evaluation of the previous sections.

The second group of analysis uses such measures to ev-
idence a relationship between the measure, potentially in
conjunction with other measures, and an output variable within
a predictive framework. This could be driven by commercial or
other imperatives (e.g. social good, consumer welfare). Such
a use reflects the use case explored in [9] which analysed
the relationship between systematic customer behaviour10 and
profitability within the supermarket retail setting.

To consider the relationship between basket predictability
and profitability, [9] consider fit a single variable linear
regression model for two variables (average basket spend
and the number of visits11) and report the equivalent of a
Pearson Correlation of -0.3253 and -0.3249. Based on this,
the authors conclude that “predictable systematic customers
are more profitable for a supermarket: their average per capita
expenditures are higher than non-systematic customers”. In
order to demonstrate the similar utility of the proposed BE
measure and compare the results of its use against the BRE
measure, we compute the Pearson Correlation for all measures
and average basket spend and the number of visits for both the
Dunnhumby and UK grocery retail data sets. In addition, we
consider the correlation of the measures with another measure
of performance relevant to the fast-moving consumer goods
industry - individual’s average spend per month (an indication
of potential lifetime value). The results are shown in Table II.

The results of BE lend weight to the conclusions of [9]
with negative correlations observed for both mean basket
spend and number of visits for both data sets. Depending

10In this work we replicate the evaluation concerning their proposed BRE
measure, omitting evaluation which relates to the complementary Spatio-
temporal measure that could be equally used in-conjunction with Bundle
Entropy as proposed in this work.

11 [9] refer to this as expenditure and baskets respectively in their figures.

on the parameterization, BRE indicates positive or negative
relationships between the parameterised BRE measure for
mean basket spend for both data sets and number of visits
for the Dunnhumby data set. This once again highlights that
the interpretation/meaning of the BRE measure is bound to
the minsup threshold. We highlight again that in addition to
complicating any interpretation, setting this parameter is non-
trivial. Considering both item level and basket level entropy,
we see that they clearly measure conceptually different con-
cepts with results indicating a non-significant correlation with
mean basket spend for Dunnhumby and only a small positive
correlation for BLE for the second data set.

Perhaps notably, all measures for all parameterizations have
a negative relationship with mean spend per month, although
the parameterization of BRE alters the relative strength of the
relationships inconsistently across the data sets. This, even if
BRE is ignored, indicates that mean spend per month, an indi-
cator of lifetime value, is linked to basket/item predictability
more generally, both sharing information regarding and across
the item/basket levels an observation that has the potential to
inform future work.

Differing purchase behaviour types across the data are clear
from the differences in the two data sets, confirming the need
for the measures to have clear interpretations and theoretical
underpinnings. Concerning the proposed measure, BE, the
precise interpretation of basket predictability, and its stable
theoretical underpinnings provide a reasonable basis for future
work to further consider its use as either an explanatory
variable or predictor for all three factors considered within
the supermarket domain, given the consistency of the results.
The results are consistent across both data sets (significant
negative correlations), and the relative magnitude is consistent
with respect to the factors in both data sets. Given the factors
are likely related, this potentially speaks to the different
target markets of the two supermarkets. This is in comparison
to either item or basket level entropy, which either shows
limited / non-significant correlation (IE / BLE), inconsistent
relationships, or inconsistent relative magnitudes depending
on the parameterization (BRE). Examples of the latter include
BRE24 showing a positive relationship with number of visits
for the Dunnhumby data set but a negative correlation in the
second data set and for all other minsup parameters in both.

VII. CONCLUSION

In this work, we address quantifying the predictability of
human purchasing behaviour by introducing a novel mea-
sure, Bundle Entropy. Motivated by the failure of existing
methods to accord with intuition on simple examples, the
work developed a set of simple properties such measures
should meet, noting the failure of existing methods to meet
them theoretically and empirically. Bundle Entropy was then
developed to meet these properties. The new measure was then
compared empirically to real-world, large-scale grocery store
transactional data sets. The results demonstrated that (1) that
the proposed measure accords, in theory, and practice to the
desired properties while the others do not, (2) the measures



(a) Dunnhumby (b) Large UK grocery retailer

Fig. 4: Kendall Tau Rank Agreement (Mean Rank Difference) of relative household/customer predictability for pairs of
measures.

Correlation with:
Dunnhumby UK grocery retailer

Mean Basket Spend Mean Spend per Month Number of Visits Mean Basket Spend Mean Spend per Month Number of Visits
BE −0.187∗ −0.475∗ −0.374∗ −0.215∗ −0.401∗ −0.371∗
BRE 10% 0.009 −0.494∗ −0.439∗ 0.066∗ −0.226∗ −0.365∗
BRE 24% −0.290∗ −0.340∗ −0.108∗ −0.001 −0.262∗ −0.342∗
BRE 70% −0.134∗ −0.268∗ −0.182∗ 0.002 −0.152∗ −0.223∗
Item Entropy 0.027 −0.380∗ −0.456∗ 0.000 −0.236∗ −0.315∗
BLE −0.034 −0.268∗ −0.323∗ 0.088∗ −0.138∗ −0.270∗

TABLE II: Pearson Correlation between the measures and spending and visiting factors. ∗ denotes statistical significance.
𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 were adjusted using the Benjamini–Hochberg false discovery procedure with a q-value of 0.05 [37].

are notably different and should not be used interchangeably,
and (3) the proposed measure has higher utility in practice,
providing a consistent, parameter-less measure that accords
to well-defined, intuitive properties allowing practitioners to
efficiently and correctly interpret and action the outcome of
analytics and insights based on the measure.

APPENDIX

A. Proofs that bundle entropy meets properties P0-P2.

Given 𝐵𝐸 (B) is defined as:

1
log2 |𝐵 |

×
∑︁
𝑏𝑘 ∈𝐵

𝑝(𝑏𝑘)
− log2

©­«
∑︁
𝑏𝑞∈𝐵

𝑝(𝑏𝑞)
|𝑏𝑘 ∩ 𝑏𝑞 |

𝑚𝑎𝑥( |𝑏𝑘 |, |𝑏𝑞 |)
ª®¬


P0.a: When 𝑏0 = 𝑏1 = . . . = 𝑏𝑛 then |𝑏𝑘∩𝑏𝑞 |
𝑚𝑎𝑥 ( |𝑏𝑘 | , |𝑏1 | ) = 1

resulting in 𝐵𝐸 (B) = 0.

P0.b: When 𝑏0 ∩ 𝑏1 ∩ . . . ∩ 𝑏𝑛 = ∅ then:

𝐵𝐸 (B) =
∑︁
𝑏𝑘 ∈𝐵

𝑝(𝑏𝑘) [−𝑙𝑜𝑔2 (𝑝(𝑏𝑘))]

As |𝑏𝑘 ∩ 𝑏𝑞 | = 0 except when 𝑏 = 𝑞. As each 𝑏𝑘 is
unique with a probability of 1

|𝐵 | , then the term excluding the
normalisation term sums to 𝑙𝑜𝑔2 |𝐵 | resulting in a value of 1.

P1: When B′ = [𝑏0 ∪ Γ, 𝑏1 ∪ Γ, . . . , ] = [𝑏′0, 𝑏
′
1, . . . , ]

where Γ is any non-zero arbitrary combination of items and
∃𝑏𝑘 : Γ ⊄ 𝑏𝑘 .

Given: 𝑝(𝑏𝑘) = 𝑝(𝑏′
𝑘
)

And:

|𝑏′
𝑘
∩ 𝑏′𝑞 |

𝑚𝑎𝑥( |𝑏′
𝑘
|, |𝑏′𝑞 |)

=
| (𝑏𝑘 ∪ Γ) ∩ (𝑏𝑞 ∪ Γ) |
𝑚𝑎𝑥( |𝑏𝑘 ∪ Γ |, |𝑏𝑞 ∪ Γ|)

≥
|𝑏𝑘 ∩ 𝑏𝑞 |

𝑚𝑎𝑥( |𝑏𝑘 |, |𝑏𝑞 |)

With the inequality strict when Γ ⊄ 𝑏𝑘 and 𝑏𝑘 ≠ 𝑏𝑞 which
by definition must be true at least once or all baskets are the
same resulting in P0.a.
Via the summation and negative log and since |𝐵′ | ≤ |𝐵 |
as baskets are represented as sets and adding identical
sets to all sets in an existing collection of sets can only
reduce the number of distinct sets in the collection, then
𝐵𝐸 (B′) < 𝐵𝐸 (B).

P2: Holds via the 𝑃1 proof, mapping 𝑏0 ∪ Γ to 𝑏0 &
Γ′ to Γ.
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