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Abstract—Execution traces are frequently used to study system
run-time behaviour and to detect problems. However, the huge
amount of data in an execution trace may complexify its analysis.
Moreover, users are not usually interested in all events of a
trace, hence the need for a proper filtering approach. Filtering
is used to generate an enhanced trace, with a reduced size and
complexity, that is easier to analyse. The approach described in
this paper allows to define custom filtering patterns, declaratively
in XML, to concentrate the analysis on the most important and
interesting events. The filtering scenarios include syntaxes to
describe various analysis patterns using finite state machines.
The patterns range from very simple event filtering to complex
multi-level event abstraction, covering various types of synthetic
behaviours that can be captured from execution trace data. The
paper provides the details on this data-driven filtering approach
and some interesting use cases for the trace events generated by
the LTTng Linux kernel tracer.

I. INTRODUCTION

”the most commonly adopted approach for observing and

analyzing the behaviour of distributed systems has been event-

driven monitoring[...]. System behaviour is monitored in terms

of a set of primitive events representing the lowest observable

system activity, Users specify composite events using compo-

sition operators relating to event sequences which may span

events from several processes and temporal constraints. For

example a composite event can be defined s event e1 followed

by event e2 within a window of 5 seconds. A composite event

is detected w hen the specified pattern of events is recognized

but the variable event delays make detection of distributed

composite events particularly challenging- how to detect a

composite event which is not invalidated as a result of a late-

arriving event to which it refers. Current systems either do not

address this problem or provide limited flexibility to deal with

it.” ”another issue that needs more attention is the changing

monitoring requirements. As the system evolves there may be

a need to dynamically change the patterns of activity which

is monitored without having to bring the operation of the

system to a halt so there is a need to dynamically change

event specifications. For efficiency purposes it would be best

to perform monitoring activities as close to the source of event

reports as possible. This stipulates a dynamic and distributed

event monitoring service.

GEM allows the programmer to specify arbitrarily complex

(composite) events and guards in the LHS of the rules. ”

With the increasing core count and sophistication of today’s

complex computer systems, it becomes difficult to find and

locate flaws because they are usually running distributed

applications and cannot be stopped for debugging, or because

the suspected problems occur rarely. Tracing is hence a good

way to collect information about system run-time behaviour,

since it is collected on live systems but can be analyzed later

by developers and administrators, in order to understand the

system’s behaviour and finally detect and resolve its problems.

The tracing of the Linux kernel using the Linux Trace Toolkit

next generation (LTTng) [1] is a mature process that records

the complete interaction of the different kernel modules in an

events log.

However, there can be a huge log of trace data, even for

a small system execution duration, but with only a small

subset of events that are significant to the users, complicating

the analysis. Thus, it becomes necessary to reduce the size

and complexity of the trace. One proper solution to this

problem is trace abstraction [2], [3], which generally consists

of grouping raw trace data and generating synthetic and high-

level events that could replace the raw data in the trace.

Another solution is events filtering which allows to only

analyze an interesting sequence of events from a trace. Trace

filtering actually eliminates outlier trace events and noise, and

highlights a selected set of trace data based on either the type

of events, timestamps, process name, event arguments or even

the priority or importance of an event [4], [5].

Both trace abstraction and trace filtering techniques may

need to match some patterns within the trace to be fully helpful

and effective. There are many techniques in the literature

that use pattern based techniques to abstract or filter out

the trace data [6], [7], [8]. However, they usually use a

constant set of patterns, mostly hard-coded in the system,

which reduces the flexibility of the approach. Users are only

limited to the predefined patterns of abstraction scenarios. Our

solution solves this problem by allowing users to define their

analysis patterns using a XML-based language and import

them dynamically during the analysis time, which can enhance

the flexibility and usability of the approach.

The remainder of the paper is organized as follows: after

discussing the related work, the architecture of the approach

and the syntax of our XML-based language is presented. Then

are discussed some use-cases, the strengths and weaknesses of



the approach, and finally an outlook of future work.

II. RELATED WORK

Research and development in the area of event filtering

has already been addressed in prior work. Various papers

have expressed opinions and findings on pattern description

languages in the past filteringmalony, filteringsudanshu, fadel,

wahab-correlation, ezzati. In [6], [8], the authors divided

these description languages into several categories and give

examples for each category. Their solutions, in general, are

not a stateful approach, which would preserve the common

and recent status of the analyzer and would avoid recalculating

and regenerating this status frequently [3], [9]. Our solution

solves this problem by providing a model database, to store the

common and recent states of the pattern matching processes,

to extract the recent data at any given point, and also to share

the common data between the different processes, to increase

the overall performance of the approach.

Steven Eckmann et al. [10] presented an automata-based

language, called STATL, to describe scenarios for intrusion

detection. They provide details on the syntax of the language

before giving use-cases of attacks. Gabriel Matni et al. explain

in [6] the interest of choosing a state machine approach to

describe patterns. They express the benefits of this choice

based on the ”simplicity and expressiveness” of the state-

transition language ([6]), the domain independence advantage

and the ease to generate synthetic events. Wasseem Fadel in

[7] and also Naser Ezzati et al. in [3] generate synthetic events

to realize trace abstraction, using state machines to describe

patterns. The patterns are then stored in a library that will help

to simplify the analysis and reduce the trace size.

Most of the patterns and scenario description languages pre-

sented in the above literature are application-specific, and the

semantics used sometimes hinders the extension and addition

of new types of patterns. For example, the STATL language

[10] is designed specially for intrusion detection, or the kernel

trace analysis proposed in [8] is specific to fault identification.

Our approach is somewhat generic. It supports different trace

types and different filtering methods and does not force users

to a specific usage or a specific type of detection.

Our solution can be used to filter out different types of

trace data based on different criteria, including trace event

names, timestamps, synthetic events, state of a system (or

state of a system module), etc, which are defined and provided

though an XML syntax. Our approach is somewhat similar to

STATL [10]. However, we describe scenarios using an XML

automated-based architecture, which makes the definition of

patterns generic.

III. ARCHITECTURE

As mentioned earlier, the most advanced trace tools do

support some sort of trace abstraction and filtering. However,

one limitation of those tools is that they are only available for

a specific trace format and analysis. They usually provide a

few predefined filtering and analysis methods, so that users

are forced to use only those available features.

The goal of this work is, however, to provide a generic trace

filtering method, allowing users to define their own custom

analysis patterns and views using a proposed XML-based

language. In this data-driven approach, users can define their

patterns and scenarios to abstract and filter information out of

the trace data (at different granularity levels) and output the

only interesting (aggregated) part of the trace data.

Fig. 1. Data processing in the filter analyzer

The architecture of the new system is displayed in Figure 1.

This generic data-driven trace filtering method works in two

main steps:

• Model creation, to create a model from the given user-

defined XML pattern: users can define their filter patterns

using the proposed XML pattern description language.

Then the event handler, inside the analyzer, parses the

XML file and creates models from that. The analyzer

transforms all the FSMs, transitions and actions in the

XML file into JAVA models. These JAVA models are used

in the second step in order to parse and filter the data.

• Event filtering, to use the generated models to scan and

analyze the trace events and generate the desired outputs:

the Filter analyzer is the module designed to use the

input XML patterns to filter out the data in the trace.

It is a JAVA module implemented as a plug-in for the

Trace Compass project 1. The main section of this filter

analyzer, as shown in Figure 1, is the event handler that

applies the filtering patterns against the incoming events.

The event handler receives the events one by one. The

incoming event is passed to the FSMs. Each FSM has a

list of running scenarios. It gives the receiving events

to each of the running scenarios. Then, the scenarios

process the filters and execute the needed actions before

examining the next event.

A. XML language structure

In the following, we present the proposed XML language.

It explains how the patterns are defined and modeled. First,

the motivation for selecting XML to describe the scenarios is

explained:

• Simplicity: Pattern descriptions are accessible since the

XML syntax is fairly easy to understand. Users can define

1https://projects.eclipse.org/proposals/trace-compass



their own scenario. Adding new patterns is then easy to

do.

• Flexible patterns: Since the XML language is extensible,

we design our own tags in a way such that possible

scenarios are not limited to some specific application,

such as attack detection or kernel interactions, etc.

Our state machine operates through three main entities that

are directly defined in the XML file by the users: FSM (Finite

State Machine), Transition Inputs, and Actions. The example

shown in Figure 2 is used to describe these different entities.

This sample pattern is used to extract the ”current running

thread for each CPU” at any given time of the execution.

Fig. 2. XML description to handle the CPU scheduling event

1) FSM: A FSM is a Finite State Machine to indicate the

patterns to match. It has an ID and an attribute called ’multiple’

which is a boolean that tells if several instances of this state

machine are allowed to run concurrently on the same event

sequence. A FSM contains a state table that defines all the

states in the scenario. The state table contains one or more

state definitions. A FSM also supports pre-conditions and pre-

actions in its description. An XML file can have more than

one FSM described within it. This allows to process more than

one independent scenario at the same time, or even scenarios

that depend on one another. It is then necessary to specify in

the file which FSM should start running at the beginning.

State definition: A state definition is to define different

states of a state machine and its possible transitions and

actions. Each state definition has a mandatory unique name

to label the state.

Transition: The transitions describe how to switch between

the states. It contains an input attribute which is the ID of the

transition input that will trigger this transition and an action

to execute when the input is validated. The transition allows

to know what is the next step in the state machine.

2) Transition Input: A transition input is the input of a

transition in a state definition. It actually shows who can trig-

ger a state transition. In general, the input can be any (group

of) raw trace event(s), or any (group of) synthetic event(s),

which may have resulted from another filtering pattern.

The input can also be based on conditions over the trace

events. It is the validation of these conditions that will in fact

trigger the corresponding transition(s) within the states. We

distinguish two types of conditions: conditions on the event

data and conditions on the time values. The conditions based

on event data can validate the name of the event and/or some

fields of the current event. On the other hand, conditions based

on the time are valid if the received event happened within a

range of time from a starting point of that event, or if the

received event happened between two specific timestamps.

Both condition types support basic boolean operations: and,

or, not. The transition inputs used by the transitions are listed

at the beginning of the XML file, so they can be used by all

FSMs described in the file.

3) Action: An action is the operation that is executed when

a pattern is matched (i.e., when a transition is valid). We define

4 types of actions:

• State changes: they are used to store data in the state

system (which will be explained shortly). It allows to

modify or add values in the state system. These values

can be used in other states to validate conditions or to

add information about the state of the system.

• Synthetic event creation: It is possible to generate a

synthetic event within the execution of the state machine.

They can then be used either to realize abstraction and

reduce the size and complexity of the trace, or also as

conditions for transition’s inputs for later analysis.

• Starting of another FSM: A new instance of a state

machine can be generated by an action. The ID of the

FSM must be specified.

• UI action: A UI action may be defined in the XML

file. For example, we can select a range of events in the

analysis. It is possible to select, either all the events from

the start of the scenario until the current state or to only

select the events that have triggered state changes. It is

also possible to aggregate several actions either in the

action tag and/or in the transition. The actions will then

been executed in the order of their appearance.

B. Data Structure: State system

The reader may have noticed the existence of different

notions of ”state” in the XML sample shown in Figure 2.

There actually exists two main notions of ”states” here. One

is used as part of any normal state machine, as widely used

in the related literature. Another definition of ”state” is the

one that is used here in the ”¡state change¿” (i.e., part of

the ¡Action¿). The meaning of ”state” in ”state change” is

somewhat different. It refers to a generic data model called

”State System” [11] that was used to store a model of the

state of the traced system, built from the information in the

events, as they are processed.

The state system is a set of data structures that acts like

a temporal database [12]. It is actually a generic container

in which users store their own custom-defined models. As

mentioned earlier, in our design, there is no limitation on

how users can define their models. They define their custom

models using the aforementioned XML structure and then,

while processing events, build and store the model into this

generic model container which is called ”state system” . The



models stored in the state system are used later to retrieve,

analyze and also visualize the information [9].

The state system uses an interval tree to store the state

intervals [11] providing a complete description of the state

history of the modeled system. This data structure is very

convenient since it enables querying the stored values by

time. It is then possible to access the stored data to use

with transition’s inputs or at the analysis level. We create a

”state value” for each value that we want to save in the state

system. The state system produces state changes to store each

state value and ”each attribute value, between two changes,

represents a state interval” [13]. The state system uses a state

provider to build the state from the trace events. Thus, our

pattern matching system proceeds with the analysis of the trace

using a state provider. The use of the state system reinforces

the generic side of the proposed XML approach.

We use the state system to store both the ”internal data” that

give information about the state machine during its execution,

and the ”external data” defined by the users. This makes the

FSM state visible in order to easily verify and understand their

operation and correct eventual errors in their definitions. The

information saved in the ”state system” can be timestamps,

status, number of matches, fields, etc. that will be useful for

the analysis or debugging of the state machines.

It is also possible to specify at the top of the XML file a list

of fields that we want to automatically save in the state system

each time we see them in an event. Then, we can activate in

the state definitions the transitions upon which we want to

save these ”special fields”.

C. Visualization

filter view

A few visualization views are designed to display the output

of the filtering patterns. The filter view is a tabular view to

display the matched patterns. It shows those patterns that are

matched during the analysis. For each matched pattern, it gives

the timestamps of the matching duration, the number of events

included, the pattern name and some other information. Figure

3 displays this view.

Fig. 3. A filter table view to display the matched patterns.

Synthetic events view

Another view is to display the synthetic events that are

generated during the trace analysis. As explained earlier, the

filtering module may generate some synthetic events to show

high level aspects of the trace or to use as an input in the

future filtering phases. Figure 4 depicts the synthetic events

view.

Fig. 4. A synthetic table view to display the resulting abstract events.

Filter status (Debug) view

Another interesting view is the filter status view (or debug

view) used to debug the pattern matching process. It enables

users to go back and forth in the trace and display the different

internal states of the pattern matching processes. It can be

used to follow and dig into a pattern to see how and why it

is matched (or not matched). Figure 5 depicts this filter status

(debug) view.

The view shown in Figure 5 displays the status of the

matched pattern (i.e., process cloned) for the given time (i.e.,

state 0). Users can go back and forth to follow other possible

states of this pattern.

IV. ILLUSTRATIVE EXAMPLE AND DISCUSSION

In this section, we provide an example of our approach:

a fault detection scenario that can be performed using our

proposed system. The ”SYN flood” 2 is a well-known attack in

computer network security. A system is under attack when the

number of half-open TCP [14] connections reaches a certain

threshold. A half-open TCP connection is globally an attempt

at a connection that fails at the last step of the TCP three-way

handshake. Instead of receiving an ACK response from the

client, the server reaches a timeout event, meaning that the

client never answered. It is a kind of denial-of-service attack

which aims at making the server unavailable by flooding it

with queries. For this scenario, we use 2 FSMs: One FSM

to match or detect the half-open TCP connections pattern in

the trace and another one to match the threshold of synthetic

events of half-open TCP connections generated by the first

FSM.

The steps for an half-open TCP connection are:

• The client sends a request for connection. The SYN flag

of the TCP header is then set to 1.

• The server responds with a SYN and ACK in the TCP

header flags. The acknowledgment sequence number of

the server is equal to the sequence number of the client

plus 1.

• The pattern is matched when a timeout is generated

because the client never answers to the server with an

2http://en.wikipedia.org/wiki/SYN flood



Fig. 5. A synthetic table view to display the resulting abstract events.

ACK, or if the client tries to reset the connection with

the server by setting the RST flag to 1 and using the

acknowledgment sequence number of the server in the

previous step as its sequence number.

We used the flags and the value of the sequence numbers

to define the conditions for transition inputs in the XML

description of the scenario. We generated a synthetic event

for each half-open TCP connection we found. Then, when the

number of half-open TCP connections reaches a predefined

threshold, we generate a ”SYN flood attack” synthetic event.

For our testing, we used a timeout of 3 seconds and a threshold

of 100 attempts. The main part of this filtering pattern is shown

in Figure 6.

Fig. 6. Pattern for detecting syn-flood attack.

The hping3 tool3 is used to simulate a SYN flood attack on

the system. We used LTTng version 2.4.0 to record information

about the network connections by enabling the ’inet’ events

3http://www.hping.org/hping3.html

and all the kernel events. We sent requests to an Apache server

running on Ubuntu SPM 14.10 (running kernel version 3.13.0-

43). We instrumented an Intel core i7 with 8 GB of RAM. We

traced the system for a small duration, but long enough to have

a lot of half-open TCP connections. The whole XML file that

describes this scenario is accessible from our public web page
4. Our described pattern has 2 coexisting FSMs. Our pattern

has generated 569 half-open TCP synthetic events and 1 SYN

flood synthetic event 5

1) Discussion:

Generic-ness: The proposed solution uses an XML based

language to define filtering patterns. Using these patterns,

users can define and generate their own custom trace analysis

models to extract and visualize their desired outputs. Although

we have tested it using kernel traces, since there is no

limitation on the models that users can define, using a generic

container called ”state system”, the proposed method can be

used for other types of trace data. In this system, users can

define their patterns based on their custom trace events (as

we did for kernel trace events as an example) and can define

the custom structure of their internal model (to be stored in

the ”state system”). As explained, there is no constraint on

the the format of the traces supported by this solution. It can

be used for any trace data including the trace events of the

LTTng (kernel/user space) Tracer, DTrace, Event Tracing for

Windows (ETW) or any other trace formats.

Performance: First of all, we compare our method when

it uses hard-coded patterns versus the case where it imports

patterns from an XML file. As mentioned in the Architecture

section, and as shown in Figure 1, the proposed method

works by importing the XML pattern and converting it to

a Java-driven model. Then for processing the trace (which

can be the time-consuming phase) the Java-based model is

used. Thus, the only performance difference between this data-

driven approach, and a similar approach that uses hard-coded

patterns, is the time required to convert the XML patterns to

4http://secretaire.dorsal.polymtl.ca/ jckouame/xml files/
5A full video demo of this work can be found here:

https://www.youtube.com/watch?v=ghBHqhq8LXI.



the java-based model. Since it is a one-time process, it can be

negligible as compared to the magnitude of the whole trace

analysis time. Table I, an experimental comparison of the two

methods, clearly illustrates our claim.

150 MB Trace XML JAVA

Average Time (second) 70.092 67.663

Min 66.902 65.891

Max 73.724 73.358
TABLE I

MODEL CONSTRUCTION TIME FOR A 150 MB KERNEL TRACE.

However, since the method is still under further develop-

ment, it might be difficult to give a comprehensive perfor-

mance evaluation. However, we can discuss the criteria that

affect the performance and suggest potential optimizations.

In a similar previous work [6], mentioned in the literature,

Gabriel Matni et al. [6] discussed the performance of their

solutions. The criteria they listed are similar to ours. First, the

performance of our solution is directly related to the number

of instances of scenarios running at the same time. In our SYN

flood example, we have 569 instances of the half-open TCP

scenarios running at the same time, if we remove the timeout

condition and wait directly for the reset flag. For a received

event, each of the 569 instances of scenarios will attempt to

validate its corresponding transition, which means that with

an average of 3 transitions per state. Our analyzer will thus

process 1707 conditions per event. This number increases with

the number of coexisting scenarios and is even worse with

a trace full of irrelevant events. A solution to that issue, as

describe in [6], could be to only activate the relevant events.

Filter events, provided only by a specific thread, could

reduce the data computation. We can achieve this by defining

a precondition for the thread in the FSM definition in XML,

in the same way that we could define preconditions in order

to only analyze events that may change the state of the

scenario. In addition, the complexity of the conditions could

be a bottleneck since the conditions can be complex and

have several subconditions. Users should optimize their state

machines and reduce conditions as much as they can. This will

help to reduce the analysis time. Moreover, longer conditions,

and complex scenarios, even if they may be easy to write,

become difficult to understand and to debug.

V. CONCLUSION AND FURTHER WORK

In this paper, we presented a data-driven approach to match

generic filtering patterns within the trace. The difficulties

related to the amount of information were then reduced. This

work will complete previous research from [6], [7], [3], [8].

It provides a pattern description language and user-friendly

analysis that reflects the matched patterns. We use the state

system to store scenario’s temporary data. It is easy to use and

the data backup is already managed. An analyzer creates mod-

els from the XML file and uses them in order to process and

filter the trace data. The simplicity of the XML language eases

both the description and the understanding of the patterns.

Our proposed language runs with some simple key concepts

that users should use. Patterns for several applications can be

created. Synthetic events can be generated and are used to

locate the patterns in the analysis, and can provide details

about the matched scenarios.

This research is still in progress. We have yet to describe

more patterns with this language in order to refine our pro-

posed XML-based language. Also, more optimization will

further improve the effectiveness and performance of our

solution.
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