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ABSTRACT

The processing of large volumes of RDF data require an efficient storage and query processing
engine that can scale well with the volume of data. The initial attempts to address this issue
focused on optimizing native RDF stores as well as conventional relational databases
management systems. But as the volume of RDF data grew to exponential proportions, the
limitations of these systems became apparent and researchers began to focus on using big data
analysis tools, most notably Hadoop, to process RDF data. Various studies and benchmarks that
evaluate these tools for RDF data processing have been published. In the past two and half years,
however, heavy users of big data systems, like Facebook, noted limitations with the query
performance of these big data systems and began to develop new distributed query engines for

big data that do not rely on map-reduce. Facebook’s Presto is one such example.

This thesis deals with evaluating the performance of Presto in processing big RDF data against
Apache Hive. A comparative analysis was also conducted against 4store, a native RDF store. To
evaluate the performance Presto for big RDF data processing, a map-reduce program and a
compiler, based on Flex and Bison, were implemented. The map-reduce program loads RDF data
into HDFS while the compiler translates SPARQL queries into a subset of SQL that Presto (and
Hive) can understand. The evaluation was done on four and eight node Linux clusters installed
on Microsoft Windows Azure platform with RDF datasets of size 10, 20, and 30 million triples.
The results of the experiment show that Presto has a much higher performance than Hive can be
used to process big RDF data. The thesis also proposes an architecture based on Presto, Presto-

RDF, that can be used to process big RDF data.
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CHAPTER 1
INTRODUCTION

11 Motivation

The Semantic Web is a technology and a set of standards for sharing data using a model called
the Resource Description Framework (RDF). RDF enables the representation of data as a set of
linked statements, each of which consists of a subject, predicate, and object called a triple. RDF
datasets, consisting of millions of triples, form a network of directed graph (DG) and are stored
in systems called triple-stores. A query language standard, SPARQL, has also been developed to
query RDF datasets.

For the Semantic Web to work, both triple-stores and SPARQL query processing engines have to
scale well with the size of data. This is especially true when the size of RDF data is too big such
that it is difficult, if not impossible, for conventional triple-stores to work with. In the past few
years, however, new advances have been made in the processing of large volumes of data sets,
aka big data, which can be made to use for processing big RDF data. In this regard, various
researches that study the use of big data technologies for RDF data processing have been
published.

In the past two and half-years, new trends in big data technology have emerged that use
distributed in-memory query processing engines based on SQL syntax. Some of these tools
include: Facebook Presto, Apache Shark, and Cloudera Impala. These tools promise to deliver
high performance query execution than traditional Hadoop system like Hive. It is the motivation
of this thesis to validate this claim for big RDF data — i.e. if these new in-memory query
processing models work well to deliver faster response times for SPARQL queries, which must

be translated to SQL.



1.2 Problem Statement
The problem statement of this thesis can be summarized as:
Can we gain query execution performance, compared to Hive and 4store, by storing big
RDF data in HDFS and using in-memory processing engines instead of MapReduce?
Specifically, it addresses these questions:

- Is it feasible to store big RDF data in HDFS and get improved query execution time,
compared to Hive and native RDF stores like 4store, by translating SPARQL queries into
SQL and then using the Presto distributed SQL query processing engine to run the
translated queries?

- How much improvement, in query response time, can be attained by using in-memory
query processing engine, e.g. Presto, against native RDF stores, like 4store, and other
query processing engines based on MapReduce, like Hive?

- How do different RDF storage schemes in HDFS affect the performance of SPARQL
queries? And is it possible to construct an end-to-end distributed architecture to store and
query RDF datasets?

Based on the above questions, the following hypothesis are put forward:

1. As the size of RDF data increases to big-data levels, RDF stores based on Hadoop
outperform native RDF stores like 4store.

2. Distributed in-memory query processing engines deliver faster response time on big
RDF datasets than query processing engines that rely on MapReduce.

3. Vertical partitioning scheme for RDF data gives better performance than other RDF
storage schemes on Hive.

4. Increasing number of processing nodes dramatically improves query performance.

2



CHAPTER 2

THE SEMANTIC WEB
This thesis is based on two technologies — the semantic web and big data. This chapter presents a
summarized review of the semantic web.
2.1 Introduction
The original paper on semantic web, written in 2001 by Tim—Berners Lee, defines the semantic
web as a web of data that is an extension of the current web but one in which information has
semantics or well-defined meaning [1]. The motivation behind the creation was to address the
fundamental limitation of the current World Wide Web — which is a web of pages and not of
data.
Consider an example of consulting a trips advisory website to choose a hotel for your summer
vacation. You browse the hotels listed in the trips advisory website and choose one hotel. But
when trying to book from the hotel’s website you discover that they have closed their branch.
This looks a simple outdated data issue on part of the trips advisory website, however in its
essence it points to a major limitation in the current web architecture — data is linked at
presentation level and not at a representation level [2].
In the current web architecture, the problem stated above can be solved in a variety of ways. The
simplest solution can be making data available as lined data and updating it regularly. But if the
linked data changes frequently, this solution would be very hard, if not impossible, to implement.
The other option would be to back up both sites with the same relational database so that when
the linked data is updated by one party, the other party gets it automatically. This approach

would require that a trust relationship be established between the parties. Yet another option,



which is popular, is to publish functions as web services so that parties who need the published
functionalities would get needed data by consuming the web services.

Though both the relational database and web services approach can solve the data linking
problem at an enterprise level, they are not feasible solutions in the context of the entire World
Wide Web — which has an open and distributed data architecture that grows organically with
contributions coming from different sources.

The semantic web attempts to solve the data linking problem by creating a web infrastructure, on
top of the current web infrastructure, that would make it possible for one data item to point to
another, using global references called Uniform Resource Identifiers (URIs), thereby creating a

single, distributed web of data.
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In the Semantic web, a website would not just publish its data at the presentation level (i.e. for
human consumption) but also a machine—readable description of the data. The Semantic web
infrastructure provides a data model, called Resource Description Framework (RDF), that can be
used to encode this machine-readable data. Semantic web comprises of web pages that
implement this data model.

The ultimate aim of the Semantic web, according to Tim—Berners Lee, is to transform the current
web of documents (pages) to web of data thereby bridging the divide that exists between the
web, which is unstructured and human-readable, and databases, that are well structured and
machine—readable.

2.2  Challenges of Implementing the Semantic Web

The Semantic web infrastructure is based on the existing web infrastructure and hence inherits its
features. These features, however, become more problematic to handle because the entity that is
being linked in the semantic web is not pages, but data [4]:

e Anyone can say anything about any topic assumption — in the current web context, this
means that anyone can create and publish a document online which others can link to. In
the context of the semantic web, however, it means that anyone can create a data item
about any entity (called a resource in the Semantic web terminology) in a way that can be
integrated with other data items from other sources.

e Open world assumption — the Semantic web must assume that new data items can be
introduced to the distributed web of data at any time and no conclusions may be drawn

based on the assumption that all data is available.



e Non-unique naming assumption — different names can refer to the same resource and the
Semantic web has to assume, until otherwise told, that a resource can be referred to using
different names by different sources.

e Network effect and synergy — the semantic web infrastructure must enable knowledge
synergy possible — more people joining creates more value which attracts more people
who would in turn add more values that would expand and increase knowledge sharing
exponentially.

Because the Semantic web is a distributed web of data from different sources and its aim is to
create a coherent web of data that is useful, the chaos that arises from non—unique naming,
subtleties in the meaning of terms, etc. have to be resolved [4]. For example, the Semantic web
infrastructure has to provide a mechanism to differentiate the word “apple” from two sources that
talk about fruit and the multibillion-dollar company, Apple. The semantic web achieves this by
providing a number of modeling languages that can be used to express meaning, semantics, at
different levels of detail.

2.3  Semantic Modeling

The semantic web provides a number of modeling languages that can express meaning at
different levels. These modeling languages are defined as standards by the W3C group and can
be used to express, i.e. give semantics to, different kinds of data. The standard organizes these
modeling languages as a stack of layers where a layer is dependent upon the layers under it. The

expressiveness that can be achieved increases as one goes from lower to higher layers [4].
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Figure 2 Semantic Web Modeling Languages

= RDF - the Resource Description Framework — is the bottom layer in the stack of
semantic web modeling languages and is used to express a basic statement about a
resource [5].

= RDFS - the RDF Schema language — is the next more expressive layer above the RDF
layer. It can be used to express commonality and/or variability between resources. RDFS,
aka RDF-S, can be likened to how classes and class hierarchies are organized in object-
oriented programming languages [4, 6].

= RDFS—Plus — is the next top layer above RDF-S but below OWL — hence, it is more
expressive than RDF-S, but less expressive and complex than OWL. Currently, there are
no standards defined for RDFS—plus. RDFS-Plus can express the relationship and
constraints that exist between properties of resources. Since it sits on top of the RDFS

and RDF, it can express semantics that can be expressed by RDFS and RDF [4].



= OWL - the Web Ontology Language — is the top layer of the stack and can be used to
express semantics that cannot be expressed by the other models. OWL is more complex
and can be used to express detailed constraints between resources [4, 7].
2.4 ldentifying Resources — the URI
A resource, in the semantic web technology, refers to a specific entity or thing that can be
identified. The standard way to identify a resource in the web is to give it a URI — Uniform
Resource Identifier. A URI is a string of characters with a well-defined format. The Internet
standard STD 66 (also RFC 3986), defines the generic syntax for a URI as [8]:

<scheme name> : <hierarchical part> [ ? <query> ] [ # <fragment ]
Where:

e Scheme name — is a sequence of characters beginning with a letter and followed by a
combination of letters, digits, the plus character (‘+’), period (.”), or hyphen (‘-°).
Scheme names are case-insensitive but the standard is to write them in small letters.

e Hierarchal part — holds identification information and may or may not begin with double
forward slashes. If it begins with double forward slashes, then authority and path parts
follow, if not path follows.

o0 Authority part — can hold a hostname, an optional port that is preceded by a colon
(“:”) or a user information that is terminated with ‘@’.

0 Path — is a sequence of segments separated by a forward slash ‘/’. A path may
begin with a forward slash but may not begin with two forward slashes.

e Query — is optional and holds additional information that is not hierarchical.

e Fragment — holds additional information that identifies a secondary resource. For
example, a section in a document. Fragment, just like query, is optional.

8



A URI can be used to identify and name anything — from physical structures, like buildings, to
abstract concepts like subclass. A URI must not contain any embedded spaces and is guaranteed
to be unique.

A related term, URL (Uniform Resource Locator), is a subset of URI that, in addition to
identifying a web resource, can be used to specify the means of locating the resource. It does this
by specifying the resource’s primary access mechanism.

URIs can be also expressed using qualified names, or gnames. A gname has two parts: a
namespace and an identifier that are separated with a colon [9]. For example the URI:

http://purl.org/dc/elements/1.1/creator

Can be expressed as the gname:
dc: creator

Where dc, the namespace, represents http://purl.org/dc/elements/1.1/. Namespaces in gnames,

just like namespace in object-oriented programming languages, are used to group related
identifiers together and avoid name collisions.
There are a number of namespaces that have been defined by the W3C and the Semantic Web
standards group for use with web and Semantic Web technologies. For example, W3C defines
xsd as a namespace for XML schema definitions. Likewise, the Semantic Web defines
namespaces for its different layers [10]:
e rdf — is the namespace for identifiers used in RDF. The URI for the namespace is
http://lwww.w3.0rg/1999/02/22-rdf-syntax-ns#
e rdfs — is the namespace for identifiers used in RDF schema, RDFS. The URI for the
namespace is http://www.w3.0rg/2000/01/rdf-schema#
e owl —is the namespace used for owl, the Web Ontology Language..

9
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2.5 RDF - The Resource Description Framework
The Resource Description Framework, RDF, is the basic construct of the Semantic Web that is
used to make a statement about an entity (subject or resource). An RDF statement is composed
of three parts: subject, predicate and object (aka spo). The subject denotes the entity the
statement is made about while the predicate denotes some attribute or aspect of the entity [5].
The object is the value of the predicate for the subject. An RDF statement is also known as a
triple.
For example, the statement:
Einstein was born in 1879.

Can be represented as an RDF statement with spo:

(s, p, 0) = (Einstein, wasBorn, 1879).

A triple can also be represented as the labeled directed graph (DG):

wasBorn

Einstein » 879 |

Figure 3 A Triple as a Labeled Directed Graph

Multiple statements can also be made about a subject and a subject may have multiple values for
a predicate. Multiple RDF statements are called triples. Triples can be represented as a table of

subject-predicate-object values:

Subject Predicate Object

Einstein wasBorn 1879

Einstein developed Special Relativity
Einstein developed General Relativity

10



Einstein diedIn 1955

Newton wasBorn 1642
Galileo died 1642
General Relativity dealsWith Gravity
Newton discoveredLawsOf | Gravity

Table 1 A Table of Triples

Triples can also be represented using a network of labeled directed graphs (DG):

| dealsWith
dcvq.'lmwi.i/_//'I Cieneral _Relativity | Giravity
.H'"FFF#
//”/waz«;l-! orn 1642
Einstein 1879 wasBorn discovered LawsOr
T , T
fiadl "“ah\ diedln S~
dredin developed ™ ——— —
~ Special Relativity | Newlon
Galileo

Figure 4 A Labeled Directed Graph of Triples

2.6 RDF Serialization Formats

RDF data can be serialized, i.e. stored in a file system, in different formats. The W3C defines
four serialization formats for RDF data — RDF/XML, Turtle, N-Triples, and N3 [11]. There are
also other serialization formats — RDFa, microdata, rdf-json, etc.

RDF/XML - serializes RDF data (graph) as an XML file where the nodes and edges of the RDF
graph are represented using XML elements, attribute and text values. RDF/ XML was the first
RDF serialization format adopted by the W3C [12]. The RDF graph in Figure 4 can be

represented in XML as:

11



<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF

xmlns:ns1="http://www.eg.com/ex/description#"
xmlns:ns2="http://www.eg.com/ex/yr#"
xmlns:ns3="http://www.eg.com/ex/work#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

>

<rdf:Description rdf:about="http://www.eg.com/ex/subject#General_Relativity">
<nsl:dealsWith rdf:resource="http://www.eg.com/ex/subject#Gravity"/>

</rdf:Description>

<rdf:Description rdf:about="http://www.eg.com/ex/person/name#Einstein">
<ns3:developed rdf:resource="http://www.eg.com/ex/subject#General_Relativity"/>
<ns2:wasBorn>1879</ns2:wasBorn>
<ns3:developed rdf:resource="http://www.eg.com/ex/subject#Special_Relativity"/>
<ns2:diedIn>1955</ns2:diedIn>

</rdf:Description>

<rdf:Description rdf:about="http://www.eg.com/ex/person/name#Newton">
<ns3:discoveredLawsOf rdf:resource="http://www.eg.com/ex/subject#Gravity"/>
<ns2:wasBorn>1642</ns2:wasBorn>

</rdf:Description>

<rdf:Description rdf:about="http://www.eg.com/ex/person/name#Galileo">
<ns2:diedIn>1642</ns2:diedIn>

</rdf:Description>

</rdf:RDF>

The main advantage of RDF/ XML over the other serialization formats is that it can be used

readily with system and programming environments that are based on XML. However, not all

RDF triples can be represented in RDF/XML due to a limitation XML imposes on its syntax.

Turtle —Terse RDF Triple Language — is a serialization format created by Tim Berners—Lee to

encode RDF graphs in a compact form that is also readable for humans [13]. Unlike the

RDF/XML serialization format, the Turtle format can be used to encode any type of RDF graph.

A turtle document consists of a list of directives and triples. The RDF graph in Figure 4, for

example, can be represented in turtle format as:

@prefix nsO: <http://www.eg.com/ex/yr#> .
@prefix nsl: <http://www.eg.com/ex/work#> .
@prefix ns2: <http://www.eg.com/ex/description#> .
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@prefix ns3: <http://www.eg.com/ex/person/name#> .
@prefix ns4: <http://www.eg.com/ex/subject#>

ns3:Einstein ns0:wasBorn “1879"xsd:integer .
ns3:Einstein nsl:developed “Special Relativity” .
ns3:Einstein nsl:developed “General Relativity” .
ns3:Einstein ns0:diedIn “1955”xsd:integer .
ns4.General_Relativity ns2:dealsWith ns4:Gravity .
ns3:Newton nsl:discoveredLawsOf ns4:Gravity .
ns3:Newton nsO:wasBorn “1642”"xsd:integer .
ns3:Galileo ns0:diedIn “1642"xsd:integer .

Turtle is a subset of, and is compatible with, the N3 serialization format and has the MITME
type text/turtle.

N-triples — Notation of Triples — is another RDF serialization format that is simpler than the
turtle format but not as compact as the Turtle format. The RDF graph in Figure 4, for example,
can be represented in N-triples as:

<http://www.eg.com/ex/person/name#Einstein> <http://www.eg.com/ex/yr#wasBorn>
“1879”"xsd:integer.

<http://www.eg.com/ex/person/name#Einstein> <http://www.eg.com/ex/work#developed>
<http://www.eg.com/ex/subject#Special_Relativity> .
<http://www.eg.com/ex/person/name#Einstein> <http://www.eg.com/ex/work#developed>
<http://www.eg.com/ex/subject#General_Relativity> .
<http://www.eg.com/ex/person/name#Einstein> <http://www.eg.com/ex/yr#diedIn>
“1955”"xsd:integer.

<http://www.eg.com/ex/person/name#Einstein> <http://www.eg.com/ex/yr#wasBorn>
“1879”"xsd:integer.

<http://www.eg.com/ex/subject#General_Relativity>
<http://www.eg.com/ex/description#dealsWith> <http://www.eg.com/ex/subject#Gravity>.
<http://www.eg.com/ex/person/name#Newton>
<http://www.eg.com/ex/work#discoveredLawsOf> <http://www.eg.com/ex/subject#Gravity>.
<http://www.eg.com/ex/person/name#Newton> <http://www.eg.com/ex/yr#wasBorn>
“1642 xsd:integer.

<http://www.eg.com/ex/person/name#Galileo> <http://www.eg.com/ex/yr#diedIn>
“1642”"xsd:integer

N-triples has a text/turtle MIME type.
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N-3 — Notation—3 — is another serialization format for RDF. N-3 is a superset of the Turtle
format and has been designed with human readability in mind. The RDF graph in Figure 4 can be

represented in N-3 as:

@prefix nsl: <http://www.eg.com/ex/description#> .

@prefix ns2: <http://www.eg.com/ex/yr#> .

@prefix ns3: <http://www.eg.com/ex/work#> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix xhv: <http://www.w3.0rg/1999/xhtml/vocab#> .
@prefix xml: <http://www.w3.0rg/XML/1998/namespace> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

<http://www.eg.com/ex/person/name#Einstein> a rdfs:Resource ;
ns3:developed <http://www.eg.com/ex/subject#General_Relativity>,
<http://www.eg.com/ex/subject#Special_Relativity> ;
ns2:diedIn “1955”"xsd:integer ;
ns2:wasBorn “1879”"xsd:integer .

<http://www.eg.com/ex/person/name#Galileo> a rdfs:Resource ;
ns2:diedIn “1642”"xsd:integer .

<http://www.eg.com/ex/person/name#Newton> a rdfs:Resource ;
ns3:discoveredLawsOf <http://www.eg.com/ex/subject#Gravity> ;
ns2:wasBorn “1642”"xsd:integer .

<http://www.eg.com/ex/subject#General_Relativity> a rdfs:Resource ;
nsl:dealsWith <http://www.eg.com/ex/subject#Gravity> .

RDFa — Resource Description Framework in Attributes — is a W3C is recommendation that adds
meta-data information to HTML (or XHTML) documents by extending the attributes of

elements. The RDF graph from Figure 4 can be represented using RDFa as:

<div xmlIns="http://www.w3.0rg/1999/xhtm|"
prefix="
ns3: http://www.eg.com/ex/work#
nsl: http://www.eg.com/ex/description#
ns2: http://www.eg.com/ex/yr#
rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.0rg/2000/01/rdf-schema#"
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>
<div typeof="rdfs:Resource" about="http://www.eg.com/ex/person/name#Newton">
<div rel="ns3:discoveredLawsOf" resource="http://www.eg.com/ex/subject#Gravity"></div>
<div property="ns2:wasBorn" content="1642""xsd:integer></div>
</div>
<div typeof="rdfs:Resource" about="http://www.eg.com/ex/person/name#Einstein">
<div property="ns2:wasBorn" content="1879""xsd:integer></div>
<div property="ns2:diedIn" content="1955""xsd:integer></div>
<div rel="ns3:developed">
<div typeof="rdfs:Resource" about="http://www.eg.com/ex/subject#General_Relativity">
<div rel="ns1:dealsWith" resource="http://www.eg.com/ex/subject#Gravity"></div>
</div>
</div>
<div rel="ns3:developed"
resource="http://www.eg.com/ex/subject#Special_Relativity"></div>
</div>
<div typeof="rdfs:Resource" about="http://www.eg.com/ex/person/name#Galileo">
<div property="ns2:diedIn" content="1642""xsd:integer></div>
</div>
</div>

2.7  RDF-Schema

RDF-Schema (RDF-S) is a data modeling vocabulary for RDF data. According to the W3C,
“RDF-S provides mechanisms for specifying groups of related resources and the relationship
between these resources”.

In RDF-S, resources are grouped into classes. A resource that belongs to a class is called an
instance of the class. In many respects, RDF-S classes are similar to classes found in object-
oriented programming languages like Java and C++. However, unlike classes in object-oriented
programming languages where a class is defined in terms of the attributes of its instances, RDF-S
defines properties in terms of the classes to which they belong (apply). For example, in Java, one
can define a class called Person with an attribute (property) Age whose type int. In RDF-S, same

idea can be expressed by defining a property Age with domain Person and range integer [12].
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2.8  OWL - the Web Ontology Language
OWL is a W3C standard designed for use by web applications that need to define and process
semantic data. OWL provides a much richer set of vocabularies than RDF-S and can be used to
express and relate complex knowledge about things and their relationships. OWL has three sub-
languages — OWL Lite, OWL DL, and OWL Full [4].
OWL Lite — is a smaller subset of OWL that can be used to express classification hierarchy of
resources and simple constraints. OWL Lite provides a set of vocabularies that are classified into
seven groups based on their purpose:
= RDF-S features — Class, rdfs:subClassOf, rdf:Property, rdfs:subPropertyOf,
rdfs:domain, rdfs:range, Individual.
= Equality and inequality — equivalentClass, equivalentProperty, sameAs, differentFrom,
AlIDifferent, distinctMembers.
= Property characterstics — ObjectProperty, DatatypeProperty, inverseOf,
TransitiveProperty, SymmetricProperty, FunctionalProperty, InverseFunctionalProperty.
= Property restrictions — Restriction, onProperty, allValuesFrom, someValuesFrom.
= Restricted Cardinality — minCardinality, maxCardinality, cardinality
= Header Information — ontology, imports
= Class Intersection — intersectionOf
= Datatypes — xsd:datatypes
= Annotation properties — rdfs:label, rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy,

AnnotationProperty, OntologyProperty
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OWL Lite guarantees computational completeness and decidability. Computational
completeness means that all conclusions that can be drawn are computable while decidability
means computations can finish in finite time.

OWL DL — OWL Description Logics — is a subset of OWL that is more expressive than OWL
Lite but less expressive and complex than OWL Full. OWL DL also guarantees computational
completeness and decidability.

OWL Full — is a super set of OWL data and provides maximum expressiveness. However,
unlike OWL DL and OWL Lite, it cannot guarantee computational completeness.

29 SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) is a query language defined by the
W3C to query RDF data. The “Protocol” in the SPARQL deals with how a client program and a
SPARQL processing engine interact to exchange queries and results from queries. W3C specifies
the rules of these interactions. SPARQL has been design to query any RDF data regardless of its
storage format — RDF/XML, Turtle, N-Triples, N-3, JSON, etc. SPARQL queries can also be
run against a combination of these different storage formats.

Basic SPARQL Query — The most basic SPARQL query consists of a SELECT clause that
identifies variables that appear in the result set and a WHERE clause which provides a graph
pattern to match against the RDF graph the query is being run on.

For example, given the following RDF data set from Figure 3:

@prefix ns0: <http://www.eg.com/ex/yr#> .

@prefix nsl: <http://www.eg.com/ex/work#> .

@prefix ns2: <http://www.eg.com/ex/description#> .

@prefix ns3: <http://www.eg.com/ex/person/name#> .
@prefix ns4: <http://www.eg.com/ex/subject#>
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ns3:Einstein ns0:wasBorn “1879”"xsd:integer .
ns3:Einstein nsl:developed “Special Relativity” .
ns3:Einstein nsl:developed “General Relativity” .
ns3:Einstein ns0:diedIn “1955”xsd:integer .
ns4:General_Relativity ns2:dealsWith ns4:Gravity .
ns3:Newton nsl:discoveredLawsOf ns4:Gravity .
ns3:Newton ns0:wasBorn “1642”"xsd:integer .
ns3:Galileo ns0:diedIn “1642"xsd:integer .

A SPARQL query that returns the theories Einstein developed can be written as:

SELECT ?theory
WHERE

<http://www.eg.com/ex/person/name#Einstein>
<http://www.eg.com/ex/work#developed> ?theory.

¥
Returning:

“Special Relativity”
“General Relativity”

Same query can also be expressed using prefixes:

@prefix nsl: <http://www.eg.com/ex/work#> .
@prefix ns3: <http://www.eg.com/ex/person/name#> .

SELECT ?theory
WHERE

{

ns3:Einstein nsl:developed ?theory.

}

Multiple matches — multiple graph pattern conditions can be stated in a SPARQL query by
adding more triples and variables.

@prefix ns0: <http://www.eg.com/ex/yr#> .

SELECT ?x ?z
WHERE
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{

?x nsO:wasBorn ?y.
?x nsO:diedIn ?z.

}

Running the above query on the dataset from Figure 3, gives the result:
“Einstein” 1955

The first pattern, ?x ns:wasBorn ?y, selects:

“FEinstein” 1879
“Newton” 1642

While the second pattern, ?x nsO:diedIn ?z, selects:

“Einstein” 1955
“QGalileo” 1642

Because the first pattern and the second pattern are linked by their subject, ?x, and the
variable ?z relates to the nsO:diedIn predicate, the returned result is:

“Einstein” 1955
Matching RDF Literals — SPARQL also supports querying based on string, integer and other
types of literals.
RDF Constraints — SPARQL allows one to specify constraints that filter bindings of variables
to RDF terms.
Filtering string values — the SPARQL FILTER function, regex, can be applied on string literals

to do regular expression pattern matching:

@prefix nsl: <http://www.eg.com/ex/work#> .
SELECT ?y
WHERE {
?x nsl:developed ?y
FILTER regex(?y, "Special%")
}

Returns the result “Special Relativity”.
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Filtering numeric values — SPARQL also allows filters to be applied to queries:

@prefix ns0: <http://www.eg.com/ex/yr#> .
SELECT ?7x
WHERE

{

?x nsO:wasBorn ?y.
FILTER (?y < 1800)

}

Returns the result “Newton”

SPARQL data types — SPARQL also supports integer, floating-point, string, boolean and
dateTime literals.

Blank Nodes — are denoted by :somelLabel, can appear in an RDF data. When a blank node
appears in RDF data, it indicates either a lack of value — if it appears in the object position of a
triple — or an unknown resource — if it appears in the subject position. When a blank node is used
in SPARQL query, however, it is treated just like a variable. For example, the two queries below

have identical semantics:

SELECT ?a?b

WHERE {

?a :predicate _:blankNode .
_:blankNode :otherPredicate ?b .

}

SELECT ?a?b
WHERE {

?a :predicate ?variable .
?c :otherPredicate ?b .

¥
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CHAPTER 3

BIG DATA
The other core technology, besides the Semantic Web, that this thesis relies on is big data. This
chapter reviews the latest information and articles written about big data. It also presents one of
its very important and popular open—source application framework — Apache Hadoop.
3.1 Definition
There are a number of definitions that have been suggested for big data. IBM, for example,
defines big data as a term that describes quintillion bytes of data aggregated from various sources
in different file formats and that which grows rapidly [15]. Likewise, in an article published by
Microsoft in 2013, big data is a term that is used to describe the process of applying serious
computing power to seriously massive and often highly complex sets of information [16]. Many
technologists also have proposed various definitions of big data. John Worthington from Tech
Republic, for example, defines big data as a large amount of data that is moving at a rapid pace
and upon its valuable analysis a company’s existence is based on [17]. On the other hand, Edd
Dumbill from O’Reilly Strata, defines big data as data that exceeds the processing power of
conventional database systems and that which is too big and too fast to fit into these systems
[18].
Though each of the definitions above emphasizes one or another aspect of big data, all
definitions agree that big data is big in size, is unstructured, holds lots of different data formats
(text, video, sensor data, financial transactions, etc.) and is very difficult to process using
conventional database systems.
This thesis assumes the definition of big data as proposed by Bernard Marr in 2013. Bernard
Marr defines big data as data that is characterized by four parameters [19]:
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1. Volume — big data holds vast amounts of data, usually in TB and PB — i.e. big data is big.
2. Velocity — big data is generated rapidly and moves around fast. For example social media
messages that are created rapidly and going viral in seconds.
3. Variety — big data holds increasingly different types of data from various sources — social
media feeds, financial data, photos, sensor data and so forth.
4. Veracity — big data is incredibly messy and unstructured and may involve
inconsistencies.
From the perspective of this thesis, big RDF data refers to vast amounts of RDF triples with
hundreds of millions of interconnections.
3.2  Apache Hadoop
The Apache Hadoop framework is an open—source software framework for storing and
processing large data sets over a cluster of commodity machines. Hadoop is designed to scale
horizontally and can run on few to thousands of machines. Each machine in a Hadoop cluster can
be used both to store and compute data. Hadoop is designed to be fault—tolerant and can detect
and handle failures at an application level gracefully — there by delivering a high—availability
service [20].
The Apache Hadoop is composed of four modules — Hadoop Common, Hadoop Distributed File
System (HDFS), Hadoop YARN, and Hadoop MapReduce.
= Hadoop Common — is the module that is responsible for providing a set of utility
(foundation) classes used by the other modules.
= Hadoop Distributed File System (HDFS) — is a distributed file system that is designed to

store big data over a cluster of commodity machines.
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= Hadoop YARN — Hadoop Yet another Resource Negotiator — is framework that is used
for job scheduling and resource management over a cluster.
= Hadoop MapReduce — is an open-source implementation of the MapReduce
programming model.

The Apache Hadoop project consists of other Hadoop-related projects: Ambari, Avro,
Cassandra, Chukwa, HBase, Hive, Mahout, Pig, Spark, Tez, and Zookeeper. Apache Hadoop can
therefore be regarded as an ecosystem of frameworks and utilities designed to handle use cases
that relate to the storage and processing of big data. This thesis makes use of the HDFS,
MapReduce and Hive parts of this ecosystem [20].
3.3  HDFS - The Hadoop Distributed File System
The Hadoop Distributed File System (HDFS) is a distributed file system that is designed to store
big data over a cluster of commodity machines. HDFS was originally developed by Doug
Cutting and has its origin in the Apache Nutch project — an open-source web search engine
project [21, 22].
HDFS has been designed to cope with hardware failures and has an error-detection and
automatic recovery mechanism when faults occur. HDFS also provides high aggregate data
bandwidth and can scale horizontally to thousands of nodes. Files in HDFS are created are
written once but can be read many times. This model, also known as the write—once-read-many
model, guarantees data coherency and enables a high throughput data access. High throughput is
also achieved by localizing data and computation together so that network congestion is
minimized. HDFS, as a distributed file system for big data, emphasizes high throughput of data

access rather than low latency.
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HDFS uses a master/slave architecture that consists of one master node, the NameNode, and
multiple slave nodes. The NameNode is responsible for managing the file system and regulate
file access by clients. Each node in the HDFS cluster, including the NameNode, has DataNodes
that manages its storage. The data nodes are also responsible for providing file read and write
requests from client applications, performing data creation, replication and deletion upon a

request from the NameNode.

HDFS Architecture

Metadata (Name, replicas, ._.):
/home/foo/data, 3, ...

Namenode

Metada’_[;_—:;_,ops’."'

Read Datanodes Datanodes
' | |
A H . Replication o H —
I [ Jj Blocks
. \ N
Rack 1 Write Rack 2

Figure 5 HDFS Architecture [21]

HDFS supports a hierarchical file organization similar to POSIX systems where the root
directory is represented by “/”. Applications can create, remove, and rename files and directories
inside this root directory. Unlike POSIX systems, however, HDFS does not support user quotas,
hard links as well as soft links. Any changes to the file system, including its properties, are
recorded and managed by the NameNode.

A file in HDFS is stored as a sequence of equally sized blocks where the size of each block is

defined by applications. HDFS ensures fault—tolerance and high-reliability by replicating these
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data blocks across the cluster. Applications can also specify the number of replicas of a file, at
file creation time or later. The NameNode makes all decisions regarding the replication of blocks
including which data nodes will be used to store replicas. Replicas are essential in HDFS to
guarantee fault—tolerance and performance. HDFS has a replica placement policy that is “rack
aware”. This policy is based on the experience that network bandwidth between machines in the
same rack is greater than between machines on different racks. Hence, when HDFS receives a
read request, it tries to answer the request by consulting the closer replica to the reader. If the
replica exists in the same rack as the reader then that replica is chosen. HDFS uses the TCP/IP
protocol for communication [21, 22].

Data upload in HDFS is accomplished in a sequence of steps. When an application wants to
create a file, it sends a file creation request to the HDFS client. Upon receiving the request, the
HDFS client creates a temporary local file to which the application writes data. When the size of
the temporary local file reaches the block size, typically 64 MB, the HDFS client contacts the
NameNode. When the NameNode receives the request, it sends the destination DataNode and
block back to the client. The client would then flush the data from the temporary file to the
destination DataNode and block and notifies and notifies the NameNode when the transfer is
complete. Upon receiving a completion message, the NameNode commits the file creation and
persistently stores the data.

3.4  Hadoop MapReduce

Hadoop MapReduce is Apache’s implementation of the map-reduce programming model that
was popularized by Google in 2004. The Hadoop MapReduce framework can be used to write
client applications that process large amounts of data (usually in hundreds of Giga and Tera
Byes) in parallel, over a cluster of machines. HDFS and MapReduce can be considered as the
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two most important components of the Hadoop ecosystem — HDFS is responsible for handling
the storage and management of data while MapReduce is responsible for computations over the
data.

A computation is much more efficient when it is executed near the data it operates on [22]. This
is particularly important when dealing with big data because it minimizes network congestion
that would otherwise have been overloaded by transferring vast amount of data back and forth.
Hence, moving computation is much cheaper than moving data and for this reason HDFS and
MapReduce are typically configured to run on the same node. HDFS also provides interfaces to
applications to move themselves closer to where the data resides.

The MapReduce programming can be defined as a programming model and an associated
implementation for processing and generating large data sets using a parallel, distributed
algorithm over a cluster of commodity hardware. MapReduce is inspired by the map and reduce
primitives that exist in functional programming languages like Lisp, Haskell, and others.

A map function takes in a <key, value> input pair and generates a set of intermediate <key,
values> pairs. The intermediate <key, value> pairs are then be taken by the MapReduce library,
which groups and sorts together all intermediate key values associated with the same
intermediate key, in a process called sort-and-shuffle, and passes it to the reducer function. The
reducer function, upon receiving an intermediate key and a list of values for the key, merges the
list of values together to output a possibly smaller set of values — typically just zero or one output
value.

Both the map and reduce functions are written by the user. User programs can also specify a
comparison function that would be used in the sort-and-shuffle step to compare and sort
intermediate keys.
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map: <keyi, value;> — list (<keya, value>>)

reduce: <keyy, list (valuez> — list (values)

The creators of the MapReduce programming model, Jeffery Dean and Sanjay Ghemawat [23]

argue that many real world tasks can be expressed using this simple model and that the model

can be easily used to parallelize large computation over a cluster of machines.

During the execution of a MapReduce program each machine holds a copy of the program and

the map and reduce functions are executed in parallel by the different machines across the

cluster. MapReduce uses a hash-based algorithm to splits its input data.

According to Jeffery Dean and Sanjay Ghemawat, the execution of MapReduce programs

follows the following sequence of steps [23]:

1.

2.

User’s MapReduce program is loaded into memory.

The input files are split into M blocks, each with size 16 — 64 MB size. The master node,
aka the NameNode, distributes these blocks across the cluster.

The master starts copies of the program across the cluster.

The master picks up idle workers and assigns a map task or a reduce task.

A slave/worker node that is assigned a map task reads the contents of its assigned input
split, parses the <key, value> pairs out of the input data, and calls the map function on
each <key, value> pair. The set of intermediate key value pairs produced by the map
function are buffered in the worker’s memory.

The buffered pairs are written periodically to local disk, which is partitioned into regions
by a partitioning function. Upon completion of the write operations, the worker node
notifies back the master of these locations which updates its file system namespace and
would then notifies a reducer of these locations.
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7. When a reducer receives the location of the intermediate/key value pairs produced by
map workers, it does a remote procedure call to these map workers, reads the
intermediate data, and sorts it by the intermediate keys.

8. For each unique intermediate key in the sorted set, the reducer calls the reduce function
and appends the output of the reduce function to a final output file.

9. When all the map and reduce tasks are complete control is returned back to the user code.

User
Program

(1) fork .- .;|;.|',,E,h "§1) fork

S

2 assign
L assign reduce .
map

output

i3} remose read file O

split 2 —'&(—_}{\ (@ local write  [']
WIOrKET

split

(A} write

split 1

split 4
Input Map Intermediate files Reduce QOutput
files phase (on local disks) phase files

Figure 6 MapReduce Execution Steps [23]

The MapReduce model is designed to run on a cluster of hundreds and thousands of worker
nodes controlled by a single master node. The master node maintains a data structure that holds
the state of each map and reduce task — which could be in idle, in—progress or completed state.

The MapReduce model also has an inherent support to gracefully handle worker node crashes.
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The master nodes periodically listens for a workers’ heartbeat and if no response is received, the
master node marks the worker node as dead and all map and reduce tasks that are in progress in
the assigned node are set to idle states and become candidates for task re—scheduling. The model
can also handle a master node crash by periodically writing checkpoints so that when it does fail

a new copy can be started from the most recent check—pointed stated.
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CHAPTER 4

RDF STORES
A number of articles and conference presentations that propose and evaluate different RDF
storage managers have been published during the past five years. This chapter presents a review
of some these papers that are relevant to this thesis.
4.1 Introduction
RDF stores, also known as triple stores, are data management systems that are used to store and
query RDF data. RDF stores also provide an interface, called a SPARQL end—point, which can
be used to submit SPARQL queries. Some triple stores, like Sesame, also provide APIs that can
programmers can use to submit SPARQL queries and get results.
RDF storage managers can be broadly classified into three categories:

1. Native triple stores — are stores that are built from scratch to store RDF triples. Native
triple stores make a direct use of the RDF data model — a labeled directed graph — to store
and access RDF data. These triple stores usually store RDF data in a custom binary
format. Examples are 4store [25], Jena TDB [26], and Sesame [27].

2. Relational-backed triple stores — are triple stores that are built on top of traditional
RDBMs. Because RDBMs have a number of well-advanced features that have developed
over the years, triple stores based RDBMs benefit from these features. Examples are
3store [28] and Jena SDB [26].

3. NoSQL triple stores — are triple stores based on NoSQL systems and by far are the largest
triple stores in number. This group includes triples stores based on NoSQL systems as
well as systems based on the Hadoop ecosystem. Examples include: Hive+HBase [29],
CumulusRDF, Couchbase, and many more. Because NoSQL systems include a wide
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range of systems, including graph databases, some researches have classified
AllegroGraph [30], a graph database, both as a native as well a NoSQL store.
Despite the large number of RDF triple stores that have been developed and proposed by
researchers, very few attempts have been made to systematically parameterize triple stores based
on specific implementation parameters. The next section presents a review of three such papers.
4.2  Parameterized Classification of RDF Stores
Kiyoshi Nitaa and Iztok Savnik [32] proposed a parameterized view of RDF stores that is based
on “single” and “multi—process” attribute sets. In this view, an RDF Store Manager, RSM, can
be parameterized as function of single—process, S, and multi—process attributes, M:
RSM =1 (S, M) = (<Ts, Is, Qs, Js, Cs, Ds, Fs>, <Dm, Qm, Sm, Am>)
The single—process attributes, S, this paper identifies are:
e Ts — Is the type of triple table structure the store uses — vertical, property-table, or
horizontal.
e Is—is the index structure type — 6-independent, GSPO-OGPS, O matrix.
e Qs - Indicates whether a SPARQL end—point is implemented.
e Ss — Indicates the translation method type of IRI and literal strings — URI, literal, long, or
none.
e Js — the join optimization method — RDBMS-based, column-store based, conventional
ordering, pruning, or none.
e Cs —the cache type used — materialized—path—index, reified—statement, or none.
e Ds — whether the store relies on traditional RDBMS or uses its own custom database
engine, and
e Fs—the type of inference type it supports — TBOX, ABox or none.
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While multi—process attributes, M, are:

e Dm — data distribution method type — hash, data—source or none.

e Qm — query process distribution method type — data-parallel, data—replication, or none.

e Sm — stream process type — pipeline or none.

e Am —resource-sharing architecture — memory, disk, or nothing.
Based on the above parameterized classification, 4store has the characteristics: Ts = vertical, Qs
= SPARQL, Ss = string id, Js = conventional ordering, Ds = RDB, Dm = hash, Qm = data
parallel, Am = nothing, while Hadoop/HBase has Ts = horizontal, Ds = custom, Qm = data
parallel, Am = memory.
RDF triple stores, specifically relational-backed triple stores, can also be characterized based on
how they shred RDF data, triples, into relational tables. Y. Theoharis, V. Christophides, and G.
Karvounarakis, in their 2005 paper [32] identify three shredding mechanisms: schema—oblivious,
schema—aware and hybrid. In the schema—oblivious shredding, a single table is used to store
RDF data as rows of triples of the form subject-predicate-object. In a schema-aware shredding,
each RDF property or class is represented as a table. In hybrid shredding, on the other hand, one
table is created per an RDF meta-class by distinguishing the range type of properties.
Some researchers [33] have also characterized and classified RDF stores as in—memory, native,
and non-native-non-memory stores based on the implementation architecture they use.
According to these researchers, in-memory RDF stores are useful to benchmark inference and
reasoning operations by loading data from remote sites and storing in memory but are not useful
to process large sets of triples. The native stores provide persistent storage with own database
implementation that is modelled after the RDF model while the non—native-non—-memory stores
are setup to run on top of traditional databases like MySQL, PostsgreSQL, Oracle, etc.
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4.3  Native RDF Stores

Native RDF stores provide a direct implementation of the RDF data model described in chapter 2
where the subject and object of a triple are represented as nodes, and the predicate as a labeled
edge from the subject to the object — resulting in a network of labeled direct graph (DG). RDF
data that has millions of triples and association among the triples would end up as a directed
graph with hundreds of millions of interconnections. 4store and Jena TDB are two examples of
native triple stores:

e 4store — is a native RDF store implemented in C and that, according to its designers, was
designed to handle loads of 1 billion triples and above. 4store can run on a single
machine or in a cluster of 32 machines (nodes). Garlik, the company behind 4store,
reported that they were able to load and process more than 15 billion triples?. 4store, like
other native stores, has a SPARQL end—point [25].

e Jena TDB - is another native RDF store from the Apache Jena project. Jena TDB comes
with a full set of APIs that are used to store and query RDF data. Jena TDB has a
SPARQL end—point and supports a number of extensions — e.g. property functions,
aggregates, and arbitrary length property paths. Jena TDB is implemented in Java and
employs a memory mapped I/O and a custom implementation of B+ Trees. The major
limitation of Jena TDB is that it runs only on a single machine. However, it was reported
that TDB was able to process 1.7 billion triples on a single machine with 64-bit hardware

within 36 hours —i.e. 12k triples/second [26].

Yin comparison, DBpedia 580 million triples (for English edition of Wikipedia)
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4.4  Relational-based RDF Stores

Relational RDF stores use RDBMs to store triples. This section presents two such RDF stores —
Apache Jena SDB and Sesame. The main characteristics that distinguish relational-backed RDF
stores from native RDF is the presence of a mapping layer that maps RDF graphs into relational
tables and SPARQL queries into SQL queries.

Apache Jena SDB is designed to run on top of a number of relational database management
systems — MySQL, PostgeSQL, Oracle, BerkeleyDB, to name a few. Jena SDB, just like Jena
TDB, was designed to run on a single machine. Application store RDF triples in Jena SDB using
a JDBC connector. Jena SDB also requires that only single Java Virtual Machine should be
involved in the triple writing, else data corruption may result. Jena SDB supports a number of
RDF parsers and 1/0 modules for N3, N-triples and XML/RDF serialization formats [26].

Jena SDB also supports a simple triple store as well as three different kinds of property tables — a
single—valued property table, a multi—valued property table and a property—class table. Each of
these will be reviewed in detail in the next chapter.

4.5 NoSQL RDF Stores

NoSQL, Not Only SQL, stores model their data storage and retrieval in ways other than the
traditional relational database management systems. NoSQL database are characterized by being
non-relational, distributed, open—source, schema—free, horizontally scalable and able to handle
huge amount of data [34]. NoSQL databases do not support relational ACID properties —
Atomicity, Consistency, Isolation, and Durability. Instead, they support the BASE guarantee —
Basic Availability, Soft—state and Eventual consistency.

The BASE guarantee is based on the CAP theorem formulated in 2001 by Eric Brewer. The
theorem states that a distributed computer system cannot guarantee consistency, availability and
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partition tolerance at the same time. A BASE guarantee gives up on consistency and relies on an
eventual consistency [35]. Base guarantee offers:

e Basic availability — system is guaranteed for availability.

e Soft state — indicates that the state of the system may change over time even without

input because of the eventual consistency property.
e Eventual consistency — indicates that the system will become consistent over time,
and not after every transaction.

NoSQL databases, and therefore NoSQL RDF stores, are classified based on their data storage
model. The primary classifications are: Key-Value stores, Document stores, Column family
stores, and Graph databases.
Key-Value stores — are the simplest NoSQL databases where every single record in the database
is stored as an attribute name, key, and its associated value. Key-value stores use the map or
dictionary data model where data is accessed and addressed via the key. Because the values
stored in key-value stores are independent of each other, the relationship among them has to be
established at an application level - i.e. key-value stores are schema-free. In key-value stores new
entries can be added dynamically without affecting the system’s availability. Amazon
DynamoDB and Apache Cassandra are key-value stores. CumulusRDF [36], based on Apache
Cassandra, is a key-value RDF store.
Document stores — are NoSQL stores that are similar to key-value stores but extend the
functionality of key-value stores. The main notion in document stores is a document - which is a
collection of data items (or values) that are organized and can be treated as a single item. Unlike
key-value stores where values are opaque to the system, values in document stores have an open
structure and queries can be written against them. The key-value pairs in document stores are
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usually encapsulated in JSON or a JSON like structure that allows for nested representation of
key-value pairs. NoSQL document stores, just like key-value stores, are schema free. MongoDB
and CouchDB are the most popular document stores. Both CouchDB and MongoDB have been
used to store and query RDF data.
Wide-column stores — aka column-family stores or just column stores — store data as sections of
columns-of-data rather than as rows-of-data. The basic unit in wide-column stores is a column
and consists of a key-value pair. Some wide-column stores, for example Google Big Table [37],
also add a timestamp attribute to a column to indicate when the data is added to the database or
when it was last updated.

Key

Value

Timestamp

Figure 7 A Column in Wide-column Store

Unlike relational tables, where the number and type of columns are defined prior to the insertion
of rows, a column in a wide-column store can be dynamically created as needed. A row in
standard column-family store consists of a key, which is unique, and a collection of columns.
There are two types of column-family stores — standard column-family and super column-family.
Examples of column stores include BigTable [37], HBase [38], and HyperTable [38]. RDF stores
based on column stores have also been developed.

Graph databases — graph databases are another variant of NoSQL databases. According to [40]

a graph database is “an online database system that exposes a graph data model and supports
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traditional CRUD methods - Create, Read, Update, and Delete”. Graph databases are mostly
built for use with OLTP — Online Transaction Processing — systems. RDF data, being a labeled
directed graph, can be suitably represented and stored in graph databases. Examples of graph
databases include Neo4j, AllegroGraph, and OpenLink Viruoso. AllegroGraph, according to its
website, is “a modern, high-performance, persistence graph databases”. AllegroGraph is
designed to store RDF data and fully compliant with SPARQL 1.0. Because AllegroGraph has
been designed from start to store RDF data, some researchers have classified it as a native triple

store.
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CHAPTER 5

STORING RDF DATA IN HDFS
The RDF data model, which is based on a tuple of subject, predicate and object values, is a
flexible way of representing information about resources and relationships between resources.
This chapter presents a review of how RDF data, triples, can be stored using facilities provided
by the Hadoop ecosystem, most notably Hive.
5.1 RDF and HDFS
RDF triples can be stored and accessed in HDFS by creating a relational layer on top of HDFS
that maps triples into relational schemas. Hive, for example, allows storing data in HDFS based
on a relational schema that defined by the user.
Though there are some discrepancies among researchers regarding the naming and classification
of relational schemas for RDF data, most researchers classify these schemas in to three groups
[40, 41, 42, 43]:

e Triple table — the entire RDF data is stored as a single table with three columns — subject,
predicate and object. Each triple is stored as a row in this table.

e Property-table — triples are grouped together by predicate name. In this scheme, all triples
with the same predicate are stored in a separate table. Some researchers call property
tables vertical partitioning.

e Cluster-property tables — in this scheme triples are grouped into classes based on
correlation and occurrence of predicates. A triple is stored in the table based on the

predicate class it belongs to.
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5.2  Triple-store

The triple-store schema, aka triple table, is the simplest and straightforward to implement.
Though the triple-store schema may be suitable for very simple queries, running complex queries
will require many self-joins. In a big RDF data context, a triple table may hold hundreds of
millions of records and self-joining such table would have a dramatic impact on performance.

Table 1, from Chapter 2, can be represented using triple table as:

Subject Predicate Object

Einstein wasBorn 1879

Einstein developed Special Relativity
Einstein developed General Relativity
Einstein diedIn 1955

Newton wasBorn 1642

Galileo diedIn 1642

General Relativity | dealsWith Gravity

Newton discoveredLawsOf | Gravity

Table 2 Triple Table Representation of RDF Graph

5.3  Property Table

The property table schema can have many variants. In one variant, called vertical partitioning,
each predicate is separated out into its own table having two columns — subject and object.
Subjects that have the same predicate are stored in the same table. For the RDF data from

Chapter 2, a vertical partitioning scheme results in five tables:
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WasBorn:

Developed:

DiedlIn:

DealsWith:

Subject
Einstein

Newton

Subject
Einstein

Einstein

Subject
Einstein

Galileo

Subject

Object
1879

1642

Object
Special Relativity

General Relativity

Object
1955

1642

Object

General Relativity | Gravity
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DiscoveredLawsOf:
Subject Object

Newton Gravity

Figure 8 Vertical Representation of RDF Triples

Another variant of the property table, which is the opposite extreme of the vertical partitioning,
lays out all the predicates in the RDF data set as columns of a table. The resulting structure is one
table that a subject column and as many predicate columns as there are in the dataset. This

structure is sometimes called horizontal. The horizontal representation? for the RDF data from

Chapter 2 is:
Subject WasBorn Developed DiedIn DealsWith Dis.LawsOf
Einstein 1879 Special R. 1955 Null Null
Einstein 1879 General R. 1955 Null Null
Newton 1642 Null Null Null Gravity
Galileo Null Null 1642 Null Null

Figure 9 Horizontal Representation of RDF Triples

As can be observed from the above table, the horizontal representation has many null values for

undefined subject-predicate values.

2 There are discrepancies among researchers regarding the naming [40, 41].
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5.4  Clustered-property Tables

In the clustered-property table representation®, if many subjects all have the same set of
predicates, then a table with these predicates as columns may be created. Considering the
example from the previous sections, the predicates WasBorn and DiedIn are shared by two

subjects and hence can be joined together as a single table.

Subject WasBorn DiedIn
Einstein 1879 1879
Newton 1642 Null
Galileo Null 1642

Figure 10 Clustered-property Table Representation of RDF Triples

Predicates that occur less in the RDF data set will be represented using their own tables, just like

the vertical partitioning scheme.

Developed:
Subject Predicate
Einstein Special Relativity
Einstein General Relativity

3 Some researchers call clustered-property representation property-class representation.
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DealsWith:
Subject Predicate

General Relativity | Gravity

DiscoveredLawsOf:

Subject Predicate

Newton Gravity

Figure 11 Clustered-property Table Representation (contd.)
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CHAPTER 6
SPARQL BENCHMARKS

RDF benchmarks are models that test the scalability, performance, and efficiency of RDF stores
in a standard and systematic way. These models define a finite set of carefully designed queries
that vary in their selectivity, output size, and depth — i.e. on the number of nodes the query visits
in the RDF graph. The scalability, performance and efficiency of an RDF store are measured by
running these benchmark queries on a SPARQL end—point. Each of these models also provides
utility application that can be used to generate RDF data. This chapter reviews four such
benchmarks — DBpedia, SP2Bench, BSBM, and LUBM. The chapter concludes by reviewing
some of the criticisms that have been leveled against the benchmarks.

6.1 DBpedia

The DBpedia SPARQL benchmark is a generic SPARQL benchmark creation methodology that
is based on query—log mining, clustering and SPARQL feature analysis. The methodology has
been applied on different RDF data sizes from the DBpedia dataset (RDF dataset derived from
Wikipedia). In order to construct benchmark queries that are prototypical to real queries, the
creators performed query analysis and clustering on queries sent to DBpedia SPARQL end—point

— http://dbpedia.org/spargl. Based on the highest ranked query clusters they derived a set of 25

SPARQL query templates to which parameterization is applied to generate the actual benchmark
queries [44, 45].

The creators of the benchmark ran the benchmark queries against the Virtuoso, Sesame, Jena—
TDB, and Big OWLIM triple stores and found out that the performance of these triples stores is
far less homogenous than what other benchmarks suggested. Furthermore, they argue that their
benchmark is a pure benchmark and is more suitable than other benchmarks, like LUBM, BSBM
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and SP2B, to evaluate the performance of triple stores because the underlying data structure
these benchmarks use, they state, are relational in nature and are most suitable to benchmark
relationally—backed RDF stores.

DBpedia SPARQL benchmark project is currently deprecated and replaced by project Mosquito,

https://github.com/AKSW/mosquito, which is a program and an APl framework that can be used

to benchmark different types of SPARQL end—points.

6.2 LUBM

The Lehigh University Benchmark (LUBM) is a benchmark that is created to facilitate the
evaluation of RDF data in a standard and systematic way. The benchmark is based on ontology
for the university domain and can generate synthetic data of arbitrary size and provides fourteen
queries that represent a variety of RDF graph properties and several performance metrics [46,
47].

The LUBM benchmark, according to its creators, has been designed with the following goals:

1. Support for extensional, rather than intentional queries — the creators of the benchmark
conjecture that the majority of semantic web applications will use queries about the data
instances, extensional queries, rather than queries about classes and properties,
intentional queries. The benchmark, therefore, focuses on extensional queries.

2. Support for data scalability — the LUBM creators predict that, in the long run, data will
outnumber ontologies and the benchmark therefore has to be scalable.

3. Support for a moderate size and complex ontology — the benchmarks tries to strike a
balance between queries that manipulate large and complex ontologies versus queries that

manipulate ontologies based on OWL Lite.
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LUBM provides fourteen benchmark queries that vary in their input size, selectivity, complexity,
class and property hierarchy, as well as the degree of logical inference that is required to answer
the query.

LUBM measures input size as the proportion of the class instances involved in a query to the
total number of class instances in the benchmark data. Input size is considered large if the
proportion is greater than 5%. Selectivity, on the other hand, measures the ratio of the number
class instances involved in a query to the number of class instances that satisfy the query. A
query is said to have high complexity if this proportion is less than 10%. The creators of the
benchmark argue that query complexity can be implicitly measured by the number of classes and
properties that are involved in the query as well as by the depth and width of the class hierarchies
involved in the query. The fourteen benchmark queries LUBM uses have different levels of input
size, selectivity and complexity [47].

The dataset generated by LUBM consists of fifteen to twenty five departments per university,
each described in a separate OWL file. The LUBM data generator generates a data set based on
the number of universities users specify.

LUBM is used in this thesis to validate the SPARQL to SQL compiler, RQ2SQL, component of
the Presto—RDF implementation this thesis proposes to analyze big RDF data. Because Presto—
RDF does not support RDFS inference, LUBM was not chosen as a benchmark in this thesis.

6.3 BSBM

The Berlin SPARQL Benchmark (BSBM), proposed in 2008, is another benchmark that can
measure the performance of native RDF stores against systems that convert SPARQL to SQL,

also known as SPARQL-to-SQL rewriters [48, 49]. Examples are D2R Server and Virtuoso
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RDF Views. Presto—RDF, the architecture this thesis proposes, can be considered in this group
because it translates SPARQL to SQL, i.e. it is a SPARQL-to—SQL re—writer architecture.
The benchmark is based on an e-commerce use case in which different vendors can offer
different sets of products and consumers can write reviews on these products. The benchmark
has an abstract data model based on the following classes: Product, ProductType,
ProductFeature, Producer, Vendor, Offer, Review, and Person. Based on these classes and a set
of data production rules the benchmark can generate RDF data of different sizes. The benchmark
also offers a relational representation of the RDF data.
The BSBM data generator works based on the number of products that a user specifies. Each
product is described by rdfs:label and rdfs:comment and can have 3 to 5 textual properties whose
value can consist of 5 to 15 words that are randomly chosen from a dictionary. A product also
has 3 to 5 numeric properties whose values range from 1 to 2000, with a normal distribution.
Each product also has a type that is part of a type hierarchy where the depth and width of the
subsumption hierarchy depends on a scaling factor that users can specify.
The BSBM benchmark queries are 25 in number and, just like the other benchmarks reviewed in
this thesis, satisfy two principles for the design of benchmark queries, aka, query mixes [48]:

1. Benchmark queries should be designed to test specific features of the query language,

SPARQL, or the data management, RDF.

2. Benchmark queries should be based on real world use cases.
BSBM places much more emphasis on the second criteria and its 25 benchmark queries try to
simulate a realistic search and navigation pattern by an e—commerce user looking for a product.
The creators of the benchmark tested the 25 queries against four RDF triple stores — Sesame,
Virtuoso, Jena TDB, and Jena SDB — and two SPARQL-to—-SQL rewriters — D2R Server and
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Virtuoso RDF Views. Their results indicate that Virtuoso triple store has the best overall
performance against the other three RDF triple stores while Virtuoso RDF Views outperformed
D2R Server.

6.4  SP2Bench

SP?Bench, proposed in 2008, is another SPARQL benchmark that is designed to test SPARQL
queries over RDF triples stores as well as SPARQL-to-SQL re—write systems. SP?Bench
focuses on how well an RDF store supports the different SPARQL operators and their
combination — known as operator constellations [50, 51]. This is different from BSBM, which
places more emphasis on creating benchmark queries that are closer to the real world. And,
unlike LUBM, SP2Bench presents a set of benchmark queries that are based on the UNION and
OPTIONAL operators that are central to SPARQL.

SP?Bench data model is based on the DBLP, http://www.informatik.uni-trier.de/~ley/db/, a
computer science bibliography created in the 1980s and currently featuring more than 2.3 million
articles. The SP?Bench data generator can generate any number of triples based on what a user
specifies. For the experiments conducted in this thesis, for example, triples of size 10, 20, and 30
million were generated. The SP?Bench data model defines classes such as: Person, Document,
Journal, Article, Book, PhD Thesis, etc.

SP?Bench benchmark queries are 12 in number and are designed to evaluate an RDF storage
scheme by imposing various data accesses — for example, through a triple subject, predicate or
object. Unlike BSBM and LUBM, which focus on common SPARQL patterns, SP?Bench also
provides queries (e.g. Query 9 (Q9) and 10 (Q10)) that test uncommon access patterns. Q9, for

example, returns incoming and outgoing properties of Persons.
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The creators of the SP?Bench tested their benchmark queries on Jena TDB, Redland RDF
Processor, Sesame and Virtuoso and were able to discover that, despite claims that a vertically
partitioned RDF store is superior to a simple triple store, some queries performed well on simple
triple store than a vertically partitioned store. This thesis also verifies this observation.
6.5  Rationale for Choosing SP°Bench
Though there was a plan to conduct the experiments of this thesis based on the four benchmarks
discussed in the previous section, the time and money involved in running the benchmark queries
over a cluster of machines proved difficult. The author of this thesis also noted, based on the
literature review he conducted, that no single benchmark is good enough to characterize the
performance of RDF stores. Instead, a combination of them taken in a bottom-up approach may
yield a better benchmarking. More specifically, the author proposes the following benchmarking
guideline that can be used while developing and benchmarking an RDF store:

SP?Bench — BSBM — LUBM — DBpedia
Start with SP?Bench, which evaluates an RDF store at low-level, i.e. at SPARQL operator
constellations level, and progress toward DBpedia — which is a higher level measure that
benchmarks on real data with real queries. Starting with SP?Bench, the author of this thesis
believes, would help optimize RDF store designers optimize their SPARQL end-point. The
guideline can be also be viewed from the perspective of an RDF store designer and user. An
RDF store user, while evaluating an RDF store, may rely on the high—level benchmarks (e.g.
DBpedia) and ignore SP?Bench. On the other hand, an RDF store designer can’t do without
SP2?Bench as it focuses on low-level implementation and how efficiently an RDF implementation

implements the SPARQL operators.
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6.6  Benchmarking the Benchmarks

LUBM, BSBM, and SP?Bench benchmarks all offer applications that can be used to generate
RDF data set. Each generator provides its own command line interface that takes in different sets
of parameters.

The LUBM data set generator supports only the OWL format. BSBM can generate data sets in
n—triples, turtle, RDF/XML, TriG and MySQL dump. SP?Bench supports the n—triples format.
To evaluate the dataset generation performance, triples of size 10 million, 20 million, and 30
million were generated. The evaluation was conducted using the latest versions of the data set
generators — UBA 1.7 for LUBM?, version 3.1 for BSBM?®, and SP2B 1.0.1 for SP?Bench. The
data generators were run on a 16—core machine with 16GB RAM running Linux Mint 17
(Quiana).

The results of the evaluation show that both BSBM and SP?Bench have comparable dataset
generation performance while LUBM takes almost twice the amount of time to generate the
same number of triples. This could be due to the fact that LUBM generates multiple OWL files

which require many 1/O operations.

4 LuBM generates OWL files - LUBM(72), LUBM(144), LUBM(215) were used to generate ~ 10M, 20M, and
30M triples
>BSBM generates triples based on products - 28480 products correspond to 10 million triples.
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Figure 12 Performance Evaluation of RDF Dataset Generation

In terms of the size of the dataset that is generated, LUBM has the smallest size of dataset per the
number of triples. For 20 million triples, for example, LUBM generates a total of 1.6 GB files
while SP?Bench generates a file size of 2.3 GB. BSBM, on the other hand, generates a 5.2 GB

file - i.e. for 20 million triples.
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Figure 13 Size of Generated RDF Dataset

6.7  Critique of the Standard Benchmarks

A number of papers that evaluate different RDF stores using the SPARQL benchmarks discussed
in the previous sections have been published. However, only a single paper was found that
looked critically into how well the data sets generated by these benchmarks resembles real data,
from different sources, in its structure [52]. The paper argues that, though primitive RDF data
set metrics, such as number of subjects, predicates, objects, number of predicates per type, etc.
are useful, they offer no little insight into the structure of an RDF dataset. The authors
developed a mathematical formula, based on the primitive metrics, that evaluates the structured-
ness of an RDF dataset using a 0 — 1 scale where a zero represents a data set that is completely
unstructured while one denotes a data set that is well structured — e.g. relational data. The authors
evaluated DBpedia, LUBM, BSBM, SP?Bench and other benchmarks and found out that
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DBpedia is less structured, with a value of 0.025, and resembles real data. LUBM and BSBM
both have the highest value, 0.975, implying a high structure in their generated data set.

SP2Bench has a value 0.775.
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CHAPTER 7

PRESTO, HIVE, AND 4STORE
Presto—RDF, the big RDF query analyzer this thesis proposes, is based on Presto and uses a Hive
connector to get data that resides in HDFS. The thesis benchmarks Presto—RDF against Hive and
4store, a native RDF store. This chapter gives an overview of each of these systems. Presto—
RDF is discussed in the next chapter.
7.1  Facebook Presto
According to Facebook, “Presto is an open source distributed SQL query engine for running
interactive analytic queries against data sources of all sizes ranging from gigabytes to petabytes”.
Presto can query data that resides in different systems — Hive, Cassandra, relational databases as
well as other proprietary data sources (as long as its interface requirements are met). The
motivation behind the creation of Presto is the high latency BI tools have while visualize Tera
and Peta bytes of Facebook data. Currently Presto is deployed on Facebook running against
thousands of data stores that are distributed at different geographic locations as well as an
internal 300PB data warehouse.
7.2 Presto Architecture
Presto is a distributed SQL query engine that runs on a cluster of machines controlled by a single
coordinator with hundreds or thousands of worker nodes. Presto is optimized for ad—hoc analysis
and supports standard ANSI SQL, including complex queries, aggregation, joins, and window
function [53].
The simplified architecture of Presto is presented in the diagram below. The client sends SQL
query using the Presto command line interface to the coordinator that would then parse, analyze
and plan the query execution. The scheduler, component within the coordinator, connects
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together the execution pipeline and assigns and monitors work to worker nodes that are closer to
the data. The client gets data from the output stage, one of the worker nodes, which in turn pulls

data from the underlying stages.

Architecture

Data
Metadata API Location API

4+ A
' '

Parser/

Analyzer Planner — Scheduler

Figure 14 Presto Architecture [53]

7.3 Presto versus MapReduce

SQL queries executed by Hive are implemented using MapReduce where each query is
translated into more than one MapReduce tasks that executed over one after another. Each
MapReduce task reads intermediate inputs from disk and writes back intermediate results back to
disk and finally performs reduces tasks to give the result back to the user. Presto, on the other
hand, does not use MapReduce. Instead, it uses a query and execution engine with operators that
supports SQL semantics. Presto does all its processing in memory and pipelines its processes
across the cluster between stages. The creators believe this avoids unnecessary 10 operations and

reduces latency [53].
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Presto is also designed to run against different types of data sources using storage plugins, also
known as connectors. Presto relies on interfaces provided by these connectors. These interfaces
must provide, according to the Presto specification, a way to fetch metadata, get data locations
and access the underlying data. Hence, Presto can ran against any data source as long as the data
source provides a connector that can subscribe to the Presto interface. Multiple connectors can
also be dynamically installed which would enable Presto to work on many different data sources
at the same time. Presto also provides predefined connectors for Hive, Cassandra and TPC—H.
7.4 Apache Hive

Apache Hive is an open-source data warehouse solution for querying and analyzing large data
sets residing in Hadoop Distributed File System (HDFS). Hive provides a mechanism to define a
relational structure on top of HDFS and supports a SQL-like query language, called HiveQL,
which one can use to query data [54].

The Hive data model is organized into Tables, Partitions and Buckets:

e Tables — Hive tables are analogous to relational database tables. Each table in Hive is
mapped to a specific HDFS directory. A table in Hive stores its data as files inside its
directory.

e Partitions — Each table in Hive, which has its own directory in HDFS, can further
distribute its data inside subdirectories, called partitions.

e Buckets — Data residing in each partition of a Hive table can further be divided into
buckets where each bucket is a file that is stored inside a specific partition. The
partitioning of data into buckets is based on the hash of a column in the table.

Hive table columns can be defined with one of these types — integer, float, string, date, boolean,
array, and map. Hive also allows programmers to define their own column types.
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7.5  Apache Hive Architecture
The paper [55] describes the architecture of Hive as a system composed of six main components

— External Interfaces, Hive Thrift Server, MetaStore, Driver, Compiler, and Execution Engine.
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Figure 15 Apache Hive Architecture [55]

e The External Interfaces component provides a command line interface (CLI), a web Ul,
and application programming interfaces (APIs) that can be used to programmatically
connect to Hive, create tables and submit queries.

e Hive Thrift Server exposes a simple API that can be used to execute HiveQL statements.

e The metastore functions as a system catalog that stores the metadata about the tables that
are stored in Hive. The metadata is specified during table creation and is re-used every

time the table is referenced, in HiveQL. The metastore is Hive’s data warehouse.
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e The Driver component manages the life cycle of HiveQL statements during compilation,
optimization and execution. The driver is also responsible for submitting map—reduce
jobs from the DAG graph which is created by the compiler.

e The Compiler is invoked by the driver upon receiving HiveQL statements and is
responsible for translating the statements into a directed acyclic graph (DAG) of map—
reduce jobs.

e The Execution engine receives map-reduce jobs, from the driver, and executes it in
Hadoop.

Hive was created in Facebook before becoming an Apache project. At Facebook, the Hive
warehouse contains more than 700 TB of data and manages more than 5000 queries on daily
basis.

7.6  A4store

4store was developed at Garlik, www.garlik.com, by Steve Harris to support the company’s

semantic web application need. 4store is regarded as a native RDF store and has been used by
Garlik to store and analyze RDF data of over 15TB. 4store is written in ANSI C99 and was
designed to run on UNIX-like systems. According to its creator, 4store is optimized to run on
shared—-nothing clusters of up to 32 nodes linked with gigabit Ethernet.

Many research papers, including this thesis, have used 4store to benchmark native RDF stores

with non—native RDF stores.
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CHAPTER 8

PRESTO-RDF
This chapter proposes architecture, called Presto—RDF, which can be used to store and query big
RDF data using the Hadoop Distributed File System (HDFS) and Facebook Presto. It also
presents RDF-Loader, a component of the architecture, which is used to read, parse and store
RDF triples. The next chapter will cover RQ2SQL — a SPARQL to SQL compiler developed as
part of the architecture.
8.1  Architecture
Presto—RDF consists of the following components: a command line interface (CLI), a SPARQL
to SQL compiler (RQ2SQL), Facebook Presto, Hive Metastore, HDFS, and RDF-Loader. The
following diagram illustrates these components:

The

Semantic

Web

| RDF
Loader

SPAROQL . - . Hive F -
OQueries _.| CLI H RQ2SQL l_' Presto Metastors L””'I"‘“'

Hadoop

Figure 16 Presto-RDF Architecture

RDF data that extracted from the Semantic Web is parsed and loaded into HDFS using a

custom—made loader, RDF-loader, which will also store metadata information on Hive Thrift
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Server. When a user submits a SPARQL query over a command line interface, the query is
processed by a custom—made SPARQL to SQL converter, RQ2SQL, that translates the the
SPARQL query into SQL which would then be submitted to Facebook Presto. Presto, using its
Hive connector and Hive Thrift Server, runs the SQL against HDFS and returns the result back
to the CLI.
8.2 RDF-Loader
The purpose of the RDF-Loader is to load, parse and store RDF data in HDFS. RDF-Loader
implements four different RDF storage schemes and creates external Hive tables whose metadata
is stored in the Hive Thrift server.
Before the RDF-Loader can run, the raw RDF data to be first processed and loaded into HDFS
using this command:
hadoop fs —put file hdfs—dir

Once the raw RDF data is uploaded, RDF-Loader runs several MapReduce jobs and stores the
output back into HDFS. The structured of the data is defined by the schema that users can
specify.
In order for the RDF-Loader to run and process raw RDF, the following input parameters are
required:

e database — is the name of the database that will be created.

e target — is the type of RDF storage structure, i.e. the type of schema. There are four

options: triples, vertical, wide, and horizontal.

e expand — this option indicates if gnames are to be expanded®.

® The current implementation forces a true value for this option.
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e server — is the DNS name or IP address of the master node, NameNode, of the Hadoop
cluster.

e port —is the port number Hadoop listens to connections.

e input — is the path of the HDFS directory that holds the raw RDF data.

e output —is the path of the HDFS directory the processed RDF data will be stored into.

e format — defines the format of the output files as they are stored in HDFS. The current
version of the Hive meta—store supports five different formats: SEQUENCEFILE,
TEXTFILE, RCFILE, ORC, and AVRO. This thesis makes use of the TEXTFILE
format.

The following sections discuss four different RDF storage strategies implemented by the RDF-
Loader. The next chapter presents a performance report on each of these storage strategies.
8.3  Triple-store
In the triples store storage scheme, an RDF triple is stored as is — resulting in a table with three
columns: subject, predicate and object. If the raw RDF data has 30 million triples, the triple store
strategy will have one table with 30 million rows.
The map-reduce algorithm that transforms the raw RDF data into the triples table is quite
simple:
map (String key, String value)
Il key: RDF file name
I value: file contents
for each triple in value
emit_intermediate (subject + '\t ' + predicate, object)
reduce (String key, Iterator values)
Il key: subject and predicate delimited by tab
I values: list of object values
for each v in values
emit (subject + '\t ' + predicate + object);
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For an RDF dataset with n number of triples, the map algorithm has O(n) running time while the
reducer, which is called once for each unique subject, has O(s*0) running time, where s is the
number of unique subjects and o are the average number of object values per subject.
8.4  Wide-table
In the wide table RDF storage scheme, the raw RDF data is parsed and stored as a single table
having one column for subject values, and multiple predicate columns for object values. The
resulting table has the following schema:
WideTable (String subject, String predicate 1, String predicate 2, ..., String predicate n)
Because it is unlikely that a subject has all the predicates found in the data set, this storage
strategy will have a number of null values.
For an RDF data set that has unique object values for a subject—predicate pair, this scheme would
result in a table that has s number of rows, where s is the number of subjects in the data set. For
example, given the triple set:

subject_1 | predicate 1 object_1

subject 1 | predicate 1 object_3

subject 2 | predicate 2 object_3

The wide table representation for the triples would be:

subject predicate_1 predicate_2

subject 1 | object_1 object_3
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subject 2 | null object_3

If the dataset, however, contains multiple values for the same subject—predicate pair, the table
will have multiple rows for the same subject. For example, given the triple set:

subject 1 | predicate 1 object_1

subject 1 | predicate 1 object_2

subject 2 | predicate 2 object_3

The wide table representation for the triples would be:

subject predicate_1 predicate_2
subject 1 | object 1 null
subject_ 1 | object 2 null
subject 2 | null object_3

The algorithm for storing triples using the wide table storage scheme would get complicated if
the data set contains subjects with multiple predicates (which is natural) and multiple object

values for the same predicate. For example, given the triple set:

subject_1 | predicate 1 object_1
subject_1 | predicate_1 object 2

subject_1 | predicate 2 object_3
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subject 2 | predicate 2 object_4

The wide table representation for the triples would be:

subject predicate_1 predicate_2
subject_ 1 | object_1 null
subject_1 | object_2 null
subject 1 | null object_3
subject 2 | null object_4

The storage scheme, thus, forces new rows to be created for each unique subject—predicate pair.
The map-reduce algorithm for the wide table storage scheme, as implemented in this thesis, is:

map (String key, String value)
/I key: RDF file name
/I value: file contents
for each triple in value
emit_intermediate (<subject, predicate>, <predicate, object>)

reduce (String key, Iterator values)
Il key: a <subject, predicate> pair
I values: list of <predicate, object> pairs
String subject = key.getSubject();
String[] row = new String[1 + num_unique_predicates];
inti=0
for each v in values
row[i] = v.getObject();
i++;
emit (subject, row);

8.5 Horizontal-store Scheme

The horizontal storage scheme is similar to the wide table storage scheme in terms of the schema

of the table. However, unlike the wide—table scheme, it optimizes the number of rows stored for
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subjects that have multiple object values for the same predicate. Given the example presented in

the previous section:

subject_1 predicate_1 object_1
subject_1 predicate_1 object_2
subject_1 predicate_2 object_3
subject_2 predicate_2 object_4

The horizontal storage scheme stores the triples as:

subject predicate_1 predicate_2
subject 1 object_1 object_3
subject 1 object_2 null
subject_2 null object_4

In this scheme, it is not necessary to create new rows for each unique subject—predicate pair.
Instead, rows that are already created for the same subject, but for a different predicate will be
used.

7.6 Vertical-store Scheme

In the vertical storage scheme implemented in this thesis, the raw RDF data is partitioned into
different tables based on the predicate values of the triples in the data with each table having two
columns — the subject and object values of the triple. Thus, if the raw RDF data has 30 million
triples that have 20 unique predicates, the vertical storage scheme will create 20 tables and stores

the subject and object values of triples that share the same predicate in the same table.
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The map—reduce algorithm works with predicate as a key value and a pair of subject and object

values as value:

map (String key, String value)
Il key: RDF file name
I/ value: file contents
for each triple in value
emit_intermediate (predicate, <subject, object>);

reduce (String key, Iterator values)

Il key: predicate
Il values: list of <subject, predicate> pairs
String table = key.replace_unwanted('_");
MultipleOutputs<String, String> mos;
for each v in values

/[ create a directory table

I/ write the subject, values inside the directory
mos.write (v.getFirst(), v.getSecond(), table);

Because predicate values are URIs that contain non-alpha numeric characters, e.g.

http://www.w3.0rg/1999/02/22—rdf-syntax—ns#, which cannot be used in naming directories, the

reducer has to replace these characters with some other character, for example the underscore
character, http__ www_w3_org_1999 02 22 rdf syntax_ns_, and creates the directory (which
is considered as a table for the Hive Metastore).

In the vertical storage scheme, for a raw RDF data that contains n number of triples, the mapper
runs at O(n) while the reducer runs at O(p*x) where p and s are the number of unique predicates
and subjects in the data set, respectively. In the worst case scenario, where there are as many
unique predicates and subjects, the number of triples, the map-reduce algorithm for the vertical

storage scheme runs at O (n?).
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CHAPTER 9
RQ2SQL - SPARQL TO SQL COMPILER
This chapter presents a review of basic SPARQL graph patterns and RQ2SQL — a SPARQL to
SQL mini-compiler that is developed as part of Presto—RDF. RQ2SQL (RDF Query to SQL)
converts SPARQL queries into SQL statements that can be run on Presto and Hive. RQ2SQL is
implemented in Flex and Bison using C++11.
9.1 SPARQL Graph Patterns
SPARQL query processing is based on graph pattern matching. Complex graph patterns can be
constructed by combining few basic graph pattern techniques. The W3C classifies SPARQL
graph pattern matching into five smaller patterns [14]: Basic Graph Pattern, Group Graph
Pattern, Optional Graph Pattern, Alternate Graph Pattern and Named Graph Pattern.
= Basic graph patterns — are set of triple patterns where the pattern matching is defined in

terms of joining the results from individual triples. A single graph pattern is composed of

a sequence of triples that may optionally be interrupted by filter expressions. The below

example is a basic graph pattern.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?age

WHERE {

?x foaf:name ?name .

?x foaf:age ?age .

¥
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e RQ2SQL translates the above SPARQL into the SQL:

SELECT TO0.object,
T1.object
FROM http__ xmlns_com_foaf 0_1 name TO
JOIN http__ xmlIns_com_foaf 0_1 age T1 ON (T1.subject = TO.subject)

= Group graph pattern — a group graph pattern is specified by delimiting it with braces. The
below example specifies one graph pattern with two basic graph patterns.
PREFIX foaf: <http://xmlIns.com/foaf/0.1/>
SELECT ?name ?age
WHERE {
{ ?x foaf:name ?name . }

{ ?x foaf:age ?age . }

¥

The RQ2SQL translation, for the vertical store, is the same as the previous:

SELECT TO0.object,
T1.object
FROM http__ xmlns_com_foaf 0_1 name TO
JOIN http_ xmlIns_com_foaf 0_1 age T1 ON (T1.subject = TO.subject)

= Optional graph pattern — optional graph patterns are specified using the OPTIONAL
keyword. The semantics of the optional graph pattern matching is that it either adds
additional binding to the solution or would leave it unchanged.
Given the RDF data:

@prefix foaf:  <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.0rg/1999/02/22—rdf-syntax—ns#> .

7 The translation given here is for the vertical store
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_:a rdf:type foaf:Person .

_:a foaf:name "Michael™ .

_:a foaf:email <mailto:michael@example.com> .

_:a foaf:email <mailto:michael@hahusofware.com> .

_:b rdf:type foaf:Person .
_:b foaf:name "Mulugeta™ .

And a SPARQL optional graph pattern query:

PREFIX foaf: <http://xmlIns.com/foaf/0.1/>
SELECT ?name ?email
WHERE {
?x foaf:name ?name.
OPTIONAL {
?x foaf:email ?email
}

Would give the result:

name email

“Michael” <mailto:michael@example.com>
“Michael” <mailto:michael@hahusoftware.com>
“Mulugeta”

The RQ2SQL translation, for the vertical store, is the same as the previous:

SELECT TO0.0bject,
T1.0bject
FROM http___ xmlIns_com_foaf 0 1 name TO

LEFT JOIN http___ xmlIns_com_foaf 0_1 email T1 ON (T1.subject =
TO.subject)

Constraints can also be applied to optional graph patterns.
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= Alternate graph Pattern — are constructed by specifying the keyword UNION between
two graph patterns.

= Named graph patterns — are constructed by specifying a FROM NAMED IRI where each
IRI is used to provide one named graph in the RDF dataset. Using same IRI in two or

more NAMED clauses would result in one named graph.

# Graph: http://example.org/bob
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Mulugeta" .
_:a foaf:email <mailto:mulugeta@hahusoftware.com> .

# Graph: http://example.org/alice
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Michael" .

_:a foaf:email <mailto:michael@example.com> .

FROM NAMED <http://example.org/michael>
FROM NAMED <http://example.org/mulugeta>

RQ2SQL does not support Named graph patterns.
9.2  SPARQL Solution Sequences and Modifiers
The results returned from a SPARQL query are unordered collection of single or composite
values that, according the W3C, can be regarded as solution sequences with no specific order.
SPARQL defines six solution modifiers: order, projection, distinct, reduced, offset and limit.
= Order modifier — is specified by the ORDER BY clause and forms the order of a
solution sequence. Ordering can be qualified as ASC for ascending or DESC for

descending.
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Projection modifier — is specified by listing a subset of variables defined in the pattern-
matching clause.
Distinct modifier — is specified by the DISTINCT keyword and filters out duplicates

from the solution sequence.

PREFIX foaf: <http://xmins.com/foaf/0.1/>
SELECT DISTINCT ?name WHERE { ?x foaf:name ?name }

RQ2SQL translation:

SELECT DISTINCT TO0.object
FROM http_ xmlns_com_foaf 0_1 name TO

Reduced modifier — unlike the distinct modifiers which ensures that duplicate solutions
are eliminated from the solution sequence, the reduced modifier, specified by the
REDUCED keyword, permits them to be eliminated. The result set of a solution sequence
with a reduced modifier is at least one and at most the cardinality of the solution
sequence without the distinct and reduce modifiers.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT REDUCED ?name WHERE {
?x foaf:name ?name

}
RQ2SQL does not support the REDUCED keyword.
Offset modifier — just like SQL, the offset modifier, specified by the OFFSET keyword,
returns results of the solution sequence starting at the specified offset value. Offset value
of 0 has no effect.

PREFIX foaf: <http://xmIns.com/foaf/0.1/>

SELECT ?name

WHERE {
?x foaf:name ?name
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}
ORDER BY ?name

LIMIT 5
OFFSET 10

RQ2SQL translation:
SELECT TOP 5 T0.object

FROM http__ xmlns_com_foaf 0 _1 name TO
ORDER BY http_ xmlIns_com_foaf 0_1 name

Both Presto and Hive do not support the OFFSET keyword.
Limit modifier — just like SQL, the LIMIT modifier puts an upper bound to the number
of solution sequences returned. A limit value of 0 would return no results. A negative
limit value is not valid.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name

WHERE {

?x foaf:name ?name

}

LIMIT 20
RQ2SQL translation:

SELECT TOP 20 TO.object
FROM http__ xmlns_com_foaf 0_1 name TO

The ASK query modifier — SPARQL queries specified using the ASK form test whether
or not a SPARQL query has a solution.
Given the following triples:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name  "Michael" .

_:a foaf:homepage <http://work.example.org/michael/> .

_:b foaf:name  "Mulugeta” .
_:b foaf:mbox  <mailto:mulugeta@hahusoftware.com> .
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Running the SPARQL query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
ASK { ?x foaf:name "Michael" }

Returns the value: yes.

RQ2SQL does not support the ASK query modifier.

9.3 RQ2SQL
RQ2SQL is a mini SPARQL to SQL compiler built using Flex — a lexical analyzer creator — and
Bison — a parser generator creator. RQ2SQL supports basic SPARQL queries including
OPTIONALS, FILTERS as well as ORDER BY, DISTINCT, projection and LIMIT modifiers.
However, it does not support UNION, ASK, named graph patterns as well as group graph
patterns. RQ2SQL generates SQL queries for the four different RDF storage schemas explained
in chapter 7 — triple, wide, horizontal, and vertical.
Translating LUBM queries to SQL
RQ2SQL was tested for correctness by compiling the 14 LUBM benchmark queries against
Presto and then comparing the result with the output generated after running same queries on
4store. This section presents selected queries from LUBM and their RQ2SQL translation for the
vertical storage scheme.
« Q1

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?x WHERE {

?x rdf:type ub:GraduateStudent.
?x ub:takesCourse <http://www.Department0.University0.edu/GraduateCourse0>.

¥
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Graph representation:

queryl

takesCourse rdf:type

Univ 0 Course 0 GraduateStudent

Figure 17 LUBM Query 1 [47]

RQ2SQL translation — for the vertical storage scheme:

SELECT T1.Subject

FROM http__ www_w3_org_1999 02 22 rdf syntax_ns_type TO

JOIN http_ www_lehigh_edu__zhp2 2004 0401 univ_bench_owl_takesCourse T1
ON (T1.Subject = TO.Subject)

Q4

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?x ?y1 ?y2 ?y3 WHERE {

?x rdf:type ub:Professor.

?x ub:worksFor <http://www.Department0.University0.edu>.

?x ub:name ?y1.

?x ub:email Address ?y2.

?x ub:telephone ?y3.
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Graph representation:

query4
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worksFor | name
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telephone

Professor

Figure 18 LUBM Query 4 [47]

rdf:type

RQ2SQL translation:

SELECT T4.Subject,

T2.0bject,

T3.0bject,

T4.0bject
FROM http_ www_w3_org_1999 02 22 rdf syntax_ns_type TO
JOIN http_ www_lehigh_edu__zhp2_2004_0401_univ_bench_owl_worksFor T1 ON
(T1.Subject = TO.Subject)
JOIN http_ www_lehigh_edu__zhp2_ 2004 0401 univ_bench_owl_name T2 ON
(T2.Subject = T1.Subject)
JOIN http_ www_lehigh_edu__zhp2_2004_0401_univ_bench_owl_emailAddress T3
ON (T3.Subject = T2.Subject)
JOIN http_ www_lehigh_edu__zhp2_2004_0401_univ_bench_owl_telephone T4 ON
(T4.Subject = T3.Subject)

Q12

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X?Y
WHERE {
?X rdf:type ub:Chair .
?Y rdf:type ub:Department .
?X ub:worksFor ?Y .
?Y ub:subOrganizationOf <http://www.University0.edu>

75



Graph representation:

Figure 19 LUBM Query 12 [47]

RQ2SQL translation:

SELECT T2.Subject,
T3.Subject
FROM http_ www_w3_org_1999 02 22 rdf syntax_ns_type TO
JOIN http_ www_w3_org_1999 02 22 rdf syntax_ns_type T1
JOIN http_ www_lehigh_edu__zhp2 2004 0401 univ_bench_owl_worksFor T2 ON
(T2.0Object = T1.Subject AND T2.Subject = TO.Subject)
JOIN ttp_ www_lehigh_edu__zhp2 2004 0401 univ_bench_owl_subOrganizationOf
T3 ON (T3.Subject = T2.0bject)

Q13

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?x WHERE {

?x rdf:type ub:Person.

<http://www.University0.edu> ub:hasAlumnus ?x.
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Graph representation

queryl3

hasAlumnus

Figure 20 LUBM Query 13 [47]

RQ2SQL translation:

SELECT T1.0bject

FROM http_ www_w3_org_1999 02 22 rdf syntax_ns_type TO

JOIN http_ www_lehigh_edu__zhp2 2004 0401 univ_bench_owl_hasAlumnus T1
ON (T1.0Object = T0.Subject)

Q14

SELECT ?x WHERE {
?x rdf:type ub:UndergraduateStudent.

}
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Graph representation:

queryl4

UndergraduateStudent

Figure 21 LUBM Query 14 [47]

RQ2SQL translation:

SELECT TO0.Subject
FROM http_ www_w3_org_1999 02 22 rdf syntax_ns_type TO
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CHAPTER 10

BENCHMARKING PRESTO-RDF
This chapter presents the experiment and the results conducted to benchmark the performance of
Presto-RDF against Hive. A comparative measurement was also done on 4store — a native RDF
store. Overall, two experimental setups were constructed for benchmarking the performance of
Presto-RDF. The first setup was a 4-node cluster virtualized on a single 16GB memory machine.
The second setup was 8-node cluster virtualized on the Windows Azure platform. The second
setup was required because the experiments conducted used up the hard disk space and it was not
possible to run queries on triples of more than 4 million. For the experiment, four benchmark
queries from SP?Bench were used and three different RDF storage schemes were evaluated —
triple, vertical and horizontal stores.
10.1 Benchmark Queries
The experiment was based on running four benchmark queries, from SP?Bench?®, with different
degrees of complexity — query 1, 6, 8, and 11. The SP?Bench use case is based on the DBLP®.

Query 1: return the year of publication of journal 1

PREFIX rdf:  <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX dc:  <http://purl.org/dc/elements/1.1/>

PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX bench: <http://localhost/vocabulary/bench/>

PREFIX xsd:  <http://www.w3.0rg/2001/XMLSchema#>

SELECT ?yr

WHERE {
?journal rdf:type bench:Journal .
?journal dc:title "Journal 1 (1940)"xsd:string .
?journal dcterms:issued ?yr

¥

8 The reasons behind choosing SP?Bench can be found in section 5.5.
% http://www.informatik.uni-trier.de/~ley/db/
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Query 6: return, for each year, the set of all publications authored by persons that have not

published in years before.

PREFIX rdf:  <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs:  <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX foaf: <http://xmlIns.com/foaf/0.1/>

PREFIX dc:  <http://purl.org/dc/elements/1.1/>

PREFIX dcterms: <http://purl.org/dc/terms/>

SELECT ?yr ?name ?document
WHERE {
?class rdfs:subClassOf foaf:Document .
?document rdf:type ?class .
?document dcterms:issued ?yr .
?document dc:creator ?author .
?author foaf:name ?name
OPTIONAL {
?class? rdfs:subClassOf foaf:Document .
?document? rdf:type ?class2 .
?document2 dcterms:issued ?yr2 .
?document?2 dc:creator ?author2
FILTER (?author=?author2 && ?yr2<?yr)
} FILTER ('bound(?author2))

}

Query 8: Compute authors that have published with Paul Erdoes, or with an author that has

published with Paul Erdoes.

PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlIns.com/foaf/0.1/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT DISTINCT ?name
WHERE {
?erdoes rdf:type foaf:Person .
?erdoes foaf:name "Paul Erdoes" xsd:string .
{
?document dc:creator ?erdoes .
?document dc:creator ?author .
?document2 dc:creator ?author .
?document2 dc:creator ?author? .
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?author2 foaf:name ?name

FILTER (?author!=?erdoes &&
?document2!=?document &&
?author2!=?erdoes &&
?author2!=?author)

} UNION {

?document dc:creator ?erdoes.

?document dc:creator ?author.

?author foaf:name ?name

FILTER (?author!=?erdoes)

k
¥

Query 11: Return (up to) 10 electronic edition URLs starting from the 51th publication, in
lexicographical order.

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

SELECT ?ee

WHERE {
?publication rdfs:seeAlso ?ee

¥
ORDER BY ?ee

LIMIT 10
OFFSET 50

10.2 Four Node Cluster Setup

The first setup was a virtualized four node cluster on a machine with 16GB of memory and
300GB of hard disk. Each of the four virtual machines had 2GB of memory and 32GB of hard
disk. To evaluate the performance of Presto-RDF, an RDF dataset with three million (3M) triples
was generated and the four benchmark queries from section 9.1 were ran on 2-Nodes and 4-
Nodes for each of the three storage schemes - triples, vertical, and horizontal.

10.3 Loading Time for 3M Triples

Once the 3M triples were generated using the SP2Bench dataset generator, it was copied into a

specific HDFS directory. The copying took 27 seconds. After the triples data was loaded into
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HDFS, RDF-Loader was run on the data to parse the triples and store them in the three storage

schemas - triples, vertical and horizontal storage schemes. Figure 22 shows a comparison of the

loading times.
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Figure 22 Loading Time for 3M Triples

The results above measure the performance of the RDF-Loader component of Presto-RDF in
parsing and loading 3M triples for the three different storage strategies under study - triples,
vertical and horizontal. The results are in accordance with the complexity of the map-reduce
algorithms (from Chapter 7) used to parse, decompose and store the 3M triples for the three

storage strategies.
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10.4 Benchmarking using 3M Triples

After the RDF-Loader loaded the 3M triples into HDFS and the corresponding external tables
have been created on Hive metastore, the SQL equivalent of the four benchmark queries from
section 9.1 were run on a 2-Node'® and 4-Node cluster.

10.4.1 Performance Comparison - Triples Storage Scheme?! -

Performance - triples Storage Scheme - 2-Nodes

000 M istore
M Fresto
Hive

Query responsa time in seconds

Q1 Qf Q8 Q11

Benchmark queries

Figure 23 Query Response Time [3M Triples, 2-Node Cluster, Triples Storage Scheme]

As can be seen from the chart, the query response time for 4store is very fast compared to Presto
and Hive. 4store took 0, 8, 9, and 7 seconds to respond to queries Q1, Q6, Q8, and Q11
respectively. Presto also performed much better than Hive. Hive was very slow on Query 8,
which involved UNION.

The performance results over a 4-node cluster are show below in Figure 24.

10 Simulating a 2-Node cluster simply involves shutting down two nodes out of the four nodes.

1 Note that 4store has no partitioning scheme and was run on a single-node cluster. The results are included in the
chart to give how well Presto and Hive perform in comparison to it.
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Performance - triples storage scheme - 4-Nodes

4000

B istore

@ M Fresto
o )
= Hive
a_; 3000
L)
=
AH]
E
Py 2000
©w
=
o
=
&
= 1000
4F]
-
o

N 1 []

Q1 Qe Q8 Q11

Benchmark queries

Figure 24 Query Response Time [3M Triples, 4-Node Cluster, Triples Storage Scheme]

Similar behavior was observed for Presto and Hive over a 4-node cluster - Presto was much
faster than Hive. One interesting result that was observed was, as the number of nodes increase
from 2 to 4, Presto showed some improvement (i.e. speed up in query response time) while Hive

showed a delay - i.e. the query response time for Hive got longer when more nodes are added.
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Effect of Node Increase [Query 8]
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Figure 25 Effect of Node Increase on Query Performance

10.4.2 Performance Comparison - Vertical Storage Scheme

Figure 26 below show the query response time of 3M triples using the vertical storage scheme.
The results are very similar to the triples storage scheme - Presto performs much faster than
Hive. Moreover, for the same query, the vertical storage scheme has a better performance than

the triples storage scheme.
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Performance - vertical storage scheme - 2 and 4 nodes
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Figure 26 Presto vs. Hive using the Vertical Storage Scheme

The results for the vertical storage scheme show that, once again, Presto performed much faster
than Hive. Moreover, the node increase from 2 to 4 also increased the performance of Presto but
not Hive.

10.4.3 Performance Comparison - Horizontal Storage Scheme

Figure 27 shows the performance comparison of Presto and Hive for the horizontal storage
scheme. Once again, Presto has a better performance than Hive. For queries that does not involve
UNIONSs (Q1, Q6, and Q11), the performance of Presto over Hive was not as significant as it

was for the triples and vertical storage schemes.
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Performance - horizontal storage scheme - 2 and 4 nodes
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Figure 27 Presto vs. Hive using the Horizontal Storage Scheme

The results for the vertical storage scheme show that, once again, Presto performed much faster
than Hive. Moreover, the node increase from 2 to 4 also increased the performance of Presto but
not Hive.

10.4.4 Comparison of Triples, Vertical and Horizontal Storage Schemes

Figure 28 below shows the performance comparison of the three storage schemes for Presto and
Hive over a 4 node cluster. The results indicate that the vertical storage scheme outperforms both
the triples and horizontal storage schemes on both Presto and Hive. For queries Q1, Q8 and Q11,

the horizontal storage scheme has a slightly better performance than the triples storage scheme.
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Figure 28 Performance Comparison of the Three Storage Schemes on Presto
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Figure 29 Performance Comparison of the Three Storage Schemes on Hive
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10.5 Benchmarking Presto-RDF using 10, 20, and 30M Triples

The second experimental setup that was conducted involved setting up four and eight node
clusters on Microsoft Windows Azure Platform. Each node in the cluster had a 2-core x86-64
processor, 14GB of memory, and 1TB of hard disk. Measurements were conducted for the four
benchmark queries listed in section 9.1 for 10, 20, and 30 million triples.

10.5.1 Loading Time

Once the RDF dataset is copied into HDFS, the RDF-Loader will parse and run a map-reduce job
to convert the raw dataset to a structured dataset based on three storage schemas — triple-store,

vertical and horizontal. The results of the measurement are shown in Figure 30 below.

Loading time of triples, using RDF-Loader
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Figure 30 Loading Time of RDF Triples
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The performance of the RDF-loader has a linear relationship with the size of the triples. The
horizontal store map-reduce algorithm always took much longer time than the triple-store and
vertical store schemes.

10.5.2 Evaluation Result for Q1

The equivalent SQL translations of SPARQL Q1 for the three storage schemes are given below.
Q1 Triple-store SQL.:

SELECT
T3.0bject AS yr
FROM Triples T1
JOIN Triples T2 ON T1.subject = T2.subject
JOIN Triples T3 ON T1.subject = T3.subject
WHERE
T1.Predicate = '<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>'
AND T2.Predicate = '<http://purl.org/dc/elements/1.1/title>'
AND T3.Predicate = '<http://purl.org/dc/terms/issued>'
AND T1.0bject = '<http://localhost/vocabulary/bench/Journal>'
AND T2.0bject = "Journal 1 (1940)"<http://www.w3.0rg/2001/XMLSchema#string>'

Q1 vertical-store SQL.:

SELECT
T3.0bject AS yr
FROM http_ www_w3_org_1999 02 22 rdf syntax_ns_type T1
JOIN http___purl_org_dc_elements_1 1 title T2 ON T1.subject = T2.subject
JOIN http___purl_org_dc_terms_issued T3 ON T1.subject = T3.subject
WHERE
T1.0bject = '<http://localhost/vocabulary/bench/Journal>'
AND T2.0bject = "Journal 1 (1940)"M<http://www.w3.0rg/2001/XMLSchema#string>'

Q1 horizontal-store SQL.:

SELECT

T.dcterms_issued AS yr
FROM HorizontalTable T
WHERE
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T.rdf_type = '<http://localhost/vocabulary/bench/Journal>'
AND T.dc_title = "Journal 1 (1940)" M<http://www.w3.0rg/2001/XMLSchema#string>'

The result of running the above queries on Presto for a 4-node and 8-node cluster setup are

shown in the figures below.

a1 performance on Presto with 4 nodes
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Figure 31 Performance of Q1 over a 4-Node Cluster

For Q1, the vertical and horizontal stores have a much better performance than the triple-store
scheme. This can be explained by looking into the SQL translations of the vertical and horizontal
storage schemes — which have lesser rows involved in JOINs. This fact remains true when the

number of nodes is increased from 4 to 8 — Figure 32.
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Presto performance for Q1 on 8 node cluster
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Figure 32 Performance of Q1 over 8-Node Cluster

For Q1, increasing number of nodes resulted in performance improvement for the three storage

schemes. See Figure 33 below.
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Presto performance for 30M triples
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Figure 33 Effect of Node Increase on Presto for Q1

Presto vs. Hive:
Compared to Hive, Presto once again has a much higher performance. Figure 34 shows a

comparison of Presto and Hive for 30M triples.
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a1: Presto vs Hive [30M triples, 8 nodes]
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Figure 34 Q1 Performance [30M Triples over 8-Node Cluster]

10.5.3 Evaluation Result for Q6
The SQL translations for Q6, unlike Q1, involve multiple JOINs for each of the three storage
schemes and are given in Appendix A. The results of the evaluation on a 4-node and 8-node

cluster are shown in Figure 35 and 36 below.
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Presto: performance for Q 6 [4 nodes]
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Figure 35 Q6 Performance on Presto with 4 Nodes
Presto: performance for Q6 [8 nodes]
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Figure 36 Q6 Performance on Presto with 8 Nodes
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The results of the evaluation above (Figure 35 and 36) indicate that the performance increased
with increase in the number of nodes — see Figure 37 below. The vertical store, again, has a
much better performance than the triple-store and horizontal store. Unlike Q1, however, where
the horizontal store had a slightly better performance than the triple-store, the triple-store in Q6
had a slightly better performance than the horizontal store, especially as the size of the triples
increases. This result can be explained by the fact that the horizontal store SQL for Q6, unlike

the triple-store, involves multiple selections before making JOINS.

Presto: Q6 [30M triples]

600

B Triple-store
B verical
Harizontal
450
300

150

Givers response time in seconds

4-nodes 8-nodes

Size oftriples

Figure 37 Effect of Node Increase on Presto for Q6 with 30M Triples

For Hive, unlike Presto, as the number of nodes was increased there was a drop in performance —
which can be attributed to increase in replication across nodes and disk I/O operations — see

figure 38 below.
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Hive: Q6 [30M triples]
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Figure 38 Effect of Node Increase on Hive for Q6 with 30M Triples

Presto vs. Hive: For Q6 as well, Presto has a much higher performance than Hive — see Figure

39 below.
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Q6: Presto vs. Hive [30M tripels, 8 nodes]
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Figure 39 Presto vs. Hive for 30M Triples over 8-Node Cluster

10.5.4 Evaluation Result for Q8

The SQL translations for Q8 involve multiple JOINSs (just as the case were in Q6) and a UNION
— see Appendix A. The results have the same behavior as Q6 — the vertical store has a much
better performance than the triple-store and horizontal stores, and Presto has a much higher

performance than Hive.
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Presto: performance for G 8 [4 nodes]
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Figure 40 Q8 Performance, on Presto with 4 Nodes

10.5.5 Evaluation Result for Q11
The SQL translations for Q11 involve a simple select with an ORDER BY and LIMIT clauses.
Q11 Triple-store SQL:

SELECT
T.Object AS ee
FROM
Triples T
WHERE
T.Predicate="<http://www.w3.0rg/2000/01/rdf-schema#seeAlso>"'
ORDER BY ee
LIMIT 10
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Q11 Vertical-store SQL.:

SELECT
T.Object AS ee
FROM
http_ www_w3_org 2000 01 rdf schema_seeAlso T
ORDER BY ee
LIMIT 10

Q11 Horizontal-store SQL.:

SELECT
T1.rdfs_seeAlso AS ee
FROM
HorizontalTable T1 WHERE T1.rdfs_seeAlso !="null’
ORDER BY ee
LIMIT 10

Figure 41 below shows the results of running the above queries over 10, 20 and 30M triples.

Presto: performance of Q 11 [4 nodes]
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Figure 41 Q11 Performance, on Presto with 4 Nodes
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Because Q11 involves just one table which has less number of rows for the vertical and
horizontal storage schemes than the triple-store (which is one table), the results shown above are
expected.

For 8 nodes, there is a performance improvement — see Figure 42 below.

Presto: performance of Q 11 [8 nodes]
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Figure 42 Q11 Performance, on Presto with 8 Nodes

Presto vs. Hive:

Compared to Hive, Presto again has a much higher performance — see Figure 43 below.
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Figure 43 Presto vs. Hive, 30M Triples on 8-Node Cluster
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CHAPTER 11

RELATED WORK
This chapter presents a review of selected research papers that propose and evaluate different
distributed SPARQL query engines. It also presents a review of two systems, Apache Spark and
Cloudera Impala, which are similar to Facebook Presto. Research papers that propose and
evaluate different RDF storage schemes have already been discussed in chapters 4 and 5.
11.1 Distributed SPARQL
[56] proposes a distributed SPARQL query engine based on Jena ARQ [57]. The query engine
extends Jena ARQ and makes it distributed across a cluster of machines. The extension involves
re-designing some parts of Jena ARQ. Document indexing and pre-computation joins were also
used to optimize the design. The results of the experiments that were conducted showed that the
distributed query engine scaled well with the size of RDF data but its overall performance was
very poor. The query engine, unlike Facebook Presto, uses MapReduce.
Marcello Leida et al. [58] propose a query processing architecture that can be used to efficiently
process RDF graphs that are distributed over a local data grid. The architecture has no single
point of failure and no specialized nodes — which is a different than Hadoop. The paper proposes
a sophisticated non-memory query planning and execution algorithm based on streaming RDF
triples. Presto uses a distributed in-memory query processing algorithm.
Xin Wang et al. [59] discuss how the performance of a distributed SPARQL query processing
can be optimized by applying methods from graph theory. They propose a Minimum-Spanning-
Tree-based (MST-based) algorithm for distributed SPARQL processing. The results of their
experiment show that a distributed SPARQL processing engine based on MST-based algorithms
performs much better than other non-graph traversal algorithms. Because this thesis translates a
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SPARQL query into its equivalent SQL query, the query optimization that is done by Presto is
for the SQL query and not for the SPARQL query.

[60] proposes a distributed RDF query processing engine based on a message passing. The
engine uses in-memory data structures to store indices for data blocks and dictionaries. Just like
Presto, the query processing engine avoids disk 1/0O operations. The authors experimented their
design over several types of SPARQL queries and were able to get a significant performance
gain (as compared to Hadoop).

11.2 Apache Spark and Cloudera Impala

Apache Spark [61] and Cloudera Impala [62] are two open-sources systems that are very similar
to Facebook Presto. Both Apache Spark and Cloudera Impala offer in-memory processing of
queries over a cluster of machines.

According to Apache, Apache Spark is a “fast and general engine for large-scale data
processing”. Spark uses advanced Directed Acyclic Graph (DAG) execution engine with cyclic
data flow and in-memory processing to run programs up to 100 (for in-memory processing
mode) or 10 times faster (for disk processing mode) than Hadoop MapReduce [61]. Apache
Spark became an Apache top-level project in February 2014.

Cloudera Impala is an open-source massively parallel processing (MPP) engine for data stored in
HDFS. Cloudera Impala is based on Cloudera’s Distribution for Hadoop (CDH) and benefits
from Hadoop’s key features — scalability, flexibility, and fault tolerance. Cloudera Impala, just
like Presto, uses Hive Metastore to store the metadata information of directories and files in

HDFS [62]. Cloudera Impala became available in May 2013.
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CHAPTER 12

CONCLUSION AND FUTURE WORK
This thesis presented a comparative analysis of big RDF data using Presto, which uses in-
memory query processing engine, and Hive, which uses MapReduce to evaluate SQL queries.
The thesis also proposed a Presto-based architecture, Presto-RDF, that can be used to store and
process big RDF data.
12.1  Conclusion
From the experiments conducted, the following conclusions can be drawn:

- 4store has a much higher performance than Presto and Hive for small data sets. For
bigger data sets (10M, 20M and 30M triples), however, 4store was simply unable to
process the data and crashed. This is true when Presto, Hive and 4store are all tested with
single-node setups.

- For all queries, Presto has a much higher performance than Hive.

- The vertical storage scheme has a consistent performance advantage than both the triple-
store or horizontal storage schemes.

- As the size of data increases, the horizontal storage scheme performed relatively better
than the triple-store scheme. This is unlike the articles reviewed during this thesis, which
ignore the horizontal scheme as being not efficient (because it has many null values).

- Increasing the number of nodes improved query performance in Presto but not in Hive.
This can be explained by the fact that Hive replicates data across clusters and does 10

operations — which increase as the size of nodes increase.

105



12.2

Hypotheses Revisited

Revisiting the hypotheses from Chapter 1, we can conclude:

As the size of RDF data increases to big-data levels, RDF stores based on Hadoop
outperform native RDF stores like 4store.

This is a true hypothesis if qualified like the below:

As the size of RDF data increases to big-data levels, RDF stores based on Hadoop
outperform native RDF store, 4store, for a single-node setup.

Distributed in-memory query processing engines deliver faster response time on big
RDF datasets than query processing engines that rely on MapReduce.

This hypothesis holds true.

Vertical partitioning scheme for RDF data gives better performance than other RDF
storage schemes on Hive.

This hypothesis holds true.

Increasing number of processing nodes dramatically improves query performance.

This hypothesis, as stated, and according to the experiments conducted, is false. But it

holds true for Presto if the qualification “dramatically” is removed.

12.3 Contributions

This thesis is unique in the following respects:

It uses a distributed in-memory query execution model, based on Presto, to evaluate the
performance of SPARQL queries over big RDF data.

It demonstrates the use of a SPARQL to SQL compiler based on Flex and Bison. The
compiler is also unique in that it generates SQL for the three storage schemes discussed
in this thesis — triple-store, vertical and horizontal.
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Publishes the result of the query performance of a horizontal storage scheme, which had
a better performance than the triple-store as the size of data increases. No published
results were found on the horizontal storage scheme during the literature review.

The RDF-Loader component of Presto-RDF uses map-reduce to load RDF data into the

different storage structures and the implementation is available.

12.4  Future Work

There are a number of areas that a future researcher can work on to extend this thesis:

This thesis used a single benchmark, SP?Bench, which has a limitation of being “not
realistic”. Hence, one can extend the work by experimenting on different benchmarks
based on the proposal made in Chapter 6, section 5.

There are different optimization techniques that can be applied to the three storage
schemas as well as to the RDF data directly. In this thesis, the RDF data is stored as a text
file, which is not optimal. A researcher can test using RCFILE, ORC, and AVRO
formats, which are better optimized than text file.

Presto is an open-source project whose implementation can be download for free GitHub.

https://github.com/facebook/presto. In this thesis, a SPARQL to SQL compiler was built

because Presto does not support SPARQL. A project that extends Presto to have a direct

support for SPARQL would be nice.
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SQL TRANSLATIONS OF THE BENCHMARK QUERIES
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Q1 - Triple-store

SELECT
T3.0bject AS yr
FROM Triples T1
JOIN Triples T2 ON T1.subject = T2.subject
JOIN Triples T3 ON T1.subject = T3.subject
WHERE
T1.Predicate = '<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>'
AND T2.Predicate = '<http://purl.org/dc/elements/1.1/title>'
AND T3.Predicate = '<http://purl.org/dc/terms/issued>'
AND T1.0bject = '<http://localhost/vocabulary/bench/Journal>'
AND T2.0bject = "Journal 1 (1940)" M<http://www.w3.0rg/2001/XMLSchema#string>'

Q6 — Triple-store

SELECT
X.yr AS yr,
X.name AS name,
X.document AS document
FROM (SELECT
T1.subject AS class,
T2.Subject AS document,
T3.0bject AS yr,
T4.0bject AS author,
T5.0bject AS name
FROM Triples T1
JOIN Triples T2 ON T1.subject = T2.0bject
JOIN Triples T3 ON T3.subject = T2.subject
JOIN Triples T4 ON T4.subject = T3.subject
JOIN Triples T5 ON T5.subject = T4.object
WHERE
T1.Predicate = '<http://www.w3.0rg/2000/01/rdf-schema#subClassOf>'
AND T2.Predicate = '<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>'
AND T3.Predicate = '<http://purl.org/dc/terms/issued>'
AND T4.Predicate = '<http://purl.org/dc/elements/1.1/creator>'
AND T5.Predicate = '<http://xmlns.com/foaf/0.1/name>'
AND T1.0bject = '<http://xmIns.com/foaf/0.1/Document>") X
LEFT JOIN (SELECT
T1.subject AS class,
T2.Subject AS document,
T3.0bject AS yr,
T4.0bject AS author
FROM Triples T1
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JOIN Triples T2 ON T1.subject = T2.0bject
JOIN Triples T3 ON T3.subject = T2.subject
JOIN Triples T4 ON T4.subject = T3.subject
WHERE
T1.Predicate = '<http://www.w3.0rg/2000/01/rdf-schema#subClassOf>'
AND T2.Predicate = '<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>'
AND T3.Predicate = '<http://purl.org/dc/terms/issued>'
AND T4.Predicate = '<http://purl.org/dc/elements/1.1/creator>'
AND T1.0bject = '<http://xmIns.com/foaf/0.1/Document>") Y ON X.author = Y .author

Q8 - Triple-store

SELECT DISTINCT
name
FROM Triples T1
JOIN Triples T2 ON T1.subject = T2.subject
JOIN (SELECT
name,
erdoes
FROM (SELECT
T5.0bject AS name,
T3.0bject AS erdoes
FROM Triples T3
JOIN Triples T4 ON T3.subject = T4.subject
JOIN Triples T5 ON T4.object = T5.subject
WHERE
T3.Predicate = '<http://purl.org/dc/elements/1.1/creator>"'
AND T4.Predicate = '<http://purl.org/dc/elements/1.1/creator>'
AND T5.Predicate = '<http://xmlIns.com/foaf/0.1/name>'
AND NOT T3.0bject = T4.object) X
UNION ALL
SELECT
T7.0bject AS name,
T3.0bject AS erdoes
FROM Triples T3
JOIN Triples T4 ON T3.subject = T4.subject
JOIN Triples T5 ON T4.object = T5.0bject
JOIN Triples T6 ON T5.subject = T6.subject
JOIN Triples T7 ON T6.0bject = T7.subject
WHERE
T3.Predicate = '<http://purl.org/dc/elements/1.1/creator>'
AND T4.Predicate = '<http://purl.org/dc/elements/1.1/creator>'
AND T5.Predicate = '<http://purl.org/dc/elements/1.1/creator>'
AND T6.Predicate = '<http://purl.org/dc/elements/1.1/creator>'
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AND T7.Predicate = '<http://xmins.com/foaf/0.1/name>'
AND NOT T4.object = T3.0bject
AND NOT T5.subject = T3.subject
AND NOT T6.0bject = T3.0bject
AND NOT T4.object = T6.0bject) Y ON T2.subject = Y.erdoes
WHERE
T1.Predicate = '<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>'
AND T2.Predicate = '<http://xmlns.com/foaf/0.1/name>'
AND T1.0bject = '<http://xmlns.com/foaf/0.1/Person>'
AND T2.0bject = "'Paul Erdoes"<http://www.w3.0rg/2001/XMLSchema#string>'

Q11 - Triple-store

SELECT
T.Object AS ee
FROM
Triples T
WHERE
T.Predicate="<http://www.w3.0rg/2000/01/rdf-schema#seeAlso>"'
ORDER BY ee
LIMIT 10

Q1 - Vertical Scheme

SELECT
T3.0bject AS yr
FROM http_ www_w3_org_1999 02 22 rdf syntax_ns_type T1
JOIN http___purl_org_dc_elements 1 1 title T2 ON T1.subject = T2.subject
JOIN http___ purl_org_dc_terms_issued T3 ON T1.subject = T3.subject
WHERE
T1.0bject = '<http://localhost/vocabulary/bench/Journal>'
AND T2.0bject = "Journal 1 (1940)"M<http://www.w3.0rg/2001/XMLSchema#string>'

Q6 — Vertical Scheme

SELECT
X.yr AS yr,
X.name AS name,
X.document AS document
FROM (SELECT
T1.Subject AS class,
T2.Subject AS document,
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T3.0bject AS yr,
T4.0bject AS author,
T5.0bject AS name
FROM http_ www_w3_org_2000_01 rdf schema_subClassOf T1
JOIN http_ www_w3_org_1999 02_22 rdf syntax_ns_type T2 ON T1.subject =
T2.0bject
JOIN http___ purl_org_dc_terms_issued T3 ON T3.subject = T2.subject
JOIN http___purl_org_dc_elements_1 1 creator T4 ON T4.subject = T3.subject
JOIN http___ xmlIns_com_foaf 0_1 name T5 ON T4.object = T5.subject
WHERE
T1.0bject = '<http://xmIns.com/foaf/0.1/Document>') AS X
LEFT JOIN (SELECT
T1.Subject AS class,
T2.Subject AS document,
T3.0bject AS yr,
T4.0bject AS author
FROM http_ www_w3_org_2000_01_rdf schema_subClassOf T1
JOIN http_ www_w3 org 1999 02 22 rdf syntax_ns_type T2 ON T1.subject =
T2.0bject
JOIN http___purl_org_dc_terms_issued T3 ON T3.subject = T2.subject
JOIN http___purl_org_dc_elements_1 1 creator T4 ON T4.subject = T3.subject
WHERE
T1.0bject = '<http://xmIns.com/foaf/0.1/Document>") AS Y ON X.author = Y .author

Q8 — Vertical Scheme

SELECT DISTINCT
name
FROM http__ www_w3_org_1999 02 22 rdf syntax_ns_type T1
JOIN http_ xmlIns_com_foaf 0 1 name T2 ON T1.subject = T2.subject
JOIN (SELECT
name,
erdoes
FROM (SELECT
T3.0bject AS name,
T4.0bject AS erdoes
FROM http___ purl_org_dc_elements_1 1 creator T4
JOIN http____purl_org_dc_elements_1 1 creator T5 ON T4.subject = T5.subject
JOIN http__ xmlIns_com_foaf 0_1 name T3 ON T5.0bject = T3.subject
WHERE
NOT T4.object = T5.0bject) AS L
UNION ALL
SELECT
T3.0bject AS name,
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T4.object AS erdoes

FROM http___ purl_org_dc_elements_1 1 creator T4
JOIN http___purl_org_dc_elements_1 1 creator T5 ON T4.subject = T5.subject
JOIN http___purl_org_dc_elements_1 1 creator T6 ON T5.0bject = T6.object
JOIN http____purl_org_dc_elements_1 1 creator T7 ON T6.subject = T7.subject
JOIN http_ xmlIns_com_foaf 0_1 name T3 ON T7.object = T3.subject

WHERE
NOT T5.0bject = T4.object
AND NOT T6.subject = T4.subject
AND NOT T7.object = T4.object
AND NOT T5.0bject = T7.0bject) AS R ON T2.subject = R.erdoes

WHERE
T1.0bject = '<http://xmlns.com/foaf/0.1/Person>'
AND T2.0bject = ""Paul Erdoes"M<http://www.w3.0rg/2001/XMLSchema#string>'

Q11 — Vertical Scheme

SELECT
T.Object AS ee
FROM
http_ www_w3_org 2000 01 rdf schema_seeAlso T
ORDER BY ee
LIMIT 10

Q1 - Horizontal Scheme

SELECT
T.dcterms_issued AS yr
FROM HorizontalTable T
WHERE
T.rdf_type = '<http://localhost/vocabulary/bench/Journal>'
AND T.dc_title = "Journal 1 (1940)"<http://www.w3.0rg/2001/XMLSchema#string>'

Q6 — Horizontal Scheme

SELECT
X.yr AS yr,
X.name As name,
X.document As document
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FROM

(
SELECT T4.dc_creator As author, T3.dcterms_issued AS yr, T5.foaf_name AS name,

T1.rdfs_subClassOf As document
FROM
(SELECT Subiject, rdfs_subClassOf FROM Horizontal Table WHERE rdfs_subClassOf =
'<http://xmlns.com/foaf/0.1/Document>") T1
JOIN (SELECT Subject, rdf_type FROM HorizontalTable WHERE rdf type !'="null’) T2
ON T2.rdf_type = T1.Subject
JOIN (SELECT Subject, dcterms_issued FROM Horizontal Table WHERE
dcterms_issued !'="null’) T3 ON T3.Subject = T2.Subject
JOIN (SELECT Subject, dc_creator FROM Horizontal Table WHERE dc_creator !=
'null’) T4 ON T4.Subject = T3.Subject
JOIN (SELECT Subject, foaf_name FROM HorizontalTable WHERE foaf _name !=
'null’) T5 ON T5.Subject = T4.dc_creator
) X
LEFT JOIN
(
SELECT T4.dc_creator AS author, T3.dcterms_issued AS yr
FROM
(SELECT Subiject, rdfs_subClassOf FROM Horizontal Table WHERE rdfs_subClassOf =
‘<http://xmIns.com/foaf/0.1/Document>") T1
JOIN (SELECT Subject, rdf_type FROM HorizontalTable WHERE rdf_type !="null’) T2
ON T2.rdf_type = T1.Subject
JOIN (SELECT Subject, dcterms_issued FROM Horizontal Table WHERE
dcterms_issued !'="null") T3 ON T3.Subject = T2.Subject
JOIN (SELECT Subject, dc_creator FROM Horizontal Table WHERE dc_creator !=
'null’) T4 ON T4.Subject = T3.Subject
)Y
ON X.author = Y .author

Q8 — Horizontal Scheme

SELECT DISTINCT
name
FROM
(SELECT Subject, rdf_type FROM HorizontalTable WHERE rdf_type =
'<http://xmlns.com/foaf/0.1/Person>") T1
JOIN (SELECT Subject, foaf_name FROM HorizontalTable WHERE foaf_name = "'Paul
Erdoes"M<http://www.w3.0rg/2001/XMLSchema#string>") T2 ON T1.Subject = T2.Subject
JOIN
(
SELECT
name,
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erdoes
FROM
(
SELECT
T7.foaf_name AS name,
T3.dc_creator AS erdoes
FROM
(SELECT Subiject, dc_creator FROM Horizontal Table WHERE dc_creator !'="null’)
T3
JOIN (SELECT Subiject, dc_creator FROM Horizontal Table WHERE dc_creator !=
'null’) T4 ON T4.Subject = T3.Subject
JOIN (SELECT Subiject, dc_creator FROM HorizontalTable WHERE dc_creator !=
'null’) T5 ON T5.dc_creator = T4.dc_creator
JOIN (SELECT Subiject, dc_creator FROM Horizontal Table WHERE dc_creator !=
'null’) T6 ON T6.Subject = T5.Subject
JOIN (SELECT Subject, foaf_name FROM HorizontalTable WHERE foaf _name !=
'null’) T7 ON T7.Subject = T6.dc_creator
WHERE
T4.dc_creator '= T3.dc_creator AND T5.Subject = T3.Subject AND T6.dc_creator 1=
T3.dc_creator AND T6.dc_creator != T4.dc_creator
) X
UNION ALL
SELECT
T10.foaf_name AS name,
T8.dc_creator As erdoes
FROM
(SELECT Subiject, dc_creator FROM HorizontalTable WHERE dc_creator !="null’)
T8
JOIN (SELECT Subject, dc_creator FROM Horizontal Table WHERE dc_creator !=
'null’) T9 ON T9.Subject = T8.Subject
JOIN (SELECT Subject, foaf_name FROM HorizontalTable WHERE foaf_name !=
'null’) T10 ON T10.Subject = T9.dc_creator
WHERE
T9.dc_creator '= T8.dc_creator
) Y ON T2.Subject = Y.erdoes

Q11 — Horizontal Scheme

SELECT
T1.rdfs_seeAlso AS ee
FROM
HorizontalTable T1 WHERE T1.rdfs_seeAlso !="null’
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ORDER BY ee
LIMIT 10
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/*******************************************************************

Tool:
Version:
Author:
Date:

R R I I )

Spargl to Sgl Compiler
1.0

Mulugeta Mammo
September 2014

********************************************************************/

%{

#include <cstdio>
#include <iostream>

#include "rg2sql.tab.h"

%}

%option case-insensitive

%%

"SELECT"
"DISTINCT"
"WHERE"
"PREFIX"
"FILTER"
"UNION"
"OPTIONAL"
"ORDER BY"

"ASC"

"DESC"

"LIMIT"

"@PREFIX"
"bound"”

II{II

II}II
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return T_SELECT;
return T_DISTINCT;
return T_WHERE;
return T_PREFIX;
return T_FILTER,
return T_UNION;
return T_OPT;

{
yylval.s = strdup(yytext);
return T_ORDER_BY;

}

{
yylval.s = strdup(yytext);
return T_ASC,;

}

{
yylval.s = strdup(yytext);
return T_DESC,;

}

{
yylval.s = strdup(yytext);
return T_LIMIT;

}

return T_AT_PREFIX;
return T_BOUND;
return T_LB;

return T_RB,;



[1-_9] [0-9]*

return T_LP;
return T_RP;
return T_SEMICOLON;
return T_EQU;
return T_NOT;
return T_NEQ);
return T_AND;
return T_OR;
return T_LT,;
return T_LTE;
return T_GT,
return T_GTE;

{

yylval.i = atoi(yytext);
return T_INT,;

~

[a-z][a-z0-9_]*
yylval.s = strdup(yytext);
return T_IDT,;

\?[a-z][a-z0-9_]*
yylval.s = strdup(yytext);
return T_VAR,;

[a-z][a-z0-9]*":"[a-z0-9_]+
yylval.s = strdup(yytext);
return T_SURI,

~

[a-z][a-z0-9]*":"
yylval.s = strdup(yytext);
return T_SYM;

~

\<http[M\>]*\>
yylval.s = strdup(yytext);
return T_URI,

\"(\\J[A"DFN AN {
yylval.s = strdup(yytext);
return T_VALUE;

VLT {
yylval.s = strdup(yytext);
return T_CSTR,;
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}
"\n" {
yylineno++;
¥
\. return T_DOT,;
[\t]+ {
/* ignore white space */
}
e {
/* ignore comments */
};
[ \t\W\RAr]+ {
};
{
std::cerr << "Lexical Error'\n";
¥
%%
int yywrap() {
return 1;
}
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/*******************************************************************

*

* Tool: Spargl to SQL Compiler
* version: 1.0

* Author: Mulugeta Mammo

* Date: September 2014

*

********************************************************************/

%{

#include <iostream>
#include <fstream>
#include <sstream>
#include <map>
#include <string>
#include <vector>
#include <stack>
#include <utility>
#include <algorithm>
#include <regex>
#include "definition.h"
#include "utility.h™
#include "vertical.h"
#include "horizontal.h"
#include "triples.h™

using namespace std;

int num_errors = 0; /' We report the # of syntax errors
constint T_TOK =0; // Triple ID
constint F_ TOK = -1;// Filter ID

// Bison's

extern FILE* yyin;

extern int yylineno;

extern int yylex();

extern int yyparse();

extern void yyerror(const char*);

%}

%error-verbose
%union {
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inti;
char* s;

ks

%token<s> T _PREFIX T_AT_PREFIX;

%token<s> T _IDTT_VART_URIT_CSTR T_INT T_SURI T_VALUE T_NOT;
%token<s> T_SELECT T_DISTINCT T_WHERE T_FILTER T_LIMIT T_BOUND T_SYM
T_OPT T_UNION;

%token<s>T LP T RP T _LBT_RBT_COLON T_SEMICOLON T_DOT;

%token<s>T ANDT ORT EQUT NEQT LTT LTET_GTT_GTE;

%token<s> T_ORDER_BY T_ASC T_DESC;

%type<s> primary unary_expr or_expr and_expr equality_expr relational_expr stmt stmts;

%%

query:
body
| decl body
decl:
prefix
| decl prefix
prefix:
prefix_keyword T_SYM T_URI line_end
{
string s($<s>2);
prefixes[s.substr(0, s.size() - 1)] = $<5>3;
}
prefix_keyword:
T PREFIX
| T_AT_PREFIX
line_end:

| T_DOT

body:
T_SELECT distinct select T WHERE T_LB stmts T_RB order_by limit

128



distinct:

| T_DISTINCT
{
distinct_stmt = "DISTINCT ";
}
select:
T_VAR
{
select_list.push_back($<s>1);
}
| select T_VAR
{
select_list.push_back($<s>2);
}
stmts:
stmt
| stmts stmt
| stmts T_ OPT T_LB stmts T_RB
{

cerr << "This production version of rg2sql does not support code generation for
optionals.” << endl;

}
|stmts T_LBstmts T RBT _UNIONT_LB stmts T_RB
{
cerr << "This version of rq2sql does not support code generation for unions." <<
endl;
}
| T_LBstmts T_RBT_UNION T_LB stmts T_RB
{
cerr << "This version of rg2sql does not support code generation for unions." <<
endl;
}
stmt:
subject predicate object line_end
{
query_index.push_back(make_pair(T_TOK, subjects.size() - 1));
}
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| T_FILTER T_LP expr T_RP line_end

{
string e($<s>3);
for (int i = 0; i != predicates.size(); ++i) {
if (subjects[i].second == "var") {
replace(e, subjects][i].first, rq_vars[subjects[i].first]);
}
if (objects[i].second == "var") {
replace(e, objects[i].first, rq_vars[objects][i].first]);
}
}
filters.push_back(e);
query_index.push_back(make_pair(F_TOK, filters.size() - 1));
expr:
or_expr
or_expr:
and_expr
| or_expr T_OR and_expr
{
$3$ = cat_str($<s>1, " || ", $<5>3);
}
and_expr:

equality_expr
| and_expr T_AND equality_expr
{

¥

$$ = cat_str($<s>1, " && ", $<5>3);

equality_expr:
relational_expr
| equality_expr T_EQU relational_expr
{
$$ = cat_str($<s>1, " =", $<5>3);

130



equality_expr T_NEQ relational_expr

$3$ = cat_str($<s>1, " 1= ", $<5>3);

SR R

relational_expr:
unary_expr
| relational_expr T_LT unary_expr

$3$ = cat_str($<s>1, " <", $<5>3);

|}relational_expr T_LTE unary_expr
¢ $$ = cat_str($<s>1, " <=", $<s>3);
|}relational_expr T_GT unary_expr
' $$ = cat_str($<s>1, " > ", $<5>3);
|}relational_expr T_GTE unary_expr
¢ $$ = cat_str($<s>1, " >=", $<s>3);
)

unary_expr:
primary

| T_NOT primary

primary:

T_VAR

{
string s = rg_vars[$<s>1];
replace_quote(s);
char* str = (char*) malloc(strlen(s.c_str()) + 1);
strepy(str, s.c_str());
$3$ = str;

}

| T_VALUE

| T_CSTR

{

string s($<s>1);
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replace_quote(s);
char* str = (char*) malloc(strlen(s.c_str()) + 1);
strepy(str, s.c_str());

$$ = str;

}

| T_INT

{
string s(itos($<i>1));
char* str = (char*) malloc(strlen(s.c_str()) + 1);
strepy(str, s.c_str());
$$ = str;

}

| T_LP expr T_RP

{
cerr << "This version of rq2sql does not support nested filter expressions.” <<

endl;

exit(1);

| T BOUNDT LPT_VART_RP

{
string s =" !=null";
char* str = (char*) malloc(strlen(s.c_str()) + strlen($<s>3) + 1);
strepy(str, $<s>3);
strcat(str, s.c_str());
$$ = str;

}

subject:

T_VAR

{
rg_vars[$<s>1] = "T" + itos(subjects.size()) + ".Subject";
rg_vars_index[$<s>1] = subjects.size();
subjects.push_back(make_pair($<s>1, "var"));

}

| T_URI

{

subjects.push_back(make_pair($<s>1, "uri"));
}
| T_SURI

string result ="";

expand_uri(result, prefixes, $<s>1);
subjects.push_back(make_pair(result, "suri"));
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predicate:
T_VAR

{
cerr << "This version of rg2sql does not support variables at the predicate
position." << endl;

exit(1);

}

| T_URI

{
string p($<s>1);
format_predicate(p);
predicates.push_back(make_pair(p, "uri"));

}

| T_SURI

{
string result = """;
expand_uri(result, prefixes, $<s>1);
format_predicate(result);
predicates.push_back(make_pair(result, "suri"));

}

object:

T VAR
rg_vars[$<s>1] = "T" + itos(objects.size()) + ".Object";
rg_vars_index[$<s>1] = objects.size();
objects.push_back(make_pair($<s>1, "var"));

}

| T_URI

{

objects.push_back(make_pair($<s>1, "uri"));
}
| T_CSTR

string s($<s>1);

replace_quote(s);

objects.push_back(make_pair(s, "val"));

}
| T_VALUE
{

¥

objects.push_back(make_pair($<s>1, "val™));
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| T_SURI

{
string result =""";
expand_uri(result, prefixes, $<s>1);
objects.push_back(make_pair(result, "suri"));
}
sort_option:
{
char* str = (char*) malloc(strlen("ASC") + 1);
strcpy(str, "ASC");
$<s>$ = str;
}
| T_ASC
| T_DESC
order_by:
| T_ ORDER_BY T_VAR sort_option
{
char* str = (char*) malloc(strlen($<s>1) + strlen($<s>2) + strlen($<s>3) + 1);
strepy(str, $<s>1);
strcat(str, " ");
string s($<s>2);
strcat(str, rg_vars[s].c_str());
string s2($<s>3);
strcat(str, rq_vars[s2].c_str());
order_by stmt = str;
$<s>$ = str;
}
limit:
| T_LIMIT T_INT
{

const char* istr = itos($<i>2).c_str();

char* str = (char*) malloc(strlen($<s>1) + strlen(istr) + 1);
strcpy(str, $<s>1);

strcat(str, " ");

strcat(str, istr);

limit_stmt = str;
$<s>$ = str;
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%%

int main(int argc, char** argv)

{

if (argc <4) {
cerr << "Error: Invalid command. Usage:rq2sql --storage [triples | vertical |
horizontal] input.rgq\n™;
return 1;
}

string argl = argv[1];
if (argl !'="--storage™) {
cerr << "Error: Invalid command. Usage: rg2sql --storage [triples | vertical |
horizontal] input.rg\n”;
return 1;
}

string storage = argv[2];

if (storage != "triples" && storage != "vertical" && storage !'= "horizontal") {
cerr << "Error: Invalid storage. Options: triples, vertical and horizontal.\n";
return 1;

by

string input = argv[3];

if (input.substr(input.length() - 2) '="rg") {
cerr << "Error: " << argv[3] << " is not a valid rq file.\n";
return 1;

by

yyin = fopen(input.c_str(), "r");
if (yyin == NULL)
{

cerr << "Error: " << input << " does not exist.\n";
return 1;

}
cout << "Compiling:\t" << input <<"..\n";

/I parse spargl query
1
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yyparse();

/I generate code based on parse result and storage type
1
string sql_str =",
if (storage == "vertical")
sgl_str = get_vertical_sql();
else if (storage == "triples")
sgl_str = get_triples_sql();
else if (storage == "horizontal™)
sgl_str = get_horizontal_sql();

string output = input;

output = output.substr(0, output.length() - 3).append("_" + storage + ".sgl");
ofstream ofs(output);

ofs << sgl_str.c_str() << endl;

cout << "Errors:\t\t" << num_errors << "\n";
if (num_errors) {
cout << "Generated:\tNothing\n";

exit(1);
}
cout << "Generated:\t" << output << "\n";
return O;
}
void yyerror(const char™* str)
{
cerr << "Line " << yylineno << ": " << str << "\n";
yyclearin;
++num_errors;
}
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