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Abstract

Most syntactic methods consider non-independent reasoning (NIR) as a privacy violation and s-

mooth the distribution of published data to avoid sensitive NIR, where NIR allows the information

about one record in the data could be learned from the information of other records in the data.

The drawback of this approach is that it limits the utility of learning statistical relationships. The

differential privacy criterion considers NIR as a non-privacy violation, therefore, enables learning

statistical relationships, but at the cost of potential disclosures through NIR.

In this thesis, we investigate the extent to which private information of an individual may be dis-

closed through NIR by query answers that satisfy differential privacy. We first define what a disclo-

sure of NIR means by randomized query answers, then present a formal analysis on such disclosures

by differentially private query answers. Our analysis on real life data sets demonstrates that while

disclosures of NIR can be eliminated by adopting a more restricted setting of differential privacy,

such settings adversely affects the utility of query answers for data analysis, and this conflict can

not be easily resolved because both disclosures and utility depend on the accuracy of noisy query

answers. This study suggests that under the assumption that the disclosure through NIR is a privacy

concern, differential privacy is not suitable because it does not provide both privacy and utility.

The question is whether it is possible to (1) allow learning statistical relationships, yet (2) prevent

sensitive NIR about an individual. In the second part of the thesis, we present a data perturbation and

sampling method to achieve both (1) and (2). The enabling mechanism is a new privacy criterion

that distinguishes the two types of NIR in (1) and (2) with the help of the law of large numbers. In

particular, the record sampling effectively prevents the sensitive disclosure in (2) while having less

effect on the statistical learning in (1). The data perturbation and sampling method are evaluated in

real life data sets in terms of both sensitive disclosures and utility. Empirical results confirm that

disclosures can be prevented with minor loss of utility.

Keywords: Data Privacy; Differential Privacy; Data Mining; Anonymization
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Chapter 1

Introduction

1.1 Data Privacy

The burst of internet has brought us to an age of data. And the main data sources are the grow-

ing numbers of population, devices, and sensors connected by the internet. While data provides

enormous value and benefits for the growth of global economy, it also brings significant privacy

concerns. Privacy and security have been identified as a main challenge of publishing data [2]. For

example, AOL released anonymized search logs for academic purposes, but searchers were easily

re-identified by their queries, and AOL had to remove the data shortly due to the release [8]. A

recent analysis of how companies are leveraging data analytics for marketing purposes showed that

a retailer was able to identify that a teenager was pregnant even before her father knew [26]. Several

other major privacy breaches have occurred in the past few years [61, 66, 86].

Nowadays, the field of data privacy has drawn many people’s attention. What is data privacy?

Dalenius defined the optimal data privacy in [22] as below:

access to the published data should not enable the adversary to learn anything extra

about any target victim compared to no access to the database, even with the presence

of any adversary’s background knowledge obtained from other sources.

Unfortunately, the above data privacy definition can not be achieved in real life due to boundless

background knowledge that adversaries can obtain from all kinds of sources [27]. Background

knowledge is the additional information that is obtained by adversaries from other resources other

than the published data set. Generally speaking, the concept of data privacy is to provide data for

analysis purpose while protecting individual’s sensitive information from people with malicious

purposes — defined as “adversaries” in this thesis. This is because one data user could dig useful
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statistical relationships and uncover sensitive information of individuals in the data set at the same

time. For example, if a collection of medical records is published to data researchers by a health

care institution, one researcher could try to learn useful statistical patterns (e.g., smoking people

tend to have lung cancer), and use such data to find individual’s sensitive information (e.g., Bob’s

disease is HIV ). The person located by adversaries is called as "target" or "victim" in the thesis. In

previous example, Bob is the target and his disease information is learned by adversaries, therefore,

his privacy is violated.

Numerous methods have been proposed to protect data privacy, see [35, 4, 10] for surveys.

These approaches can be categorized into two types [19]: syntactic privacy methods and differential

privacy method [27]. In syntactic methods, data is modified in ways such that some syntax con-

ditions are satisfied. While different syntax reflects different ways of defining privacy, they either

try to protect individuals from being recognized, or prevent their sensitive information from being

learned by adversaries. Some popular syntactic methods will be introduced in Section 2.2.1. Differ-

ential privacy shifts the focus from limiting the occurrence of a disclosure to hiding the impact of

a single individual on the occurrence. Differential privacy requires that no individual record could

significantly change the result of statistical analysis. In its simplest form, it returns noisy query an-

swers by adding some random noise to true answers, where the injected noise is carefully calibrated

to achieve differential privacy while providing utility for analysis use. For example, while the true

answer to the query “SELECT COUNT(*) FROM data set WHERE Gender = Female” is 200, the

returned answer could be 221, where a noise of 21 is randomly drawn following some distribution.

After differential privacy was proposed, it quickly became the gold standard privacy definition. A

well-known claim is that differential privacy provides strong privacy guarantees against an adver-

sary with strong background knowledge. In particular, it is claimed that even if the adversary knows

all but one record in the data set, the privacy is not violated for the individual behind that record:

the adversary can not observe a distinguishable difference with or without that specific one record

on query results [17].

1.2 Non-independent Reasoning and Data Privacy

The most important difference between syntactic privacy methods and differential privacy method

is whether they treat non-independent reasoning (NIR) as a privacy violation. NIR means that

the information of one record could be learned from other records in the same data set, with the

assumption that they share an identical underlying distribution. Suppose that in a data set of patient

information, if the adversary knows that 80% of patients getHIV and Bob is in the data set, without

2



any other auxiliary information, the adversary has 80% certainty to claim that Bob gets HIV . Here

the adversary assumes that all individuals in the data set have equivalent chance of having HIV .

NIR is powerful, which is easy to apply and widely adopted in Data Mining and Machine Learning.

For example, to accurately learn interesting patterns, usually, the pattern is learned from the training

data and then evaluated on the validation data. The rationale behind this operation is that both data

comes from the same source and shares the same underlying patterns/distributions.

Most syntactic methods treat NIR as a privacy violation, such as k-anonymity [75], l-diversity

[60], t-closeness [57], β-likeness [14], ∆-growth [76] and ρ1-ρ2 privacy [32]. To limit the influence

of NIR, these syntactic approaches focus on smoothing distributions of sensitive attribute values in

a sub population. The operation of smoothing makes sure that the distribution of sensitive attribute

values in a sub population is not far from the overall distribution in the raw data, and the overall

distribution is treated as public information. Without smoothing, adversaries may find individuals

in this sub population have a different probability of having some value sa on the sensitive attribute

compared to the overall individuals, this different probability obtained by adversaries is considered

to be a privacy violation in most literature [57, 60, 75]. For example, without smoothing adversaries

may find that male engineers tend to have high salary (e.g., > 50K), this would easily make Bob, a

male engineer, become the target of some financial fraud crimes. While the rule of “male engineers

tend to have high salary” seems expected, it does demonstrate the potential risk of NIR on a real life

data set. After all, truly sensitive data and findings are difficult to obtain and publish. One draw-

back of this smoothing strategy is that it limits the desired utility on learning interesting statistical

patterns. Because what you can learn from the whole data set is almost what you can learn from

any sub population.

Differential privacy, on the other hand, does not consider NIR to be a privacy violation because,

as claimed by Blum et al. [12] (page 4), “We explicitly consider non-independent reasoning as

a non-violation of privacy; information that can be learned about a row from sources other than

the row itself is not information that the row could hope to keep private”. Unlike most privacy

methods, it shifts the focus from limiting the occurrence of a disclosure to hiding the impact of a

single individual on the occurrence. Differential privacy requires that no individual record could

significantly change the result of statistical analysis. This kind of constraint, however, is different

from limiting the ability of the adversary to infer sensitive attribute values about individuals in

the data set. Example 1 below shows how the disease information of one individual is learned by

adversaries when differential privacy is applied.

Example 1. Suppose that Bob is a male engineer and his record is contained in a table D (Gender,

Job, Diseases), where Gender and Job are publicly known, and Diseases is a sensitive (private)

3
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Figure 1.1: Laplace Probability Density (b = 10, µ = 0)

attribute. To learn Bob’s disease, an adversary issues two count queries, that are queries asking for

the number of records satisfying the issued query.

Q1: “Gender=M AND Job=engineer",

Q2: “Gender=M AND Job=engineer AND Diseases=HIV".

To achieve differential privacy, a random Laplace noise ξi (i = 1, 2) is injected to the true answer

of queryQi before returning to users. Suppose that noises are generated by the Laplace distribution

with the scale b = 10 and the mean µ = 0, and the noisy answers for Q1 and Q2 are 1000 and 940,

respectively. The density function of a Laplace noise when b = 10 and µ = 0 is illustrated in Figure

1.1, in which the shaded area shows the probability when the noise falls into the range of [−30, 30].

The cumulative distribution function of the Laplace distribution is:

F (x) =


1
2 exp

(
x−µ
b

)
if x < µ

1− 1
2 exp

(
−x−µ

b

)
if x ≥ µ

(1.1)

Based on Equation (1.1) the shaded area is F (30)−F (−30) ≈ 0.9. This means the probability

that the injected Laplace noise ξi (i = 1, 2) falls into the range of [−30, 30] is 90%. If both ξ1 and

ξ2 fall into the range of [−30, 30] (i.e., the true answer of Q1 is in the rage of [970, 1030] and the

true answer of Q2 is in the rage of [910, 970]), then at least 90% engineers have HIV as disease

because 910/1030 ≈ 90%. Since ξ1 and ξ2 are generated independently, both of them fall into

the shaded area is around 90% × 90% = 81%. Therefore, the adversary has the confidence of

more than 81% to claim that more than 90% engineers have HIV. This is because there are other

scenarios that the adversary could claim that more than 90% engineers have HIV. For example,
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when both ξ1 and ξ2 are 50, the true answers of Q1 and Q2 are 950 and 890, respectively. This

means 890/950 ≈ 93.7% engineers have HIV. And the scenario of ξ1 = 50 and ξ2 = 50 does not

belong to the 81% probability when both ξ1 and ξ2 fall into the range of [−30, 30]. Based on NIR,

the disease of Bob could be learned from other male engineers in the same data set. Therefore,

Bob’s disease is revealed. Choosing the larger noise scale b = 1000 helps hide Bob’s diseases in

this case, but is not sufficient if the noisy answers are 1, 000, 000 and 999, 000. On the other hand,

a large scale renders query answers too noisy for meaningful data analysis. 2

Motivated by above observations of syntactic privacy methods and differential privacy method,

we raise the following two questions:

(A). To which extent the sensitive information could be learned when some notion of differ-

ential privacy is applied?

(B). Is it possible to (1) allow learning statistical relationships (e.g., smoking people tend to

have lung cancer), and at the same time, (2) prevent disclosures on sensitive attribute values

of individuals in the data set (e.g., Bob is likely to have cancer)? Syntactic privacy methods

satisfy (2) but not (1), and differential privacy method satisfies (1) but not (2).

For (A) we analyze the negative results of differential privacy, i.e., sensitive disclosures when

differential privacy is guaranteed. Our notion of disclosures refers to learning sensitive information

(such as diseases) of an individual, independent of the participation in the data set, and is based on

the utility claim of differential privacy. In other words, we show that the probability of disclosing

sensitive information of a record increases whenever the differential privacy mechanism delivers a

good accuracy of query answers. It is hard to eliminate such disclosures because they co-occur with

a good utility for data analysis that the differential privacy mechanism aims to provide. For (B),

the difficulty of achieving both (1) and (2) is that both learning statistical relationships and learning

sensitive attribute values of individuals employ NIR. The key of achieving both (1) and (2) is to

distinguish these two types of learning. We propose the notion of reconstruction privacy, which

satisfies both (1) and (2), and we further discuss how to achieve reconstruction privacy.

1.3 Contributions

In this thesis, we have two main contributions by answering the two questions in Section 1.2. Nei-

ther of the two leading categories in data privacy, syntactic privacy methods and differential privacy

method, is perfect. While syntactic privacy methods do not allow statistical relationships learn-

ing, the differential privacy method may release sensitive information of individuals in the data set.

5



The sensitive information disclosure in differential privacy has been investigated by some previous

works [47, 20, 62]. All disclosures discussed in previous works have restricted requirements and

details will be introduced in later part of this section. Question (A) is answered by showing that

a disclosure may occur without restricted requirements in this thesis. More importantly, it is hard

to eliminate such disclosures while allowing statistical relationships learning, because disclosures

occurrences and allowing statistical relationships depend on the same thing — the accuracy of dif-

ferentially private query answers. Intuitively, we ask the question (B): whether there is an approach

which is able to overcome shortcomings of both syntactic privacy methods and differential privacy

method.

1. Question (A) is answered in Chapter 3 through evaluating the sensitive information releasing

when some notion of differential privacy is applied. In particular,

• A notion of disclosures is formalized in terms of the probability of a small error in

learning sensitive information through NIR (Section 3.2). The sensitive information in

question (A) is calibrated through such disclosures.

• A formal analysis is presented on disclosures through query answers that satisfy typical

settings of differential privacy (Section 3.3). Specifically, we model the probability of

the error of learning sensitive information through NIR by a ratio distribution of two

Laplace variables. These variables represent the noisy answers of differential privacy.

To our knowledge, this is the first study on the probability of ratio distribution for two

Laplace variables. This modelling yields an efficient way of determining the disclosures

of query answers produced by the differential privacy mechanism.

• The above type of disclosures is studied on several real life data sets while a notion

of differential privacy is satisfied, and the impact of eliminating such disclosures on

data utility (Section 3.4). The study suggests that eliminating disclosures and retaining

utility are a direct conflict because both disclosures and utility depend on the same type

of information, i.e., noisy query answers. An implication of this study is that, under the

assumption that NIR is a privacy violation, differential privacy does not provide both

privacy and utility.

2. Question (B) is answered in Chapter 4. Reconstruction privacy is proposed to satisfy both

(1) and (2) as in question (B). In particular,

• The raw data has to be anonymized before publishing for protecting individual’s sensi-

tive information. To learn statistical relationships from the anonymized data set, some
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estimation approaches have to be adopted. The procedure of estimation is called recon-

struction. We define two types of reconstruction (Section 4.1): personal reconstruction

which aims at the sensitive information of a particular individual, and aggregate recon-

struction that is the source of learning statistical relationships. Besides, we propose

an inaccuracy requirement on personal reconstruction for individuals as a new privacy

criterion called reconstruction privacy. The division of the two types of reconstruction

makes it possible to protect individual’s sensitive information while providing useful

statistical relationships through limiting the accuracy of personal reconstruction and p-

reserving (as much as possible) the accuracy of aggregate reconstruction, and this further

satisfies the two requirements in question (B).

• Reconstruction privacy imposes a minimum value for the best upper bound on the prob-

ability of having a larger error using F ′ to estimate f of an adversary, where f and F ′

are the actual and estimated frequency of a sensitive value in a personal reconstruction

(Section 4.1). Note that the thing we try to limit is the error of the reconstruction for

f , which should not be confused with the relative increase of the attacker’s belief in

previous works such as the β-likeness [14], t-closeness [57] and (ρ1, ρ2)-privacy [32].

Unlike these previous works, reconstruction privacy does not bound the maximum val-

ue of F ′ or f or require them to be close to the global distribution, making it suitable

for learning statistical relationships through aggregate reconstruction. Also, reconstruc-

tion privacy avoids modeling the prior of an adversary, which can be tricky as shown in

[27][12] but is necessary in these previous works.

• An efficient test of reconstruction privacy is presented (Section 4.2). First, we show

a conversion between an upper bound for the tail probability of Poisson trials into an

upper bound on the probability of having a larger error using F ′ to estimate f . Then, we

obtain an efficient test of reconstruction privacy by adapting the notion of reconstruction

privacy to an existing upper bound for Poisson trials, i.e., the Chernoff bound.

• An efficient algorithm for producing a perturbed version data set that satisfies a given

specification of reconstruction privacy is presented (Section 4.3). The algorithm is high-

ly efficient because it only needs to sort the records once and make another scan on the

sorted data.

• Two claims are evaluated (Section 4.4). The first claim is that reconstruction privacy

can be violated by real life data sets even after data perturbation. The second claim
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is that the proposed method can preserve utility for statistical learning while providing

reconstruction privacy.

1.4 The Differences from Previous Works

Sensitive disclosures under differentially private query answers have been examined by recent works

[47, 20, 62, 85]. McClure et al. [62] proposed a way to generate binary synthetic data that satisfies

differential privacy. It also calculated the posterior probability of adversaries on uncovering true

sensitive values as the risk of statistical disclosure. The result in [62] showed that the level of

differential privacy does not directly affect the extent of statistical disclosure risks. Unfortunately,

the disclosure discussed in [62] depends on the simulation of data generation procedure. In this

paper, our way of defining disclosures does not depend on data generalization, therefore, is more

general and practical.

Kifer et al. [47] argued that in the presence of correlation on the sensitive information of records

(e.g., if one member in a family gets flu, the other members in the family are likely to get flu as well),

sensitive information of an individual could be learned from differentially private query answers.

Intuitively, the absence of a record is no longer sufficient for hiding the sensitive information of

a record because such information could be learned from correlated records. Bayesian differential

privacy was proposed by Yang et al. [85] to evaluate and prevent disclosures through correlated data

modelled by a Gaussian correlation model. The disclosures in this paper do not depend on record

correlations. Our disclosures depend on only the utility of published answers: when a differential

privacy mechanism promises a good utility, i.e., good accuracy of query answers, the probability of

learning sensitive information of a record from such answers increases. Such disclosures are hard

to prevent because they co-occur with good utility that a mechanism aims to provide.

Cormode et al. [20] demonstrated that a Bayes classifier could be built using differentially pri-

vate query answers to predict the value of an individual on sensitive attributes. The Bayes classifier

requires multiple queries for computing the joint probability of all attributes. This paper is differ-

ent in the following aspects. First, we show that each disclosure requires only two queries, which

increases the occurrence of disclosures by limiting the impact of noises to two queries. Second,

our disclosures take into account the changes of confidence of learning sensitive information for

a target individual relative to the confidence in the entire data set, which impose a larger threat.

Third, we provide a theoretical explanation for the disclosures under differential privacy based on

the convergence of the ratio distribution of two random Laplace variables. This result suggests that

it is possible to learn the sensitive information of an individual from the answers published by a

8



differential privacy mechanism with an arbitrary accuracy provided that the true query answers are

sufficiently large. In addition to the theoretical results, we also demonstrated that disclosures indeed

occur on real life data sets, especially when a differential privacy mechanism delivers good utility.
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Chapter 2

Preliminary

The raw data can not be published due to privacy concern, and the data has to be modified some-

how to satisfy some notion of data privacy. Usually, the modification is carefully done through

some anonymization operations. In this chapter we first introduce several leading categories of

anonymization operations for achieving some notion of data privacy. Secondly, we introduce two

main categories of data privacy definitions: syntactic methods and differential privacy. We also

survey some classic approaches in syntactic methods.

At beginning people tried to protect privacy by removing explicit identifiers before releasing the

data. Explicit identifiers are attributes that can be used alone to locate a person, such as names and

SIN numbers. Unfortunately, this simple strategy failed to protect privacy [8, 66]. After explicit

identifiers are removed, even single attribute could not uniquely identify a person, the combination

of some attributes often singles out a person, such as {Age,Gender, Zipcode}. The combination

of these attributes is called Quasi-Identifier (QI) [23]. In addition to QI , the data set D also

contains one sensitive attribute SA (usually, the disease information in the medical record or the

salary information in a census data set), which should be protected from adversaries. QI values are

known to public, in other words, they are non-sensitive to adversaries.

In this thesis we assume all attributes other than SA are QI and we also define them as non-

sensitive attributes (NA). In this thesisQI andNA are used interchangeably for referring attributes

other than SA. In this thesis we define QI group as a collection of records that agree on some QI

value. And all records in the same QI group share the same values on QI . It should be noted

that adversaries can not distinguish the target from other individuals in the QI group that the target

belongs to, because all individuals in one QI group share the same QI values and adversaries does

not know the SA value of the target (otherwise there is not way to protect the target’s SA values).
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2.1 Anonymization Operations

The purpose of anonymization is to change data, before it is published, so that the owner of each

record is hard to be identified, or the sensitive information of each record is hidden from adver-

saries. Some famous anonymization operations are: generalization, suppression, anatomization,

permutation and perturbation [36]. Generalization and suppression try to make data less accurate

for adversaries to learn sensitive information. For example, the job production designer may be

replaced by Artist. Anatomization and permutation try to de-connect the relationship between QI

and SA, so that adversaries can not infer accurate SA information of the target even she/he knows

the QI information of the target. The good thing about anatomization and permutation is that nei-

ther QI values or SA values are modified, however, since the relationship between the two are

de-associated it is not clear how regular Data Mining and Machine Learning tasks, such as clus-

tering, classification, could be achieved. Perturbation tries to maintain the original data for some

probability while changing the value of data for other cases. For example, the disease HIV may

be replaced by Flu. In this chapter we introduce two most popular methods among the above five

methods with details: generalization and perturbation.

2.1.1 Generalization

The generalization operation replaces the original value with a less specific value. In particular,

the replaced value has to be a super set of the original value. For categorical values, the value will

be replaced by the taxonomy parent of itself. For numeric values, usually a specific value will be

replaced by the interval which covers the original value, and the interval can be treated as a special

type of categorical values. For example, in Figure 2.1 the taxonomy parent of Engineer is Profes-

sional and [30, 35) is the taxonomy parent of [30, 33) and [33, 35). The purpose of generalization

is to make data less accurate and make it harder for adversaries to learn sensitive information. The

reverse operation of generalization is called specialization.

While generalization helps preventing adversaries from accurately learning sensitive informa-

tion of targets, it also leads to an inaccurate statistical relationship learning because of less descrip-

tion values. It has been proved that it is NP-hard to find the best generalization that could give

optimal utility while achieving privacy [64]. At beginning, generalization approaches [51, 72, 75]

require that all generalized values have to be at the same level. For example, in Figure 2.1 if Engi-

neer has to be generalized to Professional to satisfy some notion of data privacy, then Lawyer has

to be generalized to Artist as well because Artist and Professional are in the same level. Later many

works [9, 37, 38, 45, 52, 84] focus on improving utility using generalization while achieving the
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Figure 2.1: Taxonomy Trees for Jobs and Age

same level of privacy. And they do not require that generalized values have to be in the same level

any more.

2.1.2 Perturbation

Perturbation has been considered to be a promising approach to achieve data privacy in the history

of statistical disclosure because of its simplicity, efficiency and the ability to maintain statistical

information [36, 4, 77, 80, 25]. In perturbation, some data values are replaced by some synthetic

data with some probability so that adversaries can not easily link some record to its data owner.

A popular perturbation is called Uniform Perturbation [5]. For a given retention probability p,

where 0 < p < 1, for each record in D, we toss a coin with head probability p. If the coin lands on

head, the SA value in the record is retained; if the coin lands on tail, the SA value in the record is

replaced with a value picked from the domain of SA with equal probability (i.e., 1−p
m ) at random.

This perturbation operator is characterized by the following matrix Pm×m:

Pji =

 p+ 1−p
m if j=i (retain sai)

1−p
m if j 6=i (perturb sai to saj)

(2.1)
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A proper choice of the retention probability p can ensure some privacy requirements, such as

ρ1-ρ2 privacy [32][6]. The original proposal of ρ1-ρ2 privacy [32] considers the scenario where

there is only the sensitive attribute SA, no other attributes. In this scenario, ρ1-ρ2 privacy holds if

whenever the prior Pr[SA = sa] (i.e., the frequency of sa in the overall data set D) is not more

than ρ1, the posterior Pr[SA = sa | SA∗ = sa∗] (i.e., after observing the perturbed value sa∗ the

confidence of adversaries to claim that the original value is sa) is not more than ρ2, where SA∗

denotes the perturbed SA and sa∗ denotes the perturbed value in a record in D∗ 1. Pr[SA = sa] is

publicly known. Intuitively, ρ1-ρ2 privacy bounds the posterior of inferring the original SA value

after observing the perturbed SA value in a record.

The most different thing of perturbation compared to generalization is that, the value of each

record observed after perturbation can not reflect the authentic value, while the value observed after

generalization, though not accurate, reflects the authentic value. In the view of statistical learning,

the utility of the data set may be badly damaged due to large extent of generalization, while the

statistical information may be better reserved after perturbation.

2.2 Data Privacy Definitions

2.2.1 Syntactic Methods

Usually syntactic methods protect data privacy through generalization and perturbation operations.

In this section we introduce some popular and representative syntactic methods.

k-anonymity [75]

k-anonymity is a well known syntactic privacy solution to prevent locating individuals by using

their QI values. k-anonymity requires that in each QI group there has to be at least k records,

in other words, at least k records share the same QI values. Table 2.1 shows an example of 3-

anonymity on {Job,Gender,Age}.

With k-anonymity the adversary may not precisely identify the record of the target, but she/he

could infer the target’s SA value from the published data because k-anonymity does not take care

of SA values. For example, from Table 2.1 it can be simply observed that if the target is an artist

then the probability that the target has HIV is 75% (three out of four artists have HIV ).

l-diversity [60]
1This corresponds to the upward ρ1-ρ2 privacy in [32], where the authors also defined the notion of downward ρ1-ρ2

privacy.
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Table 2.1: Example of 3-anonymity

Job Gender Age Disease
Professional Male [35-40) Hepatitis
Professional Male [35-40) Hepatitis
Professional Male [35-40) HIV

Artist Female [30-35) Flu
Artist Female [30-35) HIV
Artist Female [30-35) HIV
Artist Female [30-35) HIV

l-diversity is proposed to address the limitation of k-anonymity by requiring that every QI

group should contain at least l “well-represented” SA values. The simplest understanding of “well-

represented” is to ensure there are at least l distinct SA values in each QI group.

When the overall distribution of SA values is skewed, however, the sensitive value of individuals

could still be revealed, as called skewness attack in [57]. For example, in a patient data set where

99% people have Flu and the rest 1% people haveHIV . Suppose that in aQI group g, distributions

for these two values are both 50%, which satisfies 2-diversity. But it already reveals that individuals

in g have more chance than the general population to have HIV .

t-closeness [57]

To avert skewness attack, t-closeness requires that the distribution of SA values in any QI

group, P , must be within the maximum distance t from the distribution of SA values in the whole

data set, Q. Here, Q is treated as the prior belief of adversaries and is public information. P , on the

other hand, is considered to be the posterior belief of adversaries. The distance between P and Q,

is treated as the information gain of adversaries in [57].

The distance between P and Q in t-closeness is the cumulative difference of these two distribu-

tions. This way of computing distance, though, does not protect those less frequent SA values, that

are more vulnerable and deserve more protection in most cases (e.g., it is considered a more serious

threat of releasing the disease is HIV , compared to revealing the disease is Flu, and HIV is more

rare compared to Flu in general). Because the change of less frequent SA values are hidden by the

change of more frequent SA values.

β-likeness [14]

β-likeness requires that the relative difference between the distribution of any sensitive value

sa, r, in any QI group, and the overall distribution of sa in the whole data set, q, can not be greater

than β, e.g., r−qq ≤ β. Unlike t-closeness, β-likeness treat all SA values equally and try to limit the

change of each SA value within the threshold β.

ρ1-ρ2 privacy [32]
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ρ1-ρ2 privacy requires that when the prior probability of a SA value sa (stereotypically, the

overall distribution of sa), is no more than ρ1, then its posterior probability is no more than ρ2, and

ρ1 < ρ2, where the posterior probability means the certainty of inferring the original SA is sa after

observing the anonymized SA value.

∆-growth [76]

∆-growth can be treated as an extension version of ρ1-ρ2 privacy. It requires that the posterior

for a SA value sa is within the maximum difference of ∆ from the prior probability. By setting ∆

to ρ2 − ρ1 no ∆-growth breach immediately guarantees no ρ1-ρ2 breach.

Remarks. k-anonymity and l-diversity fail to protect sensitive attribute values of individuals

when the adversary has background knowledge. Background information can be obtained from

various sources, such as well known facts, demographic information and observations of specific

individuals. Suppose in a QI group consisting of two records with SA values of HIV and Flu.

If the adversary knows that these two records belong to Bob and Alice, and Alice gets Flu, then

the disease of Bob is revealed. ρ1-ρ2 privacy and ∆-growth may not protect SA values of targets

in some scenarios. In the presence of the public attributes NA, the information on NA of a target

individual t can be used to bias the selection of records for t for estimating the posterior. As a

result, the posterior for t could be higher than (or lower than) Pr[SA = sa | SA∗ = sa∗] (i.e., after

observing the perturbed value sa∗ the confidence of adversaries to claim that the original value is

sa) derived in the absence of NA.

Other than the privacy issue, most syntactic methods also limit the desired utility for data re-

searchers. For example, all t-closeness, β-likeness and ρ1-ρ2 privacy aim to limit the distance of

posterior belief of adversaries (i.e., Q in t-closeness, r in β-likeness and ρ2 in ρ1-ρ2 privacy) from

the prior belief (i.e., P in t-closeness, q in β-likeness and ρ1 in ρ1-ρ2 privacy). In this case it makes

hard for data researchers to find useful pattern such as smoking people tend to have lung cancer,

because what you can find in the overall data set is almost what you can find in any sub population.

The approach in this thesis, which will be introduced in detail in Chapter 4, does not bound the

posterior belief of an adversary. Instead, it tries to bound the accuracy of estimating a SA value

sa in a sub population after anonymization. Individual’s sensitive information is protected because

the SA distribution can not be accurately learned by adversaries. This strategy has two importan-

t benefits: it allows the room for learning statistical relationships (data user’s posterior belief is

not limited), and it frees the publisher of measuring the adversary’s prior belief and specifying a

threshold for posterior beliefs, which can be tricky [27][12].
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2.2.2 Differential Privacy

Two data sets D1 and D2 are neighbouring data sets if they have the same cardinality but differ in

one record. The following notion of differential privacy is proposed in [27].

Definition 1. (ε-Differential Privacy) [27]. A randomization mechanism A satisfies ε-differential

privacy if for any output O of A and any neighbouring data sets D1 and D2,

Pr[A(D1) = O] ≤ exp(ε)× Pr[A(D2) = O]. (2.2)

Typically ε is a small value close to zero and exp(ε) is a value close to 1. The inequality

in Equation (2.2) implies that any neighbouring data sets D1 and D2 will have the nearly equal

probability for producing the output O. In other words, no single record could significantly affect

the probability of the randomized output; the privacy of this record is protected because it can have

any value as far as the published information is concerned. The parameter ε controls the privacy

level. A smaller ε means a stronger privacy level because the two probabilities in Equation (2.2) are

closer. In the literature [56, 43, 20, 24, 55, 81], ε is typically chosen from the range of [0.01, 2]. In

this thesis, we follow this range.

For answering statistical queries, ε-differential privacy is achieved by a randomization mecha-

nism that adds appropriately scaled random noise to the output of each query. The scale of the noise

depends on the sensitivity of the class of queries, which captures the maximum possible change

caused by a single record on the output of queries. Let ∆ denote sensitivity, that is defined as below.

Definition 2. (Sensitivity) [27]. The sensitivity of a sequence of queries,Q, denoted as ∆, is defined

as:

∆ = max
D1,D2

||Q(D1)−Q(D2)||1, (2.3)

for neighbouring data sets D1 and D2, where Q(Di) is the vector of query answers on data set Di,

i = 1, 2, and ||.||1 is the 1-norm of a vector.

In this thesis we focus on the core case when all queries are count queries, that are queries

asking for the number of records satisfying the issued query. The function Q(Di) maps the data

set Di to a vector of real number answers. For example, if the data set has one QI attributes: Age,

andQ contains two queries: “Q1: SELECT COUNT(*) FROM data set WHERE Age=20” and “Q2:

SELECT COUNT(*) FROM data set WHERE Age = 30”. The sensitivity ofQ is 1, because inserting

or deleting a record (e.g., a record of a 30-year-old individual) would change only one query (i.e.,

Q2) result by at most 1 and never change the other one query (i.e., Q1) result. Note that if editing
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record is allowed then the sensitivity of Q is 2, because editing a record (e.g., changing a record

from 30-year-old to 20-year-old) would change each query result by at most 1.

For answering statistical queries, ε-differential privacy is achieved by a randomization mecha-

nism that adds appropriately scaled random noise to the output of each query. The injected noise

may be drawn from a Laplace distribution [27], a Gaussian distribution [29, 63], or from some care-

fully designed matrix [55] to achieve differential privacy. In this thesis we focus on the Laplace

mechanism, which has been shown in [27] to achieve differential privacy, because they are most

studied in the literature.

We denote Lap(b) as the Laplace random variable with mean µ = 0 and scale b. Figure 2.2

shows the probability density function for Laplace distribution under various b and µ. The density

function for Laplace distribution is

f(x) = 1
2bexp

(
−|x− µ|

b

)

From Figure 2.2 we can observe that the generated random variable is concentratively distribut-

ed around the mean, 0. In other words, the probability of generating small noise is high while

producing large noise is unlikely. This property supports Laplace mechanism as a good scheme to

serve data privacy because the noise should not be neither too large to dominate the noisy answer

nor too small to hide the true answer. The other observation we can obtain is that the density curve

becomes flatter as b increases, which implies that large noise would be more likely to be added to

the true counts, thus, the true counts are better hidden from the adversary. This property supports us

to control the level of added noise by setting the value for b.
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Theorem 1. (Laplace Mechanism [27]). Let the set of queriesQ = {Q1, · · · , Qn} be the sequence

of statistical queries, where n is the total number of queries contained in Q. If an algorithmA adds

i.i.d. Laplace noise with scale b = ∆/ε and mean µ = 0 to the result of each query in Q, where ∆

is the sensitivity of Q, then A satisfies ε-differential privacy.

Proof. Let AQ be the Laplace mechanism for the set of queries Q. To satisfy ε-differential privacy,

the Laplace mechanism, AQ, adds a Laplace variable with mean µ = 0 and scale b to the result

of each query in Q. For any output O of A, the Laplace mechanism has been shown to satisfy

ε-differential privacy [27].

Pr[AQ(D1) = O] = 1
2bexp

(
−||Q(D1)−O||1

b

)
(2.4)

Pr[AQ(D2) = O] = 1
2bexp

(
−||Q(D2)−O||1

b

)
(2.5)

Recall that to satisfy ε-differential privacy, we have to make sure the value of Pr[AQ(D1)=O]
Pr[AQ(D2)=O] has

an upper bound as exp(ε). Replacing Pr[AQ(D1) = O] by the right term of Equation (2.4) and

replacing Pr[AQ(D2) = O] by the right term of Equation (2.5)

Pr[AQ(D1) = O]
Pr[AQ(D2) = O] = exp

( ||Q(D2)−O||1
b

− ||Q(D1)−O||1
b

)
Applying the triangle inequality within the exponent

Pr[AQ(D1) = O]
Pr[AQ(D2) = O] ≤ exp

( ||Q(D2)−Q(D1)||1
b

)
(2.6)

Note the right term of Equation (2.6) is bounded by exp
(

∆
b

)
= exp(ε), which is required by

the definition of the sensitivity of Q, and b = ∆/ε as defined in Theorem 1. Thus the ε-differential

privacy is achieved.

Many techniques have been proposed for applying differential privacy to specific data pub-

lishing and mining tasks. A survey by Dwork [28] provides a comprehensive review. For exam-

ple, differential privacy has been applied to releasing query and click histograms from search logs

[40, 48], recommender systems [63], publishing commuting patterns [59], publishing results of ma-

chine learning [13, 15, 46], clustering [33, 67], decision trees [34], mining frequent patterns [11],

and aggregating distributed time-series [70].
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An important assumption made by differential privacy is that NIR is not considered as a privacy

violation. This is stated no more clear than in [12]: “We explicitly consider non-independent rea-

soning as a non-violation of privacy; information that can be learned about a row from sources other

than the row itself is not information that the row could hope to keep private". In reality, however,

NIR remains a real threat to privacy: if Bob’s HIV status is accurately inferred from differentially

private query answers and if Bob cares about keeping this status private, Bob’s privacy is breached,

even if Bob’s record is not in the data. In fact, if Bob’s HIV status can be accurately learned from

other records, it makes no difference whether Bob’s record participates in the learning process.

This paper treats NIR as a privacy violation and considers a different type of privacy, that is,

whether some private information of an individual can be learned from the published information

given that a target individual is known to participate in the database. While differential privacy

ensures that the presence (or absence) of an individual can not be learned , we consider a notion of

privacy ensuring that sensitive information of a target individual can not be learned regardless the

presence or absence of an individual. Our work shows that the former does not guarantee the latter.

Some previous works on differential privacy focus on applying differential privacy to various da-

ta publishing scenarios. For example, [13, 42, 55, 81, 78, 3, 54] consider publishing query answers,

[43, 83] consider publishing histograms, and [7, 24] consider publishing marginals. These works

assume that the privacy concern is addressed by a specified ε-differential privacy, which ensures

that an adversary can not distinguish whether an individual participates in the statistical database

from published information. This thesis treats NIR as a privacy violation and considers a different

type of privacy, that is, whether some private information of an individual can be learned from the

published information given that a target individual is known to participate in the database. While

differential privacy ensures that the presence (or absence) of an individual can not be learned, we

consider a notion of privacy that ensures that sensitive information of a target individual can not be

learned. Our work shows that the former does not guarantee the latter.

Some previous works focus on improving the utility of differential privacy. They can be divided

into three categories: (1) data-aware algorithms [3, 21, 41, 82, 83, 55] that add different scales

of noises to different data sets; (2) workload-aware algorithms [24] that add different scales of

noises to different query workloads; (3) data- and workload-aware algorithms [54] that add different

scales of noises to different data sets and different query workloads. Most of these works [3, 21,

83, 55, 54] focus on low-dimension data (i.e., histograms or marginals). They partition the data

set to multiple bins of non-overlapped data and add carefully calibrated noise to each bin. The

partition is also delicately designed for achieving better utility. These works improve the utility

significantly. However, it is hard to extend these algorithms to adapt to high-dimension data because
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the procedure of finding the best partition usually consumes enormous time (i.e., O(n3u3) in [55]

and O(nu log u+ u2) in [54], where n is the total number of queries in the query load and u is the

product of all possible values in non-sensitive attributes and sensitive attributes).

Most of these algorithms add non-universal noise to query answers. In particular, they try to

wisely add less noise to achieve better utility. In this paper, we aim to evaluate sensitive disclosures

under differential privacy, not the utility. Therefore, it suffices to only consider the classic case when

differential privacy is achieved through adding the fixed scale of noise. If a disclosure can be found

when a fixed scale of noise is added, then it can almost always be found when less noise is added.
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Chapter 3

Evaluating Disclosures under

Differential Privacy

Non-independent reasoning (NIR) means that the information of one record could be learned from

other records in the same data set, with the assumption that they share an identical underlying

distribution. In Chapter 1 we pointed that differential privacy does not consider NIR to be a privacy

violation, therefore, the SA values of one individual may be inferred by adversaries from records

of other individuals through NIR even when differential privacy is applied.

In this chapter, we firstly illustrate one examples of disclosures under differential privacy in

Section 3.1. This examples intuitively show how sensitive information could be uncovered when

differential privacy is applied. Secondly, we formalize a notion of disclosures in terms of the prob-

ability of a small error in learning sensitive information through NIR in Section 3.2. Thirdly, we

present a formal analysis on disclosures through query answers that satisfy typical settings of differ-

ential privacy in Section 3.3. Specifically, we model the probability of the error of learning sensitive

information through NIR by a ratio distribution of two Laplace variables. And these variables rep-

resent for noisy answers returned by differential privacy mechanism. To our knowledge, this is the

first study on the probability of ratio distribution for two Laplace variables. This modelling yields

an efficient way of determining the disclosures of query answers produced by the differential priva-

cy mechanism. Fourthly, we study the above type of disclosures on several real life data sets while

a notion of differential privacy is satisfied, and the impact of eliminating such disclosures on data

utility in Section 3.4. And finally, this chapter is summarized in Section 3.5.
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3.1 Examples of Disclosure under Differential Privacy

Recall that Example 1 in Section 1.2 has been shown that NIR could be applied to infer the sensitive

information of individuals in data sets with good accuracy when some notion of differential privacy

is applied. One may assume that there should be no privacy issue in the above example if HIV is

shared by so many records in D. This needs clarification. Typically, D is collected for a targeted

study, as such, a majority in D is not necessarily a majority in the whole population, hence, pos-

sessing a sensitive value is considered sensitive. For example, if D is collected for an HIV study, it

is possible that 60% (i.e., a majority) of the males in D have HIV, but since the actual probability

of HIV in a general population is much lower than 60%, learning someone having HIV with 60%

probability is highly sensitive.

The above disclosure occurs to any noise distribution that has a fixed scale that is independent

of the database size. To our knowledge, most differential privacy mechanisms use a fixed scale

(such as Gaussian mechanism [29, 63] and Matrix mechanism [55]). While a fixed scale noise

masks the impact of a single individual on the occurrence of a disclosure, it does not mask the

fact that a disclosure occurs to the individual. This does not match legal definitions of privacy

[50], i.e., individually identifiable data needs to be protected. Under differential privacy, even a

single individual may not significantly affect the statistical analysis, the sensitive information of

that individual may be uncovered by adversaries, which has been shown in Example 1.

The next example (Example 2) shows that disclosures could be prevented by applying stronger

level of differential privacy, however, this comes with the cost of sabotaged utility.

Example 2. Consider the ADULT data set [1] that contains 45,222 records (without missing val-

ues) from the 1994 Census database. Consider the five attributes Education, Occupation, Race,

Gender, and Income. The Income attribute has two values, “≤50K”, for 75.22% of records, and

“>50K”, for 24.78% of records. We assume that learning the Income value for a record is sensitive.

On the raw data, the following two count queries Q1 and Q2 return the answers ans1 = 501 and

ans2 = 420, respectively:

Q1: “Prof-school ∧ Prof-specialty ∧ White ∧ Male”,

Q2: “Prof-school ∧ Prof-specialty ∧ White ∧ Male ∧ >50K”.

These answers imply the following rule with the confidence Conf = ans2
ans1

= 0.8383. The confi-

dence indicates the certainty of the adversary to claim that any person satisfying Q1 has more than

50K salary.

{Prof-school, Prof-specialty, White, Male} → >50K.

22



Since this confidence is significantly higher than the overall frequency 24.78% of the value “>50K”,

this rule may violate the privacy of the individuals matching the condition of Q1. While this rule

seems expected, it does demonstrate the potential risk of NIR on a real life data distribution. After

all, truly sensitive data and findings are difficult to obtain and publish.

The differential privacy mechanism will return the noisy answers ans′i = ansi + ξi, i = 1, 2,

where the noises ξi’s follow some distribution, and an adversary has to gauge Conf by Conf ′ =
ans′2
ans′1

. Consider the widely used Laplace noise distribution Lap(b) = 1
2b exp(−

|ξ|
b ), where b is the

scale factor. The setting of b = ∆/ε would ensure ε-differential privacy for the sensitivity ∆ of the

query function. Let us set ∆ = 2 to account for the two count queries. Note that the effect of a

larger ∆ can be simulated by the effect of a smaller ε because b = ∆/ε.

Table 3.1: {Prof-school, Prof-specialty, White, Male} → >50K (Conf=83.83%)

ε = 0.01 (b = 200) ε = 0.1 (b = 20) ε = 0.5 (b = 4)
Mean SE Mean SE Mean SE

Conf ′ 1.34392 1.36299 0.860966 0.0985138 0.832659 0.0645165
|ans1 − ans′1|/ans1 0.614742 0.533185 0.0693353 0.0272098 0.0262412 0.0144438
|ans2 − ans′2|/ans2 0.570118 0.983959 0.102247 0.0820627 0.069974 0.0636316

Table 3.1 shows the mean of Conf ′ and the relative error |ansi−ans
′
i|

ansi
of query answers over

10 trials of random noises, and the standard error (SE) of the mean 1 and SE = s√
10 , where s is

the standard deviation and 10 is the total number of random trials. Conf ′ measures the disclosure

(in red) and |ansi−ans
′
i|

ansi
measures the utility of query answers (in blue). At the higher privacy level

ε = 0.01, Conf ′ deviates substantially from Conf = 0.8383, but the utility of the noisy answers is

also poor because of the large relative errors and SE. At the lower privacy level ε = 0.5, the utility

of noisy answers improves significantly, but Conf ′ = 0.8327 is within 1% difference from Conf

with a small SE (i.e., 0.0645); in this case, any instances of ans′1 and ans′2 are sufficient to gauge

the income level of an individual. 2

To ensure a good utility, a fixed (and small) scale b of noises is essential. Indeed, improving

utility through reducing noises is a major focus of the work on differential privacy (see [53] for a

list). As the query answer becomes larger, such noises become less significant, which improves the

utility of noisy answers ans′i, therefore, the accuracy of Conf ′ = ans′2
ans′1

. Thus, the good utility of

ans′i comes together with the risk of disclosures. A general and quantitative analysis on this type of

attack will be presented in Section 3.2. Choosing a large noise scale (i.e., a smaller ε) helps thwart

such attacks, but it also hurts the utility for data analysis. In fact, as long as the noise scale stays

fixed, the noises eventually become insignificant for large query answers.
1https://en.wikipedia.org/wiki/Standard_error
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3.2 Disclosure of Noisy Answers

We now formalize the notion of disclosures through noisy answers and NIR. In this section, we

consider the noisy answers generated by any noise distribution, not necessarily by the differential

privacy mechanism. The case for noisy answers published by the differential privacy mechanism

will be considered in Section 3.3.

3.2.1 Attacks

We consider a micro data set D containing one sensitive attribute (SA) and several other public

non-sensitive attributes NA = {A1, ..., A|NA|}, where |NA| is the number of distinct attributes in

NA. For 1 ≤ i ≤ |NA|, xi denotes a domain value of Ai. Let g = D(x1, ..., x|NA|) be a personal

group, which is the subset of records that match xi on every Ai. For example, in the data set with

NA = {Gender,Age,Occupation}, the subset of records satisfying {Gender = Female,Age =

22, Occupation = Engineer} is a personal group, and the subset of records agreeing on {Age =

22, Occupation = Engineer} is the union of two personal groups {Gender = Female,Age =

22, Occupation = Engineer} and {Gender = Male,Age = 22, Occupation = Engineer}.

The total number of personal groups in the data set depends on the number of values in each NA.

For example, if NA = {Gender, Zipcode} and if Gender has two values and Zipcode has 100

values, there are 200 possible personal groups with each group containing the records in D that

share the same values on Gender and Zipcode. Notice that each record belongs to exactly one

personal group.

Suppose that an adversary wants to learn the SA value of some target individual t. The adversary

knows all values of the public NA of t and that t has a record in D. One way to learn the SA value

of t is to identify the personal group to which t belongs (i.e., the group that matches all t’s NA

values), say g, and to infer the information on SA of t from the distribution of SA values of the

records in this group, assuming that t follows the same distribution on SA as those in its personal

group through NIR. This assumption makes sense in that the records in the same personal group are

indistinguishable by their NA. There may be other ways to learn the SA value of t, for example,

using the combined set of the records from multiple personal groups that partially match t’s NA

values, provided that t’s SA value follows the same distribution as those records in these groups. But

considering disclosures via personal groups suffices for our purpose, which is showing disclosures,

instead of eliminating disclosures.

To find t’s value on SA, the adversary can estimate the probability of a particular SA value sa

in g. Let gsa denote the set of records in g that have sa on SA. This probability can be estimated by
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|gsa|
|g| , called the true confidence of sa in g, where | · | is the size of a set. Under our assumption, this

confidence is the adversary’s best bet on t’s probability of having sa using the information on g.

Now consider a publishing mechanism where a user extracts information about D by getting

answers to count queries. As a user, the adversary gets |g| and |gsa| through the following two

queries:

Q1 : “SELECT COUNT(*) FROM DWHERE NA = t[NA]”

Q2 : “SELECT COUNT(*) FROM DWHERE NA = t[NA] AND SA = sa”.
(3.1)

where NA = t[NA] denotes the condition A = t[A] for each NA attribute A in g and t[A] is the

value of t on A. Let φ and θ be the answers for queries Q1 and Q2, where θ ≥ 0, φ ≥ θ and φ > 0.

Note that φ = |g| and θ = |gsa|.

A privacy-preserving publishing mechanism will publish noisy answers by adding some noise

to the answer to each query. Let X = φ+ ξ1 and Y = θ + ξ2 be the noisy answers for Q1 and Q2

returned by some privacy mechanism, where ξi’s are the noises. Note θ
φ ≤ 1 and θ

φ represents the

chance that t has the sa value on SA. Note Y
X = θ+ξ2

φ+ξ1
= θ/φ+ξ2/φ

1+ξ1/φ
. The adversary gets the noisy

answers X and Y , instead of the true answers φ and θ, and uses Y
X to estimate the true confidence

θ
φ . Y

X is called the noisy confidence of sa in g.

The intuition that Y
X may lead to a disclosure is as follows. For any ξi of a fixed scale, as the

answer φ increases, ξ2/φ and ξ1/φ decrease and Y
X approaches θ

φ . If θ
φ is large enough (which is

application specific), the adversary learns that t has the sensitive value sa with a high probability.

This construction is general because it does not assume record correlation (record correlation is

required in [47] for sensitive information disclosure analysis) and does not depend on the noise

distribution except that the noises have a fixed scale. Below, we formalize this intuition. First, we

show a lemma.

Lemma 1. Let φ and θ be the true answers to Q1 and Q2, φ 6= 0. Let X = φ+ ξ1 and Y = θ+ ξ2

be the noisy answers for Q1 and Q2 with the noises ξi having the zero mean and the variance V .

Then

E[ YX ] ' θ
φ(1 + V

φ2 ) and V ar[ YX ] ' V
φ2 (1 + θ2

φ2 )

Proof. Note that E[ YX ] is not equal to E[Y ]
E[X] . Using the Taylor expansion technique [31, 74], E[ YX ]

and V ar[ YX ] can be approximated as follows:

E[Y
X

] ' E[Y ]
E[X] + cov[X,Y ]

E[X]2 + V ar[X]E[Y ]
E[X]3
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V ar[Y
X

] ' V ar[Y ]
E[X]2 −

2E[Y ]
E[X]3 cov[X,Y ] + E[Y ]2

E[X]4V ar[X]

The error of the approximation is the remaining terms of the Taylor expansion that are dropped.

E[X] = φ and E[Y ] = θ (because noises have the zero mean), V ar[X] = V ar[Y ] = V , and

the covariance cov[X,Y ] = cov[φ + ξ1, θ + ξ2] = cov[ξ1, ξ2]. Since ξ1 and ξ2 are unrelated,

cov[ξ1, ξ2] = 0. Substantiating these into the above equations and simplifying, we get E[ YX ] and

V ar[ YX ] as required.

For any noise distribution with the zero mean and a fixed variance V , as the query answer

φ increases, V
φ2 decreases, E[ YX ] approaches θ

φ and V ar[ YX ] approaches zero. In general, E[ YX ]

approaching θ
φ does not entail Y

X approaching θ
φ , for particular instances X and Y . However, if

V ar[ YX ] approaches zero, the deviation of Y
X from E[ YX ] approaches zero, YX approaches θ

φ . This is

summarized in the next corollary.

Corollary 1. Let φ and θ be the true answers toQ1 andQ2, φ 6= 0. LetX = φ+ξ1 and Y = θ+ξ2

be the noisy answers for Q1 and Q2, where ξ1 and ξ2 are injected noises. For any noise distribution

with the zero mean and a fixed variance V , as the query answer φ increases, YX approaches θ
φ .

To our knowledge, Corollary 1 covers all noise distributions employed by the differential privacy

mechanism, including Laplace mechanism [27], Gaussian mechanism [30], and Matrix mechanism

[55], because these distributions have a zero mean and a fixed variance. To see how large φ is needed

for YX to be accurate enough for θφ , let us consider the Laplace mechanismLap(b) = 1
2bexp(−|ξ|/b),

where b is the scale factor, and a similar analysis can be performed for other mechanisms. Lap(b)

has the zero mean and the variance V = 2b2. The setting b = ∆/ε ensures ε-differential privacy,

where ∆ is the sensitivity of the queries of interest, which roughly denotes the worst-case change in

the query answer on changing one record in any possible database. ∆ is a property of the queries,

not a property of the database. Hence, V is fixed for a given query class and Corollary 1 applies

to Lap(b). Substituting θ
φ ≤ 1 and V

φ2 = 2b2

φ2 = 2
(
b
φ

)2
into Lemma 1 and simplifying, we get a

simple bound on |E[ YX ]− θ
φ | and V ar[ YX ] in terms of the scale factor b and the query answer φ (but

not the privacy parameter ε or the sensitivity ∆ of queries).

Corollary 2. Let φ and θ be the true answers toQ1 andQ2, φ 6= 0. LetX = φ+ξ1 and Y = θ+ξ2

be the noisy answers for Q1 and Q2, where ξ1 and ξ2 are injected noise. b is the scale factor of the

injected Laplace noise. (i) |E[ YX ]− θ
φ | ≤ 2

(
b
φ

)2
. (ii) V ar[ YX ] ≤ 4

(
b
φ

)2
.

Thus, the value of 2
(
b
φ

)2
is an indicator of how close Y

X is to θ
φ . Table 3.2 shows the values of

2
(
b
φ

)2
for various query answers φ and settings of b (the corresponding privacy parameter ε for the
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Table 3.2: 2
(
b
φ

)2

HHH
HHb
φ

5000 1000 500 200 100

b = 10 (ε = 0.2) 0.000008 0.0002 0.0008 0.005 0.02
b = 20 (ε = 0.1) 0.000032 0.0008 0.0032 0.02 0.08
b = 40 (ε = 0.05) 0.000128 0.0032 0.0128 0.08 0.32
b = 200 (ε = 0.01) 0.0032 0.08 0.32 2 8

setting of ∆ = 2 is shown within the brackets, which accounts for answering the two queriesQ1 and

Q2 in a row). The boldface highlights where 2
(
b
φ

)2
is small enough so that YX is a good indicator

of θ
φ . Take (b = 20, φ = 500) as an example where 2

(
b
φ

)2
= 0.0032. |E[ YX ] − θ

φ | ≤ 0.0032

and V ar[ YX ] ≤ 0.0032× 2 = 0.0064. Indeed, Corollary 2 quantifies a condition of the occurrence

of disclosures in terms of b
φ : as a rule of thumb, a ratio b

φ ≤
1
20 would ensure that Y

X is a good

indicator of θ
φ because 2

(
b
φ

)2
≤ 2

400 . In this case, if θ
φ is high enough to be considered as sensitive,

a sensitive disclosure would occur through accessing noisy answers X and Y . This condition also

suggests that such disclosures can not be avoided by choosing a large scale factor b if the actual

answer φ can be arbitrarily large.
Y
X being close to θ

φ is a necessary condition for inferring θ
φ , but accurate inference does not

always lead to a disclosure of sensitive information. A disclosure also requires that θφ is significantly

higher than the prior knowledge in the absence of t’s information on g. Otherwise, the accurate

inference is not useful because prior knowledge is known to the adversary before she/he launches

the attack. In this work, we consider the true confidence of sa in the entire data set D as the prior

knowledge, that is, |Dsa||D| , where |Dsa| is the number of records in D containing sa on SA. When θ
φ

is significantly higher than |Dsa||D| , t’s information on g has identified a group of individuals, one of

them being t, that are more frequently associated with sa than general people in the data set. In this

sense, we say that a disclosure occurs to t.

3.2.2 Definition of Disclosures

From the above discussion, a disclosure occurs when both conditions are satisfied: (A) the noisy

confidence is close enough to the true confidence; (B) the true confidence is much larger than the

prior. For (A), we introduce the closeness probability, CPτ , to calibrate the closeness of the true

confidence and the noisy confidence, as defined below.
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Definition 3. (CPτ , Closeness Probability) For τ > 0, the closeness probability for a SA value

sa in a personal group g is

CPτ = Pr
[∣∣∣∣∣

θ
φ −

Y
X

θ
φ

∣∣∣∣∣ ≤ τ
]
. (3.2)

where θ and φ (X and Y ) are true (noisy) answers to Q1 and Q2 as in Equation (3.1).

In the definition of CPτ , τ is the parameter indicating the extent of the closeness between the

true confidence and the noisy confidence. Since disclosure requires the noisy confidence to be close

to the true confidence, we require 0 < τ < 1. In other words, when the absolute relative error of

the two confidences is no smaller than 100% we consider the noisy confidence is too coarse to be

adopted for estimating the true confidence accurately. A larger CPτ and a smaller τ imply that the

noisy confidence is a more accurate estimate of the true confidence. CPτ is the probability that the

relative error of the noisy confidence Y
X compared to the true confidence θ

φ is within the closeness

parameter, τ . And a larger value of CPτ suggests a disclosure could be more likely found. CPτ is

a probability, therefore, the value of CPτ falls in the range of (0, 1].

For (B), we introduce the variable jump, J to calibrate the distance from the true confidence,
θ
φ , to the prior knowledge, f . In this thesis we always assume that the prior knowledge on some SA

value sa is the global distribution of sa in overall data set (i.e., f = |Dsa|
|D| ).

Definition 4. (J , Jump) For τ > 0, the jump for a SA value sa in a personal group g is

J = θ/φ

f
(3.3)

where θ and φ are true answers to Q1 and Q2 as in Equation (3.1), f is the prior knowledge

obtained by adversaries on sa and f = |Dsa|
|D| .

A larger value of J suggests that individuals in g have significantly larger probability of having

sa as SA values compared to general individuals in the data set. Therefore, a disclosure may occur.

Definition 5. (Disclosure) Given the thresholds τ > 0, KJ > 1, 0 < KCP ≤ 1, and a personal

group g, a value sa is disclosed in g wrt (τ,KJ ,KCP ) if (1) CPτ ≥ KCP and (2) J ≥ KJ .

KCP and KJ are given thresholds for CPτ and J , respectively. A smaller τ , a larger KCP ,

and a larger KJ suggest a more severe disclosure, implying that the confidence can be estimated

from the observed noisy confidence with better accuracy, and the confidence is much higher than its

prior. The above definition of disclosures is consistent with the literature, e.g., β-likeness [14], in

that they both try to limit the difference between the global distribution of some SA value sa and

the distribution of such sa in a personal group g (i.e., condition (2)). Other than this constraint, we
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Table 3.3: Notations in Chapter 3

Notations Explanation
D the data set
Dsa the subset of D with sa on SA
t a target individual
sa a domain value of SA
g a personal group
gsa the subset of g with sa on SA
φ = |g|, θ = |gsa| true answers for query Q1 and Q2 in (3.1)
X,Y noisy answers corresponding to φ and θ
θ
φ ,

Y
X true confidence and noisy confidence of sa in g

also consider the difference of confidence within a personal group before and after adding the noise,

i.e., condition (1). This is because with the injected noise, the adversary is not able to get the true

confidence of sa in g, instead, she/he has to use the noisy confidence to gauge the true confidence,

therefore, a close noisy confidence is necessary for enabling a disclosure. Table 3.3 outlines the

notation used in this section.

3.3 Disclosure of Differential Privacy

In this section, we study the risk of disclosures measured by Definition 5 with noisy answers pub-

lished by a randomization mechanism satisfying a differential privacy guarantee.

3.3.1 Computing CPτ

With the Laplace noise distribution Lap(b), we can now derive for CPτ in Definition 3. Recall that

φ and θ are the actual query answers, and X and Y denote the variables for the noisy version of φ

and θ after adding a Laplace noise. So, the noises x− φ and y − θ follow the Laplace distribution:

fX(x) = 1
2b exp

(
−|x− φ|

b

)
(3.4)

fY (y) = 1
2b exp

(
−|y − θ|

b

)
(3.5)

Notice that φ is the mean of X and θ is the mean of Y because Laplace noises have the zero mean.

Also, we assume that 0 < θ ≤ φ, φ > 0 and b > 0.

29



It is easy to see that CPτ is equal to

Pr
[∣∣∣∣ θφ − Y

X

∣∣∣∣ ≤ τ ′] (3.6)

where τ ′ = τ × θ
φ > 0. To compute the probability in (3.6), we define the following cumulative

function for the ratio of two Laplace variables, Z = Y
X ,

FZ(z) = Pr[Z ≤ z]

Most studies on the ratio of two random variables [73][65] focus on situations when at least

one variable follows some distribution other than Laplace. To our knowledge, this is the first study

on the probability of ratio distribution of two Laplace variables. The disclosure considered here,

the ratio of two random variables, G/H , has other applications. One example is the stress-strength

model [49] in the context of reliability. In the simplest form, this model estimates the reliability of a

component with strength under stress. G represents the stress encountered by the component andH

stands for the strength of the component to beat stress. The component fails when the stress exceeds

or equals to the strength and functions properly whenever G < H . Therefore, the reliability of the

component is defined as the probability of not failing, i.e., Pr[G < H] or Pr[G/H ≤ z] for some

z < 1. In a similar spirit, the ratio probability can also be applied in the case of demand-supply

where the two are modeled as random variables.

Let F 1
Z(z) be FZ(z) for z < 0, let F 2

Z(z) be FZ(z) for 0 < z ≤ θ
φ , and let F 3

Z(z) be FZ(z)

for z > θ
φ . Lemma 2 computes the cumulative density function of the ratio of two Laplace random

variables. The proof of Lemma 2 can be found in Section A.

Lemma 2. Assume z 6= 0 and z 6= ±1.

For z < 0,

F 1
Z(z) =

[
z2

2(1− z2)

] [
exp

(
θ − zφ
zb

)]
− 1

2(z + 1)

[
exp

(−(θ + φ)
b

)]
+ 1

2 exp
(
−φ
b

)
− 1

2(z2 − 1)

[
exp

(
zφ− θ
b

)]
;

(3.7)

For 0 < z ≤ θ
φ ,

F 2
Z(z) =

[
z2

2(z2 − 1)

] [
exp

(
zφ− θ
zb

)]
− 1

2(z + 1)

[
exp

(−(θ + φ)
b

)]
+ 1

2exp
(
−φ
b

)
− 1

2(z2 − 1)

[
exp

(
zφ− θ
b

)]
;

(3.8)
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For z > θ
φ ,

F 3
Z(z) = z2

2(1− z2)

[
exp

(
θ − zφ
zb

)]
− 1

2(z + 1)

[
exp

(−(θ + φ)
b

)]
+ 1 + 1

2exp
(
−φ
b

)
− 1

2(1− z2)

[
exp

(
θ − zφ
b

)]
.

(3.9)

2

Theorem 2. Assume that θ > 0, φ > 0 and τ ′ > 0.

1. CPτ = Pr
[∣∣∣ θφ − Y

X

∣∣∣ ≤ τ ′] is

 F 3
Z

(
θ
φ + τ ′

)
− F 1

Z

(
θ
φ − τ

′
)

if θφ − τ
′ < 0

F 3
Z

(
θ
φ + τ ′

)
− F 2

Z

(
θ
φ − τ

′
)

if θφ − τ
′ > 0

(3.10)

2. limφ→∞ Pr
[∣∣∣ θφ − Y

X

∣∣∣ ≤ τ ′] = 1.

Proof. 1) Let Z = Y
X and the cumulative probability function of Z could be expressed as F 1

Z(z),

F 2
Z(z) or F 3

Z(z) when z falls into different ranges in Lemma 2. Rewrite
∣∣∣ θφ − Z∣∣∣ ≤ τ ′ into θ

φ −τ
′ ≤

Z ≤ θ
φ + τ ′, and CPτ = Pr

[∣∣∣ θφ − Z∣∣∣ ≤ τ ′] = FZ
(
θ
φ + τ ′

)
− FZ

(
θ
φ − τ

′
)

. From the result

of Lemma 2, because τ ′ > 0,
(
θ
φ + τ ′

)
> θ

φ , FZ
(
θ
φ + τ ′

)
is always represented in the form

of F 3
Z

(
θ
φ + τ ′

)
, FZ

(
θ
φ − τ

′
)

is expressed in the form of F 1
Z

(
θ
φ − τ

′
)

when θ
φ − τ ′ < 0, and

FZ
(
θ
φ − τ

′
)

is expressed in the form of F 2
Z

(
θ
φ − τ

′
)

when θ
φ − τ

′ > 0. This shows Theorem 2, 1).

2) As φ approaches to ∞, all exp terms in F 1
Z , F 2

Z and F 3
Z in (3.10) approach 0 because the

exponents are negative. Thus, Pr
[∣∣∣ θφ − Y

X

∣∣∣ ≤ τ ′] approaches to 1.

Theorem 2 provides the theoretical basis for why the noisy confidence is a good estimate of the

true confidence when φ is large. It also provides a way to compute the probability in (3.6), thus,

CPτ . By replacing τ ′ with τ × θ
φ in (3.10), we have the following computation of CPτ .

Corollary 3.

CPτ =

 F 3
Z

(
(1 + τ) θφ

)
− F 1

Z

(
(1− τ) θφ

)
if τ > 1

F 3
Z

(
(1 + τ) θφ

)
− F 2

Z

(
(1− τ) θφ

)
if 0 < τ < 1

(3.11)

The value of CPτ depends on τ , b, φ, and θ/φ. Let us evaluate CPτ for typical values of these

parameters. The settings for all parameters can be found in Table 3.4 with the default settings in

bold face. Since our disclosure considers the distance from the true confidence θ/φ to the prior, it is

unlikely to have a disclosure when true confidence is small. Thus, here we consider relatively large

true confidece, i.e., {0.5, 0.7, 0.9}. The range of ε has been discussed in Section 2.2.2 and the same
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Table 3.4: Parameter Table

Parameters Settings
θ
φ 0.5, 0.7, 0.9
τ 0.1, 0.2, 0.3
φ 100, 1000, 2000
ε 2, 1, 0.5, 0.1, 0.01
∆ 25
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(b) vs. θφ (τ = 0.2, φ = 1000)
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(c) vs. φ (τ = 0.2, θφ = 0.7)

Figure 3.1: CPτ (∆ = 25)

range [0.01, 2] is applied here. τ represents the closeness extent between the noisy confidence and

the true confidence and a smaller τ means a more severe disclosure. We set τ for {0.1, 0.2, 0.3} and

we want to find out disclosures when the relative error of using noisy confidence to estimate the true

confidence is {10%, 20%, 30%}. Recall that the scale factor b of the Laplace noise is determined

by both the sensitivity (i.e., ∆) and the differential privacy parameter ε. We fix ∆ to 25 and change

the value of ε. This choice of ∆ is comparable with those derived from real life data sets in our

experiments (Section 3.4).
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Table 3.5: Attributes in Data Sets

Data Set Attributes (Domain Size)
EDU Gender (2), Occupation (50), Marital (6), Race (9), Education (14)
OCC Gender (2), Education (14), Marital (6), Race (9), Occupation (50)
SALARY Gender (2), Education (14), Marital (6), Race (9), Work-class (7), Country (69), Salary (50)

Figure 3.1 shows howCPτ varies with respect to τ , θφ and φ under various levels of ε-differential

privacy. Several points can be observed: i) a smaller ε (i.e., adding more noises), which imposes a

more restricted differential privacy, could help prevent the true confidence and the noisy confidence

from being too close; ii) as τ increases, CPτ increases as well, but τ does not affect the value of

CPτ much; iii) when the true confidence is larger, it is easier for the noisy confidence to be closer

to the true confidence; iv) a larger φ results in a larger CPτ ; in other words, when φ is large, the

true confidence and the noisy confidence tend to be closer. This is consistent with Theorem 2.

In sum, adding noises of a larger scale (by choosing a small ε) and having smaller φ are the

two leading factors that could help prevent the noisy confidence from being too close to the true

confidence. For a given data set, the values of φ and θ are fixed for given queries, and increasing

the scale of noises is the only way to protect the true confidence. However, adding larger noise

inevitably degrades the utility of data analysis because both noisy confidence and utility depend on

noisy query answers. This suggests a limitation of differential privacy: a good utility leads to a bad

disclosure, and elimination of disclosure leads to elimination of utility as well. We will investigate

this relationship on real life data sets in the next section.

3.4 Reality Check

Section 3.3 modeled the disclosure when differential privacy is applied. In this section, we inves-

tigate the extent to which private information of an individual may be disclosed through NIR by

query answers that satisfy differential privacy in real life data sets. We also study the impact on

utility by simply using larger noises to remove such disclosures.

3.4.1 Experimental Setup

All experiments were implemented in Python and ran on an Intel Xeon(R) E5630 CPU 2.53GHZ

PC with 12GB of RAM. All three data sets SALARY, EDU and OCC we used were extracted from

the US census data 2 about personal information of American adults. SALARY was used in [79, 14],

and both EDU and OCC were used in [79, 16]. All data sets have the same number of records (i.e.,
2Downloadable from http://www.ipums.org.
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Table 3.6: The Data Set and Sample Marginals in Example 3

(a) A data set D

Age Gender Occupation Disease
23 F Lawyer Flu
35 F Engineer HIV
46 M Engineer Flu
30 M Lawyer HIV
50 M Engineer Flu
33 F Lawyer HIV

(b) A 2-D marginal

Gender Occupation Count
M Lawyer 1
M Engineer 2
F Lawyer 2
F Engineer 1

(c) A 2-DSA marginal

Gender Occupation Disease Count
M Lawyer Flu 0
M Lawyer HIV 1
M Engineer Flu 2
M Engineer HIV 0
F Lawyer Flu 1
F Lawyer HIV 1
F Engineer Flu 0
F Engineer HIV 1

500k). Table 3.5 shows the information of attributes with domain size in brackets, and the SA is

marked in bold.

3.4.2 Publishing Scenarios

Many typical data analysis tasks make use of low dimensional marginals [7, 78], where each

marginal corresponds to some subset of attributes with each row being the count for one combi-

nation of the attribute values. Therefore, a marginal consists of the answers for all the count queries

over those attributes. For a given data set, we considered publishing all 2-D (two dimensional)

marginals on the attributes in NA, and for each, publishing the corresponding marginal expanded

with the extra attribute SA, denoted by 2-DSA. There are
(|NA|

2
)

2-D marginals and the same num-

ber of 2-DSA marginals, where |NA| is the number of distinct attributes in NA. |M| = 2 ·
(|NA|

2
)

is the total number of marginals. Example 3 below illustrates instances of marginals on a raw data

set D.

Example 3. Assume that a data set D has three NA: Age, Gender and Occupation, and one SA:

Disease. Tables 3.6a, 3.6b, and 3.6c illustrate D, a 2-D marginal on {Gender,Occupation}, and

the corresponding 2-DSA marginal on {Gender,Occupation,Disease}, respectively. |NA| in
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this data set is 3, thus, there are
(3
2
)

(i.e., three) 2-D marginals and three 2-DSA marginals in total.

The three 2-D marginals are {Age,Gender}, {Age,Occupation} and {Gender,Occupation},

and the three 2-DSA marginals are {Age,Gender,Disease}, {Age,Occupation,Disease} and

{Gender,Occupation,Disease}. Here the counts in the marginals are based on the raw data

set before adding noises. The published marginals will contain noisy counts to satisfy differential

privacy. Since noises are added independently for each count, the noisy counts in 2-D marginals

will not be the aggregated results of corresponding 2-DSA marginals.

In the classic mechanism in [27], ε-differential privacy is achieved by adding noises (to a query

answer) following the distribution Lap
(

∆
ε

)
, where the sensitivity ∆ is

∆ = 2 · |M| = 4 ·
(
|NA|

2

)
. (3.12)

This is because changing one record affects at most 2 counts in a marginal and there are |M|

marginals. For example, in Table 3.6b, assume Bob is male lawyer in the data set D. If his occupa-

tion is changed to Engineer, then two counts are affected: the count to {Male & Lawyer} becomes

0 and the count to {Male & Engineer} becomes 3. Note that if only deleting and adding a record

are allowed in the data set then changing one record affects at most 1 count in a marginal, in which

case our result could be adjusted by simply reducing the sensitivity by half. Both EDU and OCC

have 4 distinct NA, therefore ∆ is 4 ×
(4
2
)

= 24. Salary has 6 distinct NA and ∆ in Salary is

4×
(6
2
)

= 60. Some methods [81, 79, 78] improve the utility by adding less noises while achieving

the same level of privacy. Since our goal is to study the extent to which disclosures occur, if disclo-

sures occur for the above classic mechanism, disclosures also occur for the improved methods that

generate more accurate answers. For this reason, we shall focus on the classic mechanism.

3.4.3 Disclosures

Given thresholds KCP and KCP , in a personal group g, a SA value sa is disclosed if the following

two conditions are satisfied (as in Definition 5): (1) CPτ ≥ KCP , where CPτ is defined in Defini-

tion 3 as the probability that the noisy confidence is close to the true confidence, where the closeness

is calibrated by parameter τ ; (2) J ≥ KJ , and J is defined in Definition 4 as the distance from the

true confidence to the prior knowledge. Condition (1) suggests that the probability that the noisy

confidence is close to the true confidence is large (i.e., at least KCP ). Condition (2) means that the

true confidence in the personal group g is much higher than the prior (i.e., the true confidence is at

least KJ times higher than the prior).
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Figure 3.2: Disclosures in Terms of CPτ and J (τ = 0.2,KCP = 0.7,KJ = 3, ε = 0.5)

Figure 3.2 shows the disclosures found in the three data sets for the privacy setting ε = 0.5,

τ = 0.2, KCP = 0.7, and KJ = 3. One disclosure means that under 0.5-differential privacy, for

some SA value sa in a personal group g, the probability that the noisy confidence is close to the

true confidence (with a relative error smaller than 20%) is at least 70%, and the true confidence is

at least three times larger than the prior of sa to the true confidence. Each point in this figure stands

for one disclosure for some SA value sa with the values of J and CPτ being represented by the

x-axis and y-axis, respectively. As we can see, both EDU and OCC suffer from many disclosures.

In fact, for several disclosures, J is more than 20 and CP0.2 is nearly 100%. In these cases, the

target individual belongs to a personal group, identified by her/his known NA, and it is 20 times

more likely to have some SA value in this group than in the entire data set and the noisy query

answers can be used to learn this information with a relative error of at most 20% in nearly 100%

of cases (i.e., CP0.2 ≈ 100%).
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Figure 3.3: The Number of Disclosures vs ε (τ = 0.2, KCP = 0.7, KJ = 3)

In contrast, for the above settings of parameters, no disclosure is observed on SALARY because

noises of a larger scale are added to query answers, which reduces the occurrence of disclosures.

SALARY has moreNA attributes, thus, a larger |M| and a larger sensitivity ∆ according to Equation

(3.12), which leads to a larger scale factor b for a given privacy setting ε.

Figure 3.3 shows the number of disclosures for the three data sets when τ = 0.2, KCP = 0.7

and KJ = 3 for various differential privacy settings ε. The number of disclosures in a personal

group g is counted as the number of disclosed SA values in g, and the total number of disclosures

of the data set is counted as the sum of the disclosures in all personal groups. Under a more relaxed

privacy setting for ε, i.e., > 0.5, disclosures are still observed for SALARY. By reducing ε to 0.01,

no disclosure is found because the increased noise scale reduces the closeness probability CPτ ,

therefore, it is harder to find a disclosure. And this is consistent with the findings in Figure 3.1.

However, as we shall see shortly, the increased scale of noises renders a large error in query answers,

which degrades the utility for data analysis.
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Figure 3.4: Overall Error

3.4.4 Utility

The study in Section 3.4.3 suggests that setting the differential privacy parameter ε to a small value

helps prevent disclosures. While this addresses the privacy issue, it affects adversely the utility of

published query answers. We consider all queries corresponding to the rows in all the 2-D and

2-DSA marginals defined in Section 3.4.2, and we measure the utility of a noisy query answer by

the relative error of the answer to such queries. For each query, suppose that ans denotes the true

answer and noi denotes the noisy answer. The relative error is defined as err = |noi−ans|
max{ans,δ} , where δ

is the sanity bound specified by the user to eliminate the effect of unreasonably small query results.

As in [78], we set δ = 10−4 × |D|, where |D| is the number of records in the data set D. Since

|D| = 500K in our experiments, δ = 50. The utility for all queries is evaluated by the overall error,

defined as the averaged relative error.

It is interesting to cross-examine the overall error in Figure 3.4 and the number of disclosures

in Figure 3.3. While a smaller ε helps prevent disclosures, it degrades the utility by a larger overall
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error. For example, at ε = 0.01, no disclosure is found in any data set, but the overall error is

awfully large, i.e., about 400% for EDU and OCC, and about 2200% for SALARY. Such excessively

noisy query answers are useless for data analysis. For the overall error to be no more than 10%,

which we consider necessary for useful utility, ε must be relaxed to 0.5 for EDU and OCC and to 2

for SALARY. But in this case, a substantial number of disclosures occur, as shown in Figure 3.3.

3.5 Summary

Both the theoretical analysis in Theorem 2 and the above empirical study on real life data sets

suggest that, good utility of published query answers (i.e., a small relative error) under differential

privacy comes with disclosures of private information via NIR, which allows inference of private

information of an individual through noisy query answers, whereas eliminating such disclosures

comes with the cost of poor utility for data analysis. This dilemma is rooted from the fact that both

utility and disclosures are based on the same type of information: accurate query answers. When

utility is retained, disclosures are permitted, and when disclosures are eliminated, utility is com-

promised. An implication of this study is that it is important to consider what kind of privacy one

wishes to protect. If privacy is about hiding one’s participation in the database, differential privacy

achieves this goal. If privacy is about concealing one’s sensitive information, differential privacy

does not do the job unless one is willing to give up the utility for data analysis. Understanding this

limitation of differential privacy is important to avoid unexpected disclosures while enjoying the

good utility of differential privacy.
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Chapter 4

Reconstruction Privacy

The question we study in this chapter is how to (A) allow learning statistical relationships (such

as “smokers tend to have lung cancer”), and at the same time, (B) prevent learning sensitive infor-

mation about an individual (such as “Bob likely has HIV”). As discussed above, syntactic privacy

criteria provide (B) but not (A) (Chapter 2), whereas the differential privacy criterion provides (A)

but not (B) (Chapter 3). The difficulty of providing both (A) and (B) is that both learning statistical

relationships and learning sensitive information make use of NIR, one for utility and one for privacy

violation. The key to our approach lies at distinguishing these two types of learning.

We formally define the problem and present our approach in Section 4.1. In particular, we

define reconstruction privacy that protects individual’s sensitive information while providing utility

for statistical analysis. The way to test reconstruction privacy is proposed in Section 4.2. How

to achieve reconstruction privacy is presented in Section 4.3. Experimental results are shown in

Section 4.4.

4.1 Our Approach

In this section we first show our approach through an example (Example 4), and we define our

model of data perturbation, privacy criterion, and the problems we will study.

Example 4. Consider a table D(Gender, Job,Disease), where Gender and Job are public and

Disease is sensitive. Assume that Disease has 10 possible values. To hide the Disease value, for

each record in D, uniform perturbation [5] for a given retention probability, say 20%, will retain

the Disease value in the record with 20% probability and replace it with a value chosen uniformly

from the 10 possible values of Disease at random with the remaining 80% probability. This can

be implemented by tossing a biased coin with head probability 20%. Let D∗ denote the perturbed

40



data. The operation of perturbation is for protecting individual’s sensitive information, because the

observed Disease value may not be the real Disease value.

D∗ can be utilized to reconstruct the distribution of Disease in a given subset of records. The

operation of reconstruction is for utility. It helps data researchers to find real statistical interesting

patterns in terms of distribution of SA. Consider any subset S of D, the counterpart S∗ for D∗,

and any Disease value d. Let fd denote the (actual) frequency of d in S, f∗d denote the (observed)

frequency of d in S∗, and E[F ∗d ] denote the expectation of f∗d (over all coin tosses). All frequencies

are in fraction. The observed frequency of d come from two sources: (1) when the actual Disease

is d, d is retained (i.e., 0.2fd), or when d is placed by one Disease value in the whole domain and d

is chosen again (i.e., (0.8/10)fd); (2) when the actual Disease is not d and d is chosen to replace

the actual Disease (i.e., (0.8/10)(1 − fd)). The following equation follows from the perturbation

operation applied to the data:

E[F ∗d ] = (0.2 + 0.8/10)fd + (0.8/10)(1− fd) (4.1)

Approximating the unknown E[F ∗d ] by the observed f∗d , we get an estimate of fd as f∗d−0.08
0.2 .

This estimate is the maximum likelihood estimator (MLE) [5] computed using the perturbed S∗.

Given the publishedD∗, suppose that an adversary tries to learn the likelihood that Bob, a male

engineer with a record in D, has breast cancer or BC for short. One way is considering the subset

S1 for all male engineers in D, and another is considering the subset S2 for all engineers in D.

Let M1
d and M2

d denote the MLE for a disease d in S1 and S2, respectively. Two questions can be

asked.

Question 1: Which of M1
BC and M2

BC should be used to quantify the risk to Bob? S1

contains exactly the records that match all Bob’s public information, whereas S2 contains additional

records that partially match Bob’s public information. Without further information, S1 is more

relevant to Bob than S2, soM1
BC should be used to evaluate the risk to Bob. Most likelyM2

BC is not

useful for inferring whether Bob has breast cancer, assuming that the additional records for female

engineers follow a different distribution on BC from those for male engineers. The case when the

additional records have the same distribution as Bob will be discussed in Section 4.1.3. On the

other hand, the frequency M2
d for some disease d may be useful for data analysis, such as learning

the statistical relationship that career engineers tend to have cervical spondylosis.

Question 2: How to limit the accuracy of M1
BC while preserving the accuracy of M2

d for

data analysis? The errors ofM1
d andM2

d were caused by approximating the unknown E[F ∗d ] with

the observed f∗d in Equation (4.1). From the law of large numbers, f∗d is closer to E[F ∗d ] when more
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records are randomized (i.e., more coin toss). Since S∗2 contains more records than S∗1 , M2
d is more

accurate for estimating the frequency of d in S2 than M1
d for estimating the frequency of d in S1.

We can leverage this gap to limit the accuracy of M1
BC while preserving the accuracy of M2

d . 2

This example illustrates two types of reconstruction for MLEs. The reconstruction of M1
BC

based on S1 is called personal reconstruction because it aims at a particular individual by matching

all public attributes of Bob; the reconstruction of M2
d based on S2 is called aggregate reconstruc-

tion because it aims at a large population without specifically targeting any individual. We argue

(in Section 4.1.2) that personal reconstruction is the source of privacy concerns whereas aggrega-

tion reconstruction is the source of utility. The law of large numbers suggests that these two types

of reconstruction respond differently to the reduction of record perturbation. We leverage this gap

to limit the accuracy of personal reconstruction while preserving the accuracy of aggregate recon-

struction. In the rest of the paper, we present an approach to avoid the disclosures of NIR in a data

perturbation approach. This effort can be considered as an action on the part of the data publisher.

4.1.1 Data Perturbation

As in [14, 76, 16], we consider a table D that has one sensitive (private) attribute denoted by SA

and several pubic attributes denoted by NA = {A1, · · · , An}. We assume that the domain of SA

has m > 2 sensitive values, sa1, · · · , sam.

Assumptions. To hide the SA information of a record, we perturb the SA value but keep the

attributes in NA unchanged in a record. We assume that an adversary has no prior knowledge

on positive correlation between NA and SA; otherwise, the public information on NA already

discloses the information about SA. The adversary can have prior knowledge on correlation among

the attributes in NA, which presents no problem because we never modify the attributes in NA.

We also assume that an adversary has no prior knowledge about correlation among SA of different

records. This assumption can be satisfied by including exactly one record from a set of correlated

records, as suggested in [71].

Prior knowledge on negative correlation [58] deserves some more explanations. Consider the

negative correlation “females do not have prostate cancer”. This correlation tells that the observed

prostate cancer is not the original SA value for a female, but does not tell what is the original value

because each of the remaining m − 1 values has an equal probability. For this reason, we assume

that m is larger than 2 (or even larger) so that guessing a remaining value has enough uncertainty.

We should emphasize that this situation is not unique for data perturbation, and differentially private

answers have similar issues: if the noisy answer for the query on “Female and Prostate Cancer” is -5
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(or more generally, too small according to prior knowledge), the above negative correlation would

disclose a small range of the noise added, i.e., -5 or less, after observing the noisy answer, which

invalids the Laplace distribution assumption. In general, if too much information is leaked through

prior knowledge, no mechanism will work.

One criticism on distinguishing SA and NA is that such distinction can be tricky sometimes.

This deserves some clarification as well. One approach that does not make such distinction is treat-

ing all attributes as sensitive attributes and randomizing a record over the Cartesian product of the

domains of all attributes [6][71]. Unfortunately, this approach is vulnerable to undoing the random-

ization by removing “infeasible” records added during randomization. An example of infeasible

records is (Age=1, Job=prof , Disease=HIV ) since a 1-year child can not possibly be a professor,

so the adversary can easily tell that this record was added by randomization. Treating Age and Job

as public attributes and randomizing only Disease can avoid this problem. In general, treating and

randomizing more attributes like sensitive ones when they are actually public attributes would in-

troduce more vulnerabilities to the removal of “infeasible” records. In this sense, randomizing only

the truly sensitive attribute actually provides more protection.

The perturbed version D∗ is produced of D by applying uniform perturbation [6, 5, 32] on SA

as follows. For a given retention probability p, where 0 < p < 1, for each record in D, we toss a

coin with head probability p. If the coin lands on head, the SA value in the record is retained; if

the coin lands on tail, the SA value in the record is replaced with a value picked from the domain

of SA with equal probability (i.e., 1−p
m ) at random. Note that the same value could be picked.

Therefore, the probability that one SA value is unchanged is p+ 1−p
m . This perturbation operator is

characterized by the following matrix Pm×m:

Pji =

 p+ 1−p
m if j=i (retain sai)

1−p
m if j 6=i (perturb sai to saj)

(4.2)

A proper choice of the retention probability p can ensure some privacy requirements, such as

ρ1-ρ2 privacy [32, 6]. We end this section with a comparison between differential privacy approach

and perturbation approach in the current work. In the differential privacy approach, a noise is

added to the query answer and the noisy answer is used as is. For this reason, a small and fixed

noise scale is essential for good utility. As discussed in Section 3.3, as the data size increases,

such noises are vulnerable to NIR. In data perturbation, the SA value in each record is perturbed

independently and the original distribution of SA must be reconstructed from the perturbed records

by taking into account the perturbation operation performed. As the data size increases, the number

of record perturbation increases proportionally, which is less vulnerable to NIR. In addition, data
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perturbation is more amendable to record insertion because each record is perturbed independently

and the reconstruction is performed by the user himself. In contrast, updating (published) noisy

query answers can be tricky because a new record could affect multiple queries and a correlated

change of query answers can be exploited by the adversary to learn the information about the new

record.

In this thesis the goal is to provide promising utility for statistical relationships learning while

protecting individual’s sensitive information. Recall that in Section 2.1.2 the operation of perturba-

tion has been introduced with the ability of retaining general statistical information while making

individual record fail to reflect its authentic value, thus, it is a good fit for achieving our goal.

4.1.2 Types of Reconstruction

We adopt the following notation. Let NA = {A1, · · · , An}. For 1 ≤ i ≤ n, let xi be ei-

ther a domain value of Ai or a wildcard, denoted by −, that matches every domain value of Ai.

D(x1, · · · , xn) denotes the subset of records in D that match xi on every Ai, and D∗(x1, · · · , xn)

denotes the corresponding subset forD∗. If, for 1 ≤ i ≤ n, xi is a non-wildcard,D(x1, · · · , xn) is a

personal group. If at least one xi is a wildcard, D(x1, · · · , xn) is an aggregate group. For example,

forNA = {Gender, Job},D(male, eng) is a personal group andD(−, eng) is an aggregate group.

Intuitively, a personal group contains all records that can not be distinguished by any information

other than SA. For example, even if an adversary may know the age of Bob, this information is

not helpful to distinguish any record in the personal group D(male, eng) because all records in the

personal group are exactly identical on NA. Without confusion, we call both D(x1, · · · , xn) and

D(x1, · · · , xn)∗ a personal or aggregate group.

In Example 4, we argued that the personal group D∗(male, eng) should be used to quantify

the risk of inferring the disease breast cancer for the male engineer Bob, instead of the aggregate

groups D∗(−, eng), D∗(male,−), or D∗(−,−). The rationale is that unless further information is

available, it is to the adversary’s advantage not to use a record that is known not belonging to Bob.

On the other hand, the adversary can not rule out any record in D∗(male, eng) because they all

match Bob’s public attributes. In this sense, D∗(male, eng) is the most relevant subset of records

for learning Bob’s information on SA. An analogy is short-listing the suspect of a robbery: if the

eyewitness has reported that the suspect was a blonde Caucasian male (i.e., the public attributes),

it makes sense to focus on the subset of blonde Caucasian males in the police database, instead of

examining all Caucasian males records. The above observation motivates the following two types

of reconstruction.
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Definition 6. A personal reconstruction refers to estimating the frequencies of the SA values in a

personal group g based on the perturbed g∗. An aggregate reconstruction refers to estimating the

frequencies of the SA values in an aggregate group G based on the perturbed G∗. 2

We consider a personal reconstruction as the source of privacy concern because it aims specifi-

cally at an individual by matching all the individual’s public information. In contrast, we consider

an aggregate reconstruction as the source of utility because it aims at a larger population without

specifically targeting a particular individual. In the presence of both a person group and an aggre-

gate group that match an individual’s public attributes, the person group overrides the aggregate

group as far as quantifying the privacy risk is concerned. For example, to learn the Diseases of

the male engineer Bob, the personal reconstruction based on D∗(male, eng) overrides the aggre-

gate reconstruction based on D∗(male,−), D∗(−, eng), and D∗(−,−). These different roles of

reconstruction are stated in the next principle.

Definition 7 (Split Role Principle). A personal reconstruction aims specifically at a particular

individual and is responsible for privacy violation. An aggregate reconstruction aims at a larger

population and is responsible for providing utility. As far as privacy protection is concerned, it

suffices to ensure that personal reconstruction is not accurate. 2

Remarks. The Split Role Principle provides only a relative privacy guarantee because some dis-

closure can still occur to an individual through aggregate reconstruction in the name of utility, such

as “females tend to have breast cancer (compared to males)”. But our principle assures the individ-

ual that such disclosures are not specifically targeting him or her, and those that do (i.e., personal

reconstruction) have been made unreliable. There is one case when an aggregate reconstruction

can help adversaries to learn the sensitive information of a particular individual: when the sensitive

values in some other personal groups have the same distribution of the personal group containing

the target. In this case the SA distribution of a union of several personal groups could reflect the SA

distribution of each individual personal group. More details of using aggregate reconstructions to

learn sensitive information of a particular individual will be discussed in Section 4.1.4. In fact, any

statistical database with any non-trivial utility incurs some amount of disclosure [27]. Our principle

assures that only a limited amount of disclosure is incurred by enabling non-trivial utility.

4.1.3 Reconstruction Privacy

Our goal is to limit the accuracy of personal reconstruction and preserve (as much as possible) the

accuracy of aggregate reconstruction. At first glance, this may sound like an impossible goal: if

the personal reconstruction based on D∗(female, j) for every job j is made inaccurate, how could
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the aggregate reconstruction based onD∗(female,−), which is the aggregation ofD∗(female, j),

be kept accurate? How is this possible when the aggregate group D∗(female,−) is the union of

all personal groups D∗(female, j) for all jobs j? The general idea of achieving this goal is as

follows. The perturbation on SA in each record is a random trial, i.e., a coin toss. D∗(female,−)

has more random trials than each D∗(female, j) individually, where j is a value in the domain of

Job. The law of large numbers implies that, if we reduce the size of D∗(female, j) by sampling,

we expect that the personal reconstruction based onD∗(female, j) will be affected more adversely

than the aggregate reconstruction based on D∗(female,−). This is analogous to estimating the

head probability of a coin: if ten people each toss the coin five times and combine their coin tosses

together, the estimation is much more accurate than each person estimating the head probability

using their own five coin tosses. This observation motivates a new privacy definition in terms of the

accuracy of personal reconstruction.

This observation motivates a sampling based algorithm to limit the accuracy of personal recon-

struction while enabling the accuracy of aggregate reconstruction. The above different responses to

sampling can be explained by the law of large numbers: the average of the results obtained from a

large number of trials is close to the expected value, and will tend to become closer as more trials

are performed.

Under the Split Role Principle, our privacy guarantee is that all personal reconstructions are not

effective for learning the information about SA. To formalize this guarantee, consider a personal

group g∗ and g, and a particular SA value sa. Let f denote the frequency of sa in g and let F ′

denote the estimate of f obtained from the personal reconstruction based on g∗ (the way to compute

F ′ will be introduced in Section 4.2.1). Note that F ′ is a random variable because D∗ is a result

of coin tosses. F ′−f
f is the relative error of F ′. A larger F ′−f

f means that an adversary faces more

uncertainty in using F ′ to gauge of the likelihood of sa for an individual. The next definition

formalizes an “inaccuracy requirement” on F ′−f
f .

Definition 8 (Reconstruction Privacy). Let λ > 0 and δ ∈ [0, 1]. sa is (λ, δ)-reconstruction-

private in a personal group g∗ if Pr
[
F ′−f
f > λ

]
< U or Pr

[
F ′−f
f < −λ

]
< L, for some U and

L, implies δ ≤ min{U,L}. A personal group g∗ is (λ, δ)-reconstruction-private if every sa is

(λ, δ)-reconstruction-private in g∗. D∗ is (λ, δ)-reconstruction-private if every personal group g∗ is

(λ, δ)-reconstruction-private. (All probabilities are taken over the space of coin tosses during the

perturbation of SA values.) 2

Corollary 4. IfD∗ is (λ, δ)-reconstruction-private, for any target individual t and for any SA value

sa, the adversary can not prove either Pr
[
F ′−f
f ≥ λ

]
< δ or Pr

[
F ′−f
f ≤ −λ

]
< δ, where f is
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the frequency of sa in the personal group g which contains t and F ′ is the random variable for the

estimate of f based on g over all coin tosses.

Note that reconstruction privacy is a property of the perturbation matrix P, not a property of

a particular instance of D∗. In plain words, (λ, δ)-reconstruction-privacy ensures that the smallest

upper bound is not less than δ; in this sense, the adversary has difficulty to get an accurate estimate

of f , and the larger λ or δ is, the greater this difficulty is. As an example, violating (0.3, 0.3)-

reconstruction-privacy by g∗ means that the adversary can get a smaller-than-0.3 upper bound on

Pr
[
F ′−f
f > 0.3

]
or Pr

[
F ′−f
f < −0.3

]
. This implies at least one of the following:

Pr
[
F ′−f
f ≤ 0.3

]
≥ 70%, where F ′ > f

Pr
[
F ′−f
f ≥ −0.3

]
≥ 70%, where F ′ < f

Our definition considers such a high probability of a small error as a potential risk.

Remarks. Note that in Chapter 3 we defined a disclosure as in Definition 5. Based on the

disclosure definition, either preventing the noisy confidence to be too close to the true confidence,

or preventing the true confidence to be much larger than the prior could help thwart the attack. The

second approach has been discussed in many previous works and most syntactic methods focus

on this area, they try to limit the change of the true confidence from the prior, but this also limits

the utility. Because what you can learn from any sub-population is almost what you can learn

from the whole data set, and details have been discussed in Section 1.2. Reconstruction privacy

takes a different approach, i.e., it bounds the maximum value of F ′ or f by imposing a large error

requirement on estimating f using F ′. In this way, the utility will not be limited.

F ′ − f should not be confused with the change in the posterior belief of an adversary. In fact,

f is the probability of sa in the personal group g and F ′ is the estimate of f based on the personal

reconstruction for g∗, and F ′−f
f is the relative error of the estimate. Our definition considers a

small estimation error as a privacy risk, regardless of the absolute value of f , on the basis that any

accurate person reconstruction is potentially a risk because it discloses the actual distribution of

SA that aims at a target individual. The choice of the relative error, instead of the absolute error,

is necessary because a larger actual frequency f requires a larger absolute error for protection.

Bounding the accuracy of estimating f , instead of bounding the posterior belief of an adversary, has

two important benefits: it allows the room for learning statistical relationships (through aggregate

reconstruction), and it frees the publisher of measuring the adversary’s prior belief and specifying

a threshold for posterior beliefs, which can be tricky [27][12]. Finally, the choice of smallest upper

bounds, rather than lower bounds, on Pr
[
F ′−f
f > λ

]
and Pr

[
F ′−f
f < −λ

]
, allows us to leverage

the literature on upper bounds for random variables to estimate Pr
[
F ′−f
f > λ

]
.
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Consequently, it is possible that the actual probabilities are smaller than such upper bounds, but

the consideration of smallest upper bounds ensures that it is difficult for an adversary to get a tighter

bound. As we shall see in Corollary 5, such upper bounds increase exponentially as the size of

a personal group decreases, which suggests that sampling effectively cripples personal reconstruc-

tion while preserving aggregate reconstruction. The choice of the minimum constraint on the best

upper bounds of an adversary allows us to leverage the extensive research on upper bounds of tail

probabilities in the literature. We will return to this point in Section 4.2.2.

(λ, δ)-reconstruction-privacy is a constraint on the error for personal reconstruction, but it places

no constraint on aggregate reconstruction. We shall leverage this difference to achieve (λ, δ)-

reconstruction-privacy while preserving the accuracy of aggregate reconstruction. Perturbation,

specified by a retention probability p, provides uncertainty about the SA value in a record (such

as ρ1-ρ2 privacy). (λ, δ)-reconstruction-privacy further ensures that the distribution of SA within a

personal group g for any target individual can not be accurately reconstructed from the randomized

data D∗.

Definition 9 (Enforcing Privacy). Given a database D, a retention probability p (1 > p > 0)

for perturbing SA, and privacy parameters λ and δ, devise an algorithm that enforces (λ, δ)-

reconstruction-privacy on D∗ while preserving aggregate reconstruction as much as possible. 2

Indeed, our privacy criterion depends on the uncertainty of SA in a record inD∗ introduced by a

retention probability p > 0. In this sense, reconstruction privacy can be considered as an additional

protection on top of other privacy criteria, such as ρ1-ρ2 privacy. The retention probability p is

needed to satisfy traditional privacy definitions. On the contrary, the value of p also affects the

utility of the data for statistical analysis. Intuitively, the more original data values are retained, the

better the data set utility is. For example, [32, 6] give the maximum p for ensuring ρ1-ρ2 privacy.

4.1.4 Generalized Personal Groups

As mentioned in Section 4.1.2, there is one case when an aggregate reconstructions can be used

to learn the sensitive information of an individual: if several personal groups have the same SA

distribution, then the SA distribution in the union of these personal groups learned by an adversary

reflects the SA distribution in each individual personal group.

Consider two personal groups g∗ = D(male, eng) and g′∗ = D(female, eng). Our recon-

struction privacy limits the accuracy of reconstruction for each personal group, but does not limit

the accuracy of reconstruction for the combined g∗ ∪ g′∗, i.e., the aggregate group D∗(−, eng),

because the reconstruction for g∗ ∪ g′∗ is not relevant to an individual, assuming that males and
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females have a different distribution on SA, such as on breast cancer. However, this argument

may be invalid if the adversary has further knowledge about the distribution of NA values on SA

values. For example, suppose that FavoriteColor is another public attribute and that the value

of FavoriteColor of an individual has nothing to do with the diseases, the adversary may do re-

construction after aggregating all personal groups that differ only in the values on FavoriteColor,

and such reconstruction is more accurate than the reconstruction based on a single personal group

because it uses more randomized records. In this case, aggregate groups disclose sensitive informa-

tion.

To address this issue, for each public attribute Ai, if a set of Ai’s domain values have the same

impact on SA, we will merge all values in the set into a single generalized value, and we define

personal groups based on such generalized values. With this preprocessing, every generalized value

of Ai now has a different impact on SA, thus, has a different distribution on SA. Then our previous

argument that an aggregate group does not provide a representative statistics for a target individual

remains valid, because such groups combining several sub-populations follow different distributions

on SA.

For example, in Example 4 it does not help adversaries for considering the subset S = D(−, eng)

for all genders of engineers to infer whether Bob gets breast cancer. This is because gender plays

a significant role in estimating whether an individual gets breast cancer (females are more likely to

get breast cancer). On the contrary, if the data set contains another NA, FavoriteColor (the value

of FavoriteColor has nothing to do with the disease), then adversaries may do reconstruction after

aggregating all values in FavoriteColor for a better reconstruction accuracy. After aggregating

NA values, reconstruction privacy limits reconstruction accuracy within new generalized personal

groups, for the reconstruction on the original personal groups, the accuracy would even worsen be-

cause it involves less independent random trials. In the rest of the paper, personal groups refer to

personal groups after aggregating NA values based on their impacts on SA.

Now the question is how to identify the values of Ai that have the same impact on SA. We first

show how to tell whether two domain values xi and x′i of Ai have the same impact on SA. Then we

show how to divide all values of Ai to various groups where all values in one group have the same

impact on SA and any two values from different groups have different impacts on SA.

The well studied χ2-test [68] tells if two data sets are from different distributions. For two

domain values xi and x′i of Ai, let oij (resp. o′ij) be the number of records in D satisfying Ai = xi

(resp. Ai = x′i) and SA = saj , 1 ≤ j ≤ m, where m is the total number of SA values. Let

Oi = [oi1, · · · , oim] and O′i = [o′i1, · · · , o′im], that represent the distributions of SA conditioned on

xi and x′i. In proper statistical language, can we disprove, to a certain required level of significance,
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the null hypothesis that the two data sets Oi and O′i are drawn from the same population distribution

function? Disproving the null hypothesis in effect implies that the data sets are from different

distributions. Failing to disprove the null hypothesis only shows that the data sets can be consistent

with a single distribution function. In this paper we assume that NA values xi and x′i have the same

impact on SA if Oi and O′i come from the same distribution.

Since |Oi| =
∑m
j=1 oij and |O′i| =

∑m
j=1 o

′
ij are not necessarily equal, our case is that of two

binned distributions with unequal number of data points. In this case, the degree of freedom is equal

to m and the χ2 value is computed as in [69]:

χ2 =
m∑
j=1

(√
|O′i|/|Oi|oij −

√
|Oi|/|O′i|o′ij

)2

oij + o′ij
(4.3)

The value of χ2 tells whether Oi and O′i are from the same distribution through evaluating the

sum of the difference of corresponding pairs (e.g., oij and o′ij) in Oi and O′i. The more difference

that Oi is from O′i, the larger the value of χ2 is, because the sum of the difference of all correspond-

ing pairs tend to be larger. The parts of
√
|O′i|/|Oi| and

√
|Oi|/|O′i| are for cancelling the impact

that the sums of Oi and O′i are different.

Then we obtain the expected value of χ2 by checking the chi-square distribution with two pa-

rameters, the degree of freedom (e.g., m) and the value of significance, the maximum probability

that the computed χ2 from Equation (4.3) could be greater than the expected χ2. We set the con-

ventional setting of 0.05 for significance. If the value computed by Equation (4.3) is greater than

this expected value of χ2, we can disprove the null hypothesis that the two data sets Oi and O′i are

drawn from the same population distribution function because the probability for this is less than

5% (i.e., the significance). Otherwise, we consider that the two data sets are consistent with a single

distribution function.

We already know how to find out whether two domain values xi and x′i have the same impact

on SA. The next step is to merge all values of Ai that have the same impact. To achieve this, we

represent the χ2-test results for all pairs (xi, x′i) of values of Ai using a graph. Each value xi of

Ai is a vertex in the graph and we connect two vertices xi and x′i if the χ2-test on (xi, x′i) fails to

disprove the null hypothesis that the two data sets Oi and O′i are drawn from the same population

distribution function. Finally, for each connected component of the graph, we merge all the values

in the component into a single generalized value. The problem of finding all groups of NA values

with the same impact can be expressed as the problem of finding connected components from a

graph, which is a well-known problem with solutions provided in [44]. This method ensures that
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any two values xi and x′i from different components have a different impact on SA in that Oi and

O′i are drawn from different population distribution functions.

In the rest of the paper, we assume that the domain values of each public attribute Ai are gener-

alized values produced by the above merging procedure and that the personal and aggregate groups

defined in Section 4.1.2 are based on such generalized domain values.

4.2 Testing Privacy

An immediate question is how to test (λ, δ)-reconstruction-privacy. From Definition 8, this requires

to obtain the smallest upper bounds U and L on Pr
[
F ′−f
f > λ

]
and Pr

[
F ′−f
f < −λ

]
. The follow-

ing discussion refers to a subset S of D and the corresponding subset S∗ of D∗. |S| denotes the

number of records in S. Let (f1, · · · , fm) be the frequencies of SA values (sa1, · · · , sam) in S,

(O∗1, · · · , O∗m) be the variables for the observed counts of (sa1, · · · , sam) in S∗, and (F ′1, · · · , F ′m)

be the variables for an estimate of (f1, · · · , fm) reconstructed using S∗. These vectors are also

written as column-vectors
←−
f ,
←−
O∗, and

←−
F ′. When no confusion arises, we drop the subscripts i from

fi, O
∗
i , F

′
i . Table 4.1 summarizes the notations used in this chapter.

Table 4.1: Notations in Chapter 4

Notations Explanation
D,D∗ the raw data and perturbed version
S, S∗ a subset of records and perturbed version
g, g∗ a personal group and perturbed version
m the domain size |SA|
t a target individual
sai a domain value of SA
fi the frequency of sai in S
o∗i the count of sai in S∗

O∗i the variable for o∗i
F ′i the variable for the estimate of fi
←−
f ,
←−
F ′,
←−
O∗ the column-vectors of fi, F ′i , O

∗
i

P the perturbation matrix in Equation (4.2)
p the retention probability
(λ, δ) privacy parameters

4.2.1 Computing F ′

First of all, let us examine the computation of F ′. Example 4 illustrates the basic idea of computing

the estimate F ′ of f for a particular SA value sa based on the perturbed data. Generalizing that
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idea to the vectors
←−
F ′ and

←−
f , our perturbation operation implies the equation P ·

←−
f = E[

←−
O∗]
|S| , where

P is the perturbation matrix in Equation (4.2). Approximating E[
←−
O∗] by the observed counts

←−
O∗,

we get the estimate of
←−
f given by P−1 ·

←−
O∗

|S| , where P−1 is the inverse of P. This estimate is called

the maximum likelihood estimator (MLE).

Theorem 3 (Theorem 2, [5]). P−1 ·
←−
O∗

|S| is the MLE of
←−
f under the constraint that its elements sum

to 1. Let
←−
F ′ denote this MLE. 2

The next lemma gives an equivalent computation of
←−
F ′ without referring to P−1.

Lemma 3. For any subset S of D and any SA value sa, (i) E[O∗] = |S|(fp + (1 − p)/m), (ii)

F ′ = O∗/|S|−(1−p)/m
p , and (iii) E[F ′] = f .

Proof. (i) O∗ comes from two sources of records in S: those that have the SA value sa and are

retained, and those that have a SA value other than sa and are perturbed to sa. The expected number

of the records in the first source is |S|f(p+(1−p)/m), and the expected number of the records in the

second source is |S|(1−f)((1−p)/m). Summing up the two gives E[O∗] = |S|(fp+(1−p)/m).

This shows (i).

(ii) From Theorem 3,
←−
F ′ = P−1 ·

←−
O∗

|S| . Let
←−−1−p
m denote the column-vector of the constant 1−p

m of

length m. We have ←−
O∗

|S|
= P ·

←−
F ′ = p

←−
F ′ +

←−−−1− p
m

Thus, F ′ = O∗/|S|−(1−p)/m
p , as required for (ii).

(iii) Taking the mean on both sides of the last equation,E[F ′] = E[O∗]/|S|−(1−p)/m
p . Substituting

E[O∗] in (i) and simplifying, we get E[F ′] = f . This shows (iii).

Lemma 3(iii) implies that F ′ is an unbiased estimator of f . Lemma 3(ii) gives a computation of

F ′ in terms of the known values O∗, |S|, p, m without referring to P−1. In the rest of the paper, we

adopt this computation of F ′ in the definition of reconstruction privacy (Definition 8).

4.2.2 Bounding Pr
[
F ′−f
f

> λ
]

and Pr
[
F ′−f
f

< −λ
]

Recall thatF ′ = O∗/|S|−(1−p)/m
p from Lemma 3(ii). To bound Pr

[
F ′−f
f > λ

]
and Pr

[
F ′−f
f < −λ

]
,

we first obtain the upper bounds for the error of observed O∗ and then convert them into the upper

bounds for the error of reconstructed F ′. The next theorem gives the conversion between these

bounds.

Theorem 4 (Bound Conversion). Consider any subset S of D and any SA value sa with the fre-

quency f in S. LetO∗ be the observed count of sa in S∗ and let F ′ be the MLE of f . Let µ = E[O∗].
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For any functions U(ω, µ) and L(ω, µ) of ω and µ, and for a comparison operator
⊕

that is either

< or >,

1. Pr
[
O∗−µ
µ > ω

]⊕
U(ω, µ) if and only if Pr

[
F ′−f
f > λ

] ⊕
U(ω, µ);

2. Pr
[
O∗−µ
µ < −ω

]⊕
L(ω, µ) if and only if Pr

[
F ′−f
f < −λ

] ⊕
L(ω, µ).

where λ = ωµ
|S|pf .

Proof. We show 1) only because the proof for 2) is similar. From F ′ = O∗/|S|−(1−p)/m
p (Lemma

3(ii)), O∗ = |S|(F ′p+(1−p)/m), and from Lemma 3(i), µ = |S|(fp+(1−p)/m). So O∗−µ
µ > ω

⇔ O∗ − µ > ωµ⇔ |S|p(F ′ − f) > ωµ⇔ F ′−f
f > ωµ

|S|pf . 1) follows by letting λ = ωµ
|S|pf .

According to Theorem 4, if we have the smallest upper bounds on Pr
[
O∗−µ
µ > ω

]
or

Pr
[
O∗−µ
µ < −ω

]
, we immediately have the smallest upper bounds on Pr

[
F ′−f
f > λ

]
or

Pr
[
F ′−f
f < −λ

]
. This conversion does not hinge on the particular form of the bound functions

U and L, and applies to both upper bounds (when
⊕

is <) and lower bounds (when
⊕

is >).

Therefore, finding the smallest upper bounds for F ′ is reduced to that for O∗. The latter can benefit

from the literature on upper bounds for tail probabilities of Poisson trials. In particular, the coin

toss for each record is an independent Poisson trial and several upper bounds for Poisson trials

are known. Markov’s inequality and Chebyshev’s inequality are some early upper bounds, for

example. The Chernoff bound, due to [18], is a much tighter bound as it gives exponential fall-

off of probability with distance from the error. The following is a simplified yet tight form of the

Chernoff bound.

Theorem 5 (Chernoff Bounds, [18]). Let X1, · · · , Xn be independent Poisson trials such that for

1 ≤ i ≤ n, Xi ∈ {0, 1}, Pr[Xi = 1] = pi, where 0 < pi < 1. Let X = X1 + · · · + Xn and

µ = E[X] = E[X1] + · · ·+ E[Xn]. For ω ∈ (0,∞),

Pr
[
X − µ
µ

> ω

]
< U(ω, µ) = exp(− ω2µ

2 + ω
) (4.4)

and for ω ∈ (0, 1],

Pr
[
X − µ
µ

< −ω
]
< L(ω, µ) = exp(−ω

2µ

2 ).2 (4.5)

The observed count O∗ of sa in S∗ is equal to X = X1 + · · · + Xn, where Xi is the indicator

variable whether the i-th row in S∗ has the value sa. If the i-th row has sa prior to perturbation,

pi = p + (1 − p)/m, otherwise, pi = (1− p)/m. E[O∗] = |S|(fp + (1 − p)/m) (Lemma 3). To
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obtain the upper bounds for F ′, we instantiate the upper bounds U and L for O∗ in Equations (4.4)

and (4.5) into Theorem 4. This gives the next corollary.

Corollary 5 (Upper Bounds for F ′). Let ω = λ|S|pf
µ and µ = |S|(fp+(1−p)/m). For ω ∈ (0,∞),

Pr
[
F ′ − f
f

> λ

]
< U(ω, µ) = exp(− ω2µ

2 + ω
) (4.6)

and for ω ∈ (0, 1],

Pr
[
F ′ − f
f

< −λ
]
< L(ω, µ) = exp(−ω

2µ

2 ).2 (4.7)

Note that ω = λpf
pf+(1−p)/m and µ = |S|(fp + (1 − p)/m). λ, p, f,m are constants. Reducing

|S| decreases µ, which increases the upper bounds U and L exponentially. Thus, reducing |S|

effectively thwarts the attacker from bounding Pr
[
F ′−f
f > λ

]
and Pr

[
F ′−f
f < −λ

]
by a small

upper bound. Our enforcement algorithm presented in the next section is based on this observation.

A remaining question is whether U = exp(− ω2µ
2+ω ) and L = exp(−ω2µ

2 ) in Corollary 5 derived

from the Chernoff bound for O∗ are the smallest upper bounds for F ′, as required by the definition

of (λ, δ)-reconstruction-privacy. Suppose U and L are not the smallest upper bounds. There would

exist a smaller upper boundU2 on Pr
[
F ′−f
f > λ

]
or a smaller upper boundL2 on Pr

[
F ′−f
f < −λ

]
.

Then Theorem 4 implies that U2 and L2 are better bounds than the Chernoff bounds U and L for

O∗. However, the fact that the Chernoff bound remained in use in the past 60 years suggests that

finding smaller upper bounds is difficult. Until the Chernoff bound is improved, we assume that

the upper bounds U and L in Corollary 5 are the best upper bounds for F ′ of an adversary. This

assumption is not a real restriction because Theorem 4 allows us to “plug in” any better bound for

O∗ for a better bound for F ′. When the adversary finds a better bound than the Chernoff bound

and the data publisher still uses the Chernoff bound, if the better bound is a general result and

the publisher refuses to “plug in” it, the responsibility is with the publisher. Otherwise, under our

assumptions about prior knowledge in Section 4.1.1, getting a better bound requires knowledge

about the random coin tosses in the perturbation process. Like all randomized mechanisms, we

assume that actual results of random trails are not available to the adversary.

4.2.3 Testing

With the upper boundsL andU in Corollary 5, it is straightforward to test whether (λ, δ)-reconstruction-

privacy holds by testing δ ≤ min{L,U}. We can further simplify this test. For ω in the range (0, 1],

it is easy to see L < U , therefore, δ ≤ min{L,U} degenerates into δ ≤ L. Substituting the expres-
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sions for ω and µ in Corollary 5 into L(ω, µ), we get L = exp(− (λpf)2|S|
2(fp+(1−p)/m)), where λ is in the

range (0, 1 + (1−p)/m
pf ], which corresponds to the range (0, 1] for ω. Substituting the expression for

L into δ ≤ L gives rise to the following test of (λ, δ)-reconstruction-privacy.

Corollary 6. Let sa be a SA value, g be a personal group, and f be the frequency of sa in g. For

λ ∈ (0, 1 + (1−p)/m
pf ] and δ ∈ [0, 1], sa is (λ, δ)-reconstruction-private in g∗ if and only if

|g| ≤ −2(fp+ (1− p)/m) ln δ
(λpf)2 2 (4.8)

Given the data set D, the personal groups g and the frequencies f for all SA values in g can be

found by sorting the records inD in the order of all attributes inNA followed by SA. Therefore, all

the quantities in Equation (4.8) are either given (i.e., λ, δ, p,m) or can be computed efficiently (i.e.,

f and |g|). A larger |g|, f, pmakes this inequality less likely hold, thus, makes (λ, δ)-reconstruction-

privacy more likely violated. In fact, under these conditions there are either more random trials or

more retention of the SA value, which leads to a more accurate reconstruction.

4.3 Enforcing Privacy

If reconstruction privacy is not satisfied, we can restore reconstruction privacy by satisfying the con-

dition in Equation (4.8) for every SA value and every personal group. Observe that the right-hand

side of Equation (4.8) decreases as f increases. Therefore, a personal group g∗ satisfies reconstruc-

tion privacy if and only if |g| ≤ sg, where

sg = −2(fp+ (1− p)/m) ln δ
(λpf)2 (4.9)

and f is the maximum frequency for any SA value in g. Another interpretation is that sg is the

maximum number of independent trials if g∗ is to satisfy reconstruction privacy. If |g| > sg, re-

construction privacy is violated (because of too many independent trails). To fix this, one approach

is increasing sg to the current group size |g| by reducing f or p (note that m,λ, δ are fixed). This

approach is not preferred because reducing f will distort the data distribution and reducing p has a

global effect of making the perturbed data too noisy. Our approach is reducing |g| to the size sg by

sampling a subset g1 of the size sg and perturbing g1 instead of g. This sampling essentially reduces

the excessive number of independent random trials. To ensure sg1 = sg, g1 must preserve the (rel-

ative) frequency of every SA value in g (to the right-hand side of Equation (4.9) unchanged after

sampling). Preserving frequencies also helps minimize the distortion to data distribution. After per-
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Table 4.2: (a) The personal group g before SPS. (b) Sampling(g, sg) produces a sample g1 of g with
τ = sg/|g| = 0.75. (c) Perturbing(g1, p,m) produces the randomized version of g1, g∗1 , with p = 0.8. (d)
Scaling(g∗1 , |g|) generates g∗2 through scaling up g∗1 to the size |g| with τ ′ = |g|/|g∗1 | = 20/15 = 1.33.

(a) g

NA SA
· · · sa1
· · · sa1
· · · sa1
· · · sa1
· · · sa1
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa2

(b) g1

NA SA
· · · sa1
· · · sa1
· · · sa1
· · · sa1
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa2

(c) g∗1

NA SA
· · · sa1
· · · sa2
· · · sa1
· · · sa1
· · · sa2
· · · sa1
· · · sa2
· · · sa2
· · · sa2
· · · sa1
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa1

(d) g∗2

NA SA
· · · sa1
· · · sa2
· · · sa2
· · · sa1
· · · sa1
· · · sa1
· · · sa2
· · · sa1
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa1
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa2
· · · sa1
· · · sa1

turbing the sample g1, a scaling step is needed to scale the perturbed g∗1 back to the original size |g|

to minimize the impact on the global distribution. Below, we present an algorithm named Sampling-

Perturbing-Scaling (SPS) to meet both the group size requirement and the frequency preservation

requirement.

The algorithm based on the above idea is described in Algorithm 1. The input is a database D,

the retention probability p (0 < p < 1), the domain size m of SA, and the privacy parameters λ

and δ. The output is a modified version of D∗ that satisfies (λ, δ)-reconstruction-privacy. For each

personal group g, if |g| ≤ sg, g∗2 is equal to g∗. Otherwise, g∗2 is produced by the three steps on

Lines 7-9 described above. D∗2 contains all g∗2 .

Example 5 illustrates how the SPS algorithm is performed on one personal group g.

Example 5. Suppose that a personal group g contains 5 records for one SA value sa1 and 15

records for another SA value sa2. |g| = 20, |gsa1 | = 5, |gsa2 | = 15. Assume sg = 15. Table 4.2

illustrates how each step of SPS is operated on g. 2

Remarks. Several points are worth noting. First, Sampling kicks in only if |g| exceeds the max-

imum size sg; otherwise, all records in g will be used for perturbation. Therefore, if the data set is
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Algorithm 1 Sampling-Perturbing-Scaling (SPS)
Input: the data set D, retention probability p, the number of SA values m,the privacy parameters λ, δ
Output: Randomized D∗2 that is (λ, δ)-reconstruction-private

1: D∗2 ←‰
2: Sort D to get all personal groups g
3: for all personal groups g in D do
4: compute sg using Equation (4.9)
5: if |g| ≤ sg then
6: g∗2 ← Perturbing(g, p,m)
7: else
8: g1 ← Sampling(g, sg)
9: g∗1 ← Perturbing(g1, p,m)

10: g∗2 ← Scaling(g∗1 , |g|)
11: end if
12: add g∗2 to D∗2
13: end for
14: return D∗2

Sampling(g, sg):
1: temp←‰
2: τ ← sg/|g|
3: for all SA value x occurring in g do
4: gx ← the set of records in g having x
5: add to temp any b|gx|τc records from gx
6: add to temp one additional record from gx with probability |gx|τ − b|gx|τc
7: end for
8: return temp

Perturbing(g1, p,m):
1: temp←‰
2: for all record r in g1 do
3: let r∗ be r with SA perturbed with retention probability p
4: add r∗ to temp
5: end for
6: return temp

Scaling(g∗1 , |g|):
1: τ ′ ← |g|/|g∗1 |
2: temp←‰
3: for all record r∗ in g∗1 do
4: add to temp bτ ′c duplicates of r∗

5: add to temp one additional duplicate of r∗ with probability τ ′ − bτ ′c
6: end for
7: return temp

small enough to have such a poor accuracy that already satisfies reconstruction privacy, our algo-

rithm will behave like the standard uniform perturbation without performing sampling. In this case,

the poor accuracy is not caused by our sampling, but by the inadequate amount of data. Second,

the duplication in Scaling does not introduce new random trials because it is performed after the
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perturbation in g∗1 . The adversary may notice some duplicate records in g∗2 , but this is not a problem

because privacy is actually achieved on g∗1 before the scaling step. Third, we compute the maxi-

mum number of records each personal group could hold without violation reconstruction privacy,

therefore, in the step of bringing noise (i.e., sampling) we only add the minimum amount of noise

for achieving reconstruction privacy. In other words, our method also provides the best utility under

reconstruction privacy.

Complexity analysis. Let |D| denote the number of records in D. The sorting step takes

|D|log|D| time to generate all personal groups. Subsequently, each of the steps Sampling,

Perturbing, and Scaling takes one data scan. A more efficient implementation, however, is to

perform these three steps in a single data scan: as a record r is sampled, immediately we perturb the

SA value of r and then duplicate the perturbed record a certain number of times as described, and

add the duplicates to g∗2 . In total, the algorithm takes (|D|log|D|) time.

4.3.1 Analysis

We prove two claims about the output D∗2 = ∪g∗2 . The first claim is on privacy guarantee: each g∗2
in D∗2 is (λ, δ)-reconstruction-private. The second claim is on utility: for any subset S consisting of

one or more personal groups and the corresponding subset S∗2 inD∗2, F ′g2 is an unbiased estimator of

f , where f is the frequency of a particular SA value in S and F ′g2 is the estimate of f reconstructed

from S∗2 , respectively. We first present some facts.

Let g be a personal group. Assume |g| > sg. Let g1, g
∗
1, g
∗
2 be computed for g and let

O∗g , O
∗
g1 , O

∗
g2 be the observed count for a particular SA value sa in g∗, g∗1, g

∗
2 , respectively. Let

fg and fg1 be the frequency of sa in g and g1. Let F ′g, F
′
g1 , F

′
g2 be the MLE reconstructed from

g∗, g∗1, g
∗
2 . We avoid to use f1, F

′
1, F

′
2 as these symbols have been used as the frequencies for SA

values sa1 and sa2. Let u ' v denote that u and v are equal modulo the random trial for the

additional record in Scaling and Sampling.

• Fact 1: fg1 ' fg and |g1| ' sg. This is because Sampling preserves the frequency of sa in g

and the sample g1 has the size sg.

• Fact 2: O∗g2/|g
∗
2| ' O∗g1/|g

∗
1|. This is because Scaling from g∗1 to g∗2 preserves the frequency

of sa.

• Fact 3: F ′g1 ' F ′g2 . This follows from F ′gi = O∗gi/|g
∗
i |−(1−p)/m
p , i = 1, 2 (Lemma 3(ii)) and

Fact 2.
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• Fact 4: E[O∗g2 ] ' E[O∗g ]. From Lemma 3(i), E[O∗g1 ] = |g1|(fg1p+ (1− p)/m) ' sg(fg1p+

(1 − p)/m) (Fact 1). Since Scaling duplicates each record in g∗1 by |g|sg times, E[O∗g2 ] '
|g|
sg
× E[O∗g1 ] = |g|(fg1p+ (1− p)/m). From Lemma 3(i), E[O∗g ] = |g|(fgp+ (1− p)/m).

Then fg1 ' fg (Fact 1) implies E[O∗g2 ] ' E[O∗g ].

Theorem 6 (Privacy). For each personal group g, g∗2 returned by the SPS algorithm is (λ, δ)-

reconstruction-private.

Proof. If |g| ≤ sg, g∗2 = g∗, by Corollary 6, g∗2 is (λ, δ)-reconstruction-private. We assume |g| > sg.

In this case, g∗1 is (λ, δ)-reconstruction-private because |g1| ' sg (Fact 1). We claim
F ′g2−fg
fg

'
F ′g1−fg1
fg1

, which implies that F ′g2 has the same tail probability for error as F ′g1 ; therefore, g∗2 is (λ, δ)-

reconstruction-private because g∗1 is. This claim follows from fg1 ' fg (Fact 1) and F ′g1 ' F ′g2

(Fact 3).

Theorem 7 (Utility). Let S be a set of records for one or more personal groups in D, S∗ be the

corresponding set for D∗, and S∗2 be the corresponding set for D∗2. Let f be the frequency of a

SA value sa in S, and let F ′ and F ′S2
be the estimates of f reconstructed from S∗ and S∗2 . Then

E[F ′S2
] ' f .

Proof. Let O∗2 =
∑
O∗g2 , O∗ =

∑
O∗g , |S∗| =

∑
|g∗|, and |S∗2 | =

∑
|g∗2|, where

∑
is over

the personal groups g for S. |S∗| ' |S∗2 |. From Lemma 3(ii), E[F ′] = E[O∗]/|S∗|−(1−p)/m
p and

E[F ′S2
] = E[O∗2 ]/|S∗2 |−(1−p)/m

p . From Fact 4, E[O∗] ' E[O∗2]. Thus, E[F ′] ' E[F ′S2
]. From

Lemma 3(iii), E[F ′] ' f , thus, E[F ′S2
] ' f .

Intuitively, Theorem 7 says that the estimate reconstructed using the corresponding records in

D∗2 is an unbiased estimator of the actual frequency.

4.4 Experimental Studies

Two claims are evaluated in this section. The first claim is that reconstruction privacy could be

violated on real life data sets. The second claim is that the proposed SPS algorithm eliminates

personal reconstruction with minor sacrifice on the utility of aggregate reconstruction.

4.4.1 Experimental Setup

We implemented the proposed SPS algorithm as described in Section 4.3 in C++ and ran all experi-

ments on an Intel Xeon(R) E5630 CPU 2.53GHZ PC with 12GB of RAM. We utilized two publicly
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available data sets. The first one is the ADULT data set [1]. This data set has 45,222 records

(without missing values) extracted from the 1994 Census database with the attributes Education,

Occupation, Race, Gender, and Income. We chose Income as SA and the remaining attributes as

the public attributes NA. The second data set is the OCC data previously used in [79][16]. This

data set contains personal information about 500K American adults with 6 discrete attributes Age,

Gender, Education, Marital, Race, and Occupation. We chose Occupation as SA and the remaining

attributes as NA. We considered five samples of OCC of sizes 100K, 200K, 300K, 400K, 500K.

These data sets have different characteristics: ADULT represents a small data set with very few

SA values (with Income having only two values), whereas OCC represents a large data set with a

large number of balanced distributed SA values (with Occupation having 50 values). We want to

see how these characteristics would affect the evaluation of our claims.

We consider the generalized personal groups by applying the aggregation in Section 4.1.4 to

NA. Tables 4.3 and 4.4 show the impacts on the domain size of each NA, the total number of

personal groups (i.e., |G|), and the averaged personal groups size (e.g., |D|/|G| with |D| as the total

number of records) of ADULT and OCC 300K. In the rest of this section, we use the generalized

values of public attributes.

Table 4.3: NA Aggregation Impact on ADULT

Domain Size of NA |G| |D|/|G|
Education Occupation Race Gender

Before Aggregation 16 14 5 2 2240 20
After Aggregation 7 4 2 2 112 404

Table 4.4: NA Aggregation Impact on OCC 300K

Domain Size of NA |G| |D|/|G|
Age Gender Education Marital Race

Before Aggregation 77 2 14 6 9 116424 3
After Aggregation 1 2 14 6 9 1512 331

The utility of the published data is evaluated by the accuracy of answering count queries of the

form:

SELECT COUNT (∗) FROM DWHERE A1 = a1 ∧ · · · ∧Ad = ad ∧ SA = sai (4.10)

where Aj ∈ NA, aj ∈ dom(Aj), and sai ∈ dom(SA). The answer to the query, ans, is the

number of records in D satisfying the condition in the WHERE clause. Such answers can be used

to learn statistical relationships between the attributes in NA and SA. Given the perturbed data
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D∗, ans is approximated by est = |S∗| ∗ F ′, where S∗ is the set of records in D∗ satisfying

A1 = a1 ∧ · · · ∧Ad = ad, |S∗| is the size of S∗, and F ′ is the MLE given by Lemma 3(ii) based on

S∗. The relative error of est is defined as |est−ans|ans . A smaller relative error means a larger accuracy

and better utility. Queries on only NA are not considered because such queries have zero relative

error.

Data mining and analysis typically focuses on low dimensional statistics, such as 1-D or 2-D

marginals with a size above a sanity bound [78]. We generated a pool of 5,000 count queries with

the query dimensionality d in {1, 2, 3} and with the selectivity: ans/|D| ≥ 0.1%. For each query,

we selected d from {1, 2, 3}, selected d attributes from NA without replacement, selected a value

ai ∈ dom(Ai) for each selected attribute Ai, and finally selected a value sai ∈ dom(SA). All

selections are random with equal probability. If the query’s selectivity is 0.1% or more, we added it

to the pool. We then replaced all NA values in the query with the generalized values obtained from

Section 4.1.4 to make sure all NA values have different impacts on SA. We report the average of

relative error over all queries in this pool. In addition, since D∗ is randomly generated in each run,

we reported the average of 10 runs to avoid the bias of a particular run.

The uniform perturbation, denoted by UP, as described in Section 4.1.1 has been used as a

privacy mechanism in [6, 5, 32]. But these privacy mechanisms do not address the disclosure of

personal reconstruction. Our method addresses this disclosure by applying UP to sampled data.

Although the method proposed by Yang et al. [85] also tried to prevent sensitive disclosures under

differential privacy, it focused on a different scenario that sensitive disclosures occurred due to data

correlation. When data is correlated, the sensitive information of one record could be referred from

other records in the data set. For example, if one family member gets flu, then the rest members in

this family are highly possible to get flu as well. We consider a different privacy concern of sensitive

disclosures when data has not to be correlated. Therefore, we do not need to compare with Yang’s

method in this thesis.

Our evaluation has two parts. First, we evaluate how often reconstruction privacy is violated

by the perturbed data D∗ produced by UP. Then, we evaluate the cost of achieving reconstruction

reconstruction by our SPS algorithm. This cost is measured by the increase in the relative error for

queries answered using D∗2 produced by SPS, compared to the relative error of queries answered

using D∗ produced by UP. The same retention probability p is used for both UP and SPS. Table 4.5

shows the settings of p, λ, and δ with the default settings in boldface.

Below, a group means a personal group. First, we study the condition |g| ≤ sg for testing

whether a group g∗ satisfies reconstruction privacy as described in Section 4.3, where sg is the
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Table 4.5: Parameter Table

Parameters Settings
p 0.1, 0.3, 0.5, 0.7, 0.9
λ 0.1, 0.2, 0.3, 0.4, 0.5
δ 0.1, 0.2, 0.3, 0.4, 0.5
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(b) OCC

Figure 4.1: Maximum Group Size sg vs. Maximum Frequency f

maximum threshold on the group size defined as

sg = −2(fp+ (1− p)/m) ln δ
(λpf)2 (4.11)

f is the maximum frequency of any SA value occurring in g. Figure 4.1 plots the relationship

between sg and f (for the default settings of λ and δ). Note that the range of f is [0.5, 0.9] for

ADULT , but is [0.1, 0.9] for OCC. This is because ADULT contains only 2 distinct SA values,

as a result, f is at least 50% in all personal groups. Each curve corresponds to a setting of p. For

each curve in Figure 4.1, the region above the curve represents the area where this condition fails,

that is, |g| > sg for a given f . The large area above these curves suggests that the maximum group

size sg can be easily exceeded, and thus, there is a good chance of violating reconstruction privacy.

Observing both Figure 4.1 and Equation (4.11) we get that, when parameters: λ, δ and p are given,

the value of m and f have opposite effects on the value of sg, particularly, f becomes the dominant

factor when f is small (e.g., when f ≤ 0.3 in Figure 4.1). The value of sg boosts when f is smaller,

implying that personal groups with smaller f tend to be reconstruction private because it is easier

for them to satisfy the condition of |g| ≤ sg. We will confirm this observation on the two real life

data sets shortly.
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Figure 4.2: ADULT: Privacy Violation

4.4.2 ADULT Data Set

Violation. Figure 4.2 shows the extent to which reconstruction privacy is violated on the perturbed

ADULT data set D∗ produced by UP. This extent is measured at two levels. vg represents the

percentage of groups that violate reconstruction privacy. vr represents the percentage of records

contained in all violating personal groups, i.e., the coverage of the violating groups in terms of the

number of individuals affected. We consider this coverage because all the records in a violating

group are under the same risk of accurate personal reconstruction.

Both violations in terms of vr and vg are obvious. Take the default setting of p = 0.5, λ = 0.3

and δ = 0.3 as an example. The 85% of all groups are violating and covering more than 99%

of the records. This privacy risk is interpreted as follows: with probability of 1 − δ = 70%, the

estimate F ′ of some SA value is within a relative error of λ = 30%, and this case covers more than

vr = 99% of all individuals. The large coverage is expected because a larger group more likely

violates reconstruction privacy (Figure 4.1).

63



0.1 0.3 0.5 0.7 0.9
  0%

 25%

 50%

 75%

100%

p

R
el

at
iv

e 
Er

ro
r

 

 

SPS UP

(a) vs. p

0.1 0.2 0.3 0.4 0.5
  0%

 25%

 50%

 75%

100%

λ

R
el

at
iv

e 
E

rr
or

 

 

SPS UP

(b) vs. λ

0.1 0.2 0.3 0.4 0.5
  0%

 25%

 50%

 75%

100%

δ

R
el

at
iv

e 
Er

ro
r

 

 

SPS UP

(c) vs. δ

Figure 4.3: ADULT: Relative Error

Cost. Figure 4.3 shows the increase of relative error due to the sampling of SPS. Compared

to UP, the relative error for SPS increases about 50% in the worst case. This increase is due to

the sampling required to eliminate the violation of reconstruction privacy. Considering the large

coverage of the violation (i.e., vr in Figure 4.2), having such increase of error is reasonable. We

emphasize that this increase is due to the large f in personal groups in ADULT . Recall that f is no

less than 50% and when f is larger personal groups tend to violate reconstruction privacy (Figure

4.1). Note that ADULT is not general in real life in terms of very few number of SA values, for

other data sets with more SA values, the increased error would be reduced, which will be confirmed

soon on the OCC data set. Choosing a small p helps eliminate violation, but also quickly increases

the relative error for both UP and SPS (Figures 4.2a and 4.3a). Indeed, a too small p makes the

perturbed data become nearly pure noises. This study confirms our discussion at the beginning of

Section 4.3 that the approach of reducing p does not preserve utility.
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Figure 4.4: OCC: Privacy Violation

4.4.3 OCC Data Set

Violation. OCC is a larger data set with a much larger number of balanced distributed SA values.

We are curious how this characteristic change would affect our claims. Figure 4.4 shows the extent

to which reconstruction privacy is violated. The default data size is 300K when |D| is not specified.

Compared to the ADULT data set, the frequency f of a SA value is much smaller; consequently,

the value of sg is much larger (Figure 4.1). The larger sg makes it easy to satisfy the condition of

|g| ≤ sg, therefore, it is less likely that groups in OCC would violate reconstruction privacy, which

explains the much smaller vg and also confirms our claim on Figure 4.1 that smaller f may lead to

less reconstruction violations. Besides, the larger sg implies that violation groups must have larger

g because |g| > sg, which explains the small number of violation groups covering the most records

in the data set.

Cost. Figure 4.5 compares the relative error of UP and SPS. An obvious difference from the

ADULT data set is that there is less increase in the relative error (e.g., less than 10% for most of

settings) for SPS compared to the relative error for UP across all settings of parameters. This is
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Figure 4.5: OCC: Relative Error

a consequence of the smaller percentage rg of the violating groups discussed above. In this case,

most of the groups do not need sampling because they satisfy reconstruction privacy and only the

small number of violating groups will be sampled. Even for such groups, a small reduction in the

number of record perturbation is sufficient to increase the error of personal reconstruction to the

level required by our privacy criterion.

Another interesting point is that even though a larger data size |D| causes more violations of

reconstruction privacy (Figure 4.4d), it actually decreases the relative error for SPS (Figure 4.5d).

As explained above, for this data set, eliminating violation incurs little additional error beyond that

of UP. Therefore, as the data size increases, the relative error of UP gets smaller, so does the relative

error of SPS. This finding suggests that the proposed SPS algorithm could be more effective on a

larger data set.
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4.5 Summary

Our empirical studies supported the claim that reconstruction attack could occur on real life data

sets, whether they are small or large and whether the number of sensitive attribute is small or large.

The studies also supported the claim that the proposed privacy criterion and the sampling method are

effective to preserve the utility for data analysis while eliminating such attacks. This effectiveness

is more observed on larger data sets with a large number of balanced distributed sensitive attributes.
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Chapter 5

Conclusion

Differential privacy has emerged as the gold privacy method for the past two decades. Unlike

syntactic methods, differential privacy provides strong privacy guarantees against an adversary with

strong background knowledge. In particular, it is claimed that even if the adversary knows all but

one record in the data set, the privacy is not violated for the individual behind that one record: the

adversary can not observe a distinguishable difference with or without that specific one record on

query results [17].

Differential privacy does not treat NIR as a privacy concern. Personal sensitive information

may be released through NIR even when some notion of differential privacy is applied. In this

thesis we evaluated how likely and how accurately the sensitive information could be released. Syn-

tactic methods use the smoothing operation to prevent disclosures through NIR. Unfortunately, the

smoothing operation is also a handicap to statistical relationships learning. We proposed reconstruc-

tion privacy, a new privacy criterion with data perturbation and sampling, to achieve both preventing

sensitive personal information disclosures and allowing statistical relationships learning.

To summarize, in this thesis we answered two questions:

(A). To which extent the sensitive information could be learned when some notion of differ-

ential privacy is applied?

(B). Is it possible to (1) allow learning statistical relationships (e.g., smoking people tend to

have lung cancer), and at the same time, (2) prevent disclosures on sensitive attribute values

of individuals in the data set (e.g., Bob is likely to have cancer)? Syntactic privacy methods

satisfy (2) but not (1), and differential privacy method satisfies (1) but not (2).

Question (A) is answered in Chapter 3. Disclosures in differential privacy have been investi-

gated in [47, 20, 62] with restricted requirements. For example, the disclosure in [47] requires data
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correlation, the disclosure discussed in [62] depends on the simulation of data generation procedure,

and [20] needs a Bayes classifier to predict the sensitive attribute value of a target. In this thesis,

we proposed a general way of defining disclosures in terms of the probability of a small error in

learning sensitive information through NIR. In particular, we only need two queries to launch an

attack. A key finding of this study is that this type of disclosures can be used to learn the sensitive

information of an individual (such as diseases) with good accuracy whenever differentially private

answers have good utility because both disclosure and utility are based on the accuracy of published

query answers. For this reason, it would be difficult to prevent such disclosures while providing

good utility under differential privacy. Our study suggests that it is important to consider what kind

of privacy one wishes to protect. If privacy is about hiding one’s participation in the database, dif-

ferential privacy achieves the goal. If privacy is about protecting individual’s sensitive information,

differential privacy does not do the job unless one is willing to give up the utility for data analysis.

Understanding this limitation of differential privacy is important to avoid unexpected disclosures

while enjoying the good utility of differential privacy.

Question (B) is answered in Chapter 4. The key to protecting individual’s sensitive informa-

tion while providing promising utility for statistical learning is separating two types of learning,

i.e., learning individual’s sensitive information and learning statistical relationships. Our essential

insight is to distinguish between reconstruction that aims at a target individual and reconstruction

that aims at a larger group of individuals. The former is more relevant to a target individual, thus,

should be the focus of protection. We presented a data perturbation approach to prevent sensitive

NIR while enabling statistical learning. We achieved these goals through a property implied by the

law of large numbers, which allows us to separate these two types of learning by their different

responses to reduction in random trials. Based on this idea, we used record sampling to reduce the

random trials in data perturbation, which mostly affects NIR specific to an individual while having

only a limited effect on statistical learning.

We end this chapter by providing several interesting and promising directions for future work.

We briefly discuss these directions:

• Multiple sensitive attributes

In this thesis we assume that the data set D contains one SA. This assumption is consistent

with most of privacy criteria, such as k-anonymity and l-diversity [39]. In real life, however,

many research data sets contain multiple SA. For example, in a collection of patient records,

both the attribute Disease and Treatment are sensitive. If these multiple SA are correlated, for
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example, the disease can be somehow inferred given the treatment, how this scenario could

be protected. This brings in new problems and further research on multiple SA is needed.

• Adding new records

Our approach for achieving reconstruction privacy works properly for static published data.

For streaming data, however, some improvement is needed. Based on Equation (4.9) the

inserted data may affect the maximum frequency in a personal group, that further affects the

maximum number of random trials a personal group could retain, and finally affects the whole

perturbation procedure. Thus, finding a way to allow adding new records while providing the

same reconstruction privacy is an interesting direction for future work.

• Customized way to generalize personal groups

In Section 4.1.4 the way for producing generalized personal groups is introduced through

merging NA values that have the same impact on SA. This is for preventing adversaries

to use generalized personal groups to get better estimate accuracy. We only considered the

impact on SA from a single NA. For example, the age of 20 and 21 may be integrated to

[20, 21]. In real life, however, some sets of multiple NA values may have the same impact on

SA. For example, a senior female Caucasian and a senior female Asian may have the same

probability to suffer Alzheimer’s disease. Therefore, the ages of 60 ∼ 70 are aggregated to

[60, 70], and at the same time, the race of Caucasian and Asian have to be aggregated to

{Caucasian,Asian}. The impacts ofNA values on SA is application specific, thus, further

study is required for allowing a customized way to generalize personal groups.
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Appendix A

Computing CDF of Y/X

In this section, we prove Lemma 2 in Section 3.3.1. Recall FZ(z) = Pr
[
Y
X ≤ z

]
, where Z = Y

X ,
both X and Y are random variables for noisy versions of the query answers φ and θ after adding a
Laplace noise. So the noises x− φ and y − θ follow the Laplace distribution below.

fX(x) = 1
2b exp

(
−|x− φ|

b

)
(A.1)

fY (y) = 1
2b exp

(
−|y − θ|

b

)
(A.2)

Note that 0 < θ ≤ φ, φ > 0, and b > 0.

Lemma 2. Assume z 6= 0 and z 6= ±1.

• For z < 0,

F 1
Z(z) =

[
z2

2(1− z2)

] [
exp

(
θ − zφ
zb

)]
− 1

2(z + 1)

[
exp

(−(θ + φ)
b

)]
+ 1

2 exp
(
−φ
b

)
− 1

2(z2 − 1)

[
exp

(
zφ− θ
b

)] (A.3)

• For 0 < z ≤ θ
φ ,

F 2
Z(z) =

[
z2

2(z2 − 1)

] [
exp

(
zφ− θ
zb

)]
− 1

2(z + 1)

[
exp

(−(θ + φ)
b

)]
+ 1

2exp
(
−φ
b

)
− 1

2(z2 − 1)

[
exp

(
zφ− θ
b

)] (A.4)
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• For z > θ
φ ,

F 3
Z(z) = z2

2(1− z2)

[
exp

(
θ − zφ
zb

)]
− 1

2(z + 1)

[
exp

(−(θ + φ)
b

)]
+ 1 + 1

2exp
(
−φ
b

)
− 1

2(1− z2)

[
exp

(
θ − zφ
b

)] (A.5)

2

Proof. Rewrite FZ(z) as follows.

FZ(z) = Pr

[
Y

X
≤ z

]
= Pr [Y ≥ zX,X < 0] + Pr [Y ≤ zX,X > 0]
= A+B

(A.6)

where A =
∫ 0−
−∞ [

∫∞
zx fY (y)dy] fX(x) dx, B =

∫∞
0+

[∫ zx
−∞ fY (y)dy

]
fX(x) dx and

∫ 0−
−∞ represents

the integration range of (−∞, 0) and
∫∞

0+ indicates the integration range of (0,∞).

z could be either positive or negative. We discuss the situation when z > 0 in detail. And the case
of z < 0 could be computed in similar way.

A.1 The Case of z > 0

A.1.1 Computing A

Instantiating Equation (A.2) for fY (y) into A,

A =
∫ 0−

−∞

[∫ ∞
zx

fY (y)dy
]
fX(x) dx

=
∫ 0−

−∞

[∫ ∞
zx

1
2bexp

(
−|y − θ|

b

)
dy

]
fX(x) dx

(A.7)

To remove the absolute sign, we consider two cases:

• CASE 1: zx ≥ θ, i.e., x ≥ θ
z (because z > 0). Since θ ≥ 0, we get x ≥ 0, which is

contradicting the integration range for x, i.e., (−∞, 0). Therefore, this case is not possible.

• CASE 2: zx < θ, i.e., x < θ
z (because z > 0). We divide the range of y, [zx,∞), into [zx, θ]

and (θ,∞), so A = A1 +A2, where

A1 =
∫ 0−
−∞

[∫ θ
zx

1
2bexp

(
y−θ
b

)
dy
]
fX(x) dx and

A2 =
∫ 0−
−∞

[∫∞
θ+

1
2bexp

(
θ−y
b

)
dy
]
fX(x) dx.
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To compute A1, let u be y−θ
b : du = 1

bdy; at y = zx, u = zx−θ
b ; at y = θ, u = 0. We get

A1 =
∫ 0

−∞

[∫ 0

zx−θ
b

1
2exp(u)du

]
fX(x) dx

=
∫ 0

−∞

[
1
2exp(u)

∣∣∣∣0
zx−θ
b

]
fX(x) dx

= 1
2

∫ 0

−∞

[
1− exp

(
zx− θ
b

)]
fX(x) dx

(A.8)

Similarly we could get A2 = 1
2
∫ 0−
−∞ fX(x) dx.

A = A1 +A2 = 1
2

∫ 0−

−∞

[
2− exp

(
zx− θ
b

)]
fX(x) dx (A.9)

Instantiating fX(x) in Equation (A.9) using Equation (A.1), and since x < 0 and φ > 0, − |x−φ|b is
equal to x−φ

b .

A = 1
2

∫ 0−

−∞

[
2− exp

(
zx− θ
b

)] 1
2bexp

(
−|x− φ|

b

)
dx

= 1
2

∫ 0−

−∞

1
b
exp

(
x− φ
b

)
dx− 1

4

∫ 0−

−∞

1
b

[
exp

((z + 1)x− (θ + φ)
b

)]
dx

= 1
2exp(−

φ

b
)− 1

4(z + 1)

[
exp

(−(θ + φ)
b

)] (A.10)

A.1.2 Computing B

Similarly we can compute B. Replacing fY (y) with Equation (A.2), we get

B =
∫ ∞

0+

[∫ zx

−∞
fY (y)dy

]
fX(x) dx

=
∫ ∞

0+

[∫ zx

−∞

1
2bexp

(
−|y − θ|

b

)
dy

]
fX(x) dx

(A.11)

To remove the absolute sign, we consider two cases:

• CASE 1: one is zx ≥ θ, i.e., x ≥ θ
z (because z > 0), and the integration of y over (−∞, zx]

is equal to the integration over (−∞, θ] with − |y−θ|b being equal to y−θ
b , plus the integration

over (θ, zx] with − |y−θ|b being equal to −y−θ
b .

• CASE 2: the second case is zx < θ, i.e., x < θ
z (because z > 0), in this case − |y−θ|b is equal

to y−θ
b .
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Through elementary integration we get the following (Notice that the two cases have been reflected
by the two integrations).

B = 1
2

∫ ∞
( θz )

[
2− exp

(
θ − zx
b

)]
fX(x) dx+ 1

2

∫ ( θz )
−

0+

[
exp

(
zx− θ
b

)]
fX(x) dx (A.12)

Substituting Equation (A.1) for fX(x), we get B = BL +BR where

BL = 1
2

∫ ∞
( θz )

[
2− exp

(
θ − zx
b

)] [ 1
2bexp

(
−|x− φ|

b

)]
dx

BR = 1
2

∫ ( θz )
−

0+

[
exp

(
zx− θ
b

)] [ 1
2bexp

(
−|x− φ|

b

)]
dx

To remove the absolute sign, we consider the following two cases:

• CASE i: θ
z ≥ φ, i.e., z ≤ θ

φ . For BL, − |x−φ|b is equal to φ−x
b . For BR, we can express

the integration range of x over (0, θz ) as the sum of those over [0, φ] and (φ, θz ]. Through
elementary integration we get

B =
[

z2

2(z2 − 1)

] [
exp

(
zφ− θ
zb

)]
− 1

2(z2 − 1)

[
exp

(
zφ− θ
b

)]
− 1

4(z + 1)

[
exp

(−(θ + φ)
b

)] (A.13)

• CASE ii: θ
z < φ, i.e., z > θ

φ . In this case, for BL, we express the integration range of x over

[ θz ,∞) as the sum of those over [ θz , φ] and (φ,∞). For BR, − |x−φ|b is equal to x−φ
b . Through

elementary integration we can get

B = z2

2(1− z2)

[
exp

(
θ − zφ
zb

)]
− 1

2(1− z2)

[
exp

(
θ − zφ
b

)]
− 1

4(z + 1)

[
exp

(−(θ + φ)
b

)]
+ 1

(A.14)

A.2 The Case of z < 0

Following a similar procedure, we get A and B as following when z < 0.

A = z2

2(1− z2)

[
exp

(
θ − zφ
zb

)]
− 1

4(z + 1)

[
exp

(−(θ + φ)
b

)]
+ 1

2 exp
(
−φ
b

)
(A.15)
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B = − 1
2(z2 − 1)

[
exp

(
zφ− θ
b

)]
− 1

4(z + 1)

[
exp

(−(θ + φ)
b

)]
(A.16)

Notice that z < 0 implies that Case 2, i.e., z > θ
φ , never occurs (because θ

φ > 0) , thus, B has only
Case 1, i.e., z ≤ θ

φ .

Table A.1: FZ(z)

FZ(z) = A + B
F 1
Z(z) (z < 0) A is given by Equation (A.15), B is given by Equation (A.16)
F 2
Z(z) (0 < z ≤ θ

φ) A is given by Equation (A.10), B is given by Equation (A.13)
F 3
Z(z) (z > θ

φ) A is given by Equation (A.10), B is given by Equation (A.14)

A.3 Sum Things Up

Recall FZ(z) = A + B, and F 1
Z(z) is FZ(z) for z < 0, F 2

Z(z) is FZ(z) for 0 < z ≤ θ
φ , and F 3

Z is
FZ(z) for z > θ

φ . We summarize the computation of FZ(z) for the various cases of z in Table A.1.
This completes the proof of Lemma 2. 2
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