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Abstract—Energy efficiency and energy consumption aware-
ness are a growing priority for many countries. Among the
large variety of methods proposed by energy scientists and
professionals to evaluate building energy consumption, a widely
adopted approach is the energy signature. Since the energy
data easily scale towards very large datasets, the problem of
characterizing energy efficiency through the energy signature
from these huge data collections becomes challenging. This paper
presents a distributed system, named ESA, for the collection,
storage, and analysis of a large amount of energy-related data to
keep continuously informed users on their energy consumption
and building performance. ESA exploits a Big Data approach to
perform a scalable and distributed computation of the building
energy signature, which is exploited to forecast the expected
power consumption for given contextual conditions in a specific
time period. ESA characterizes monitored buildings through
direct indicators designed to (i) evaluate the efficient use of the
heating system by comparing latest observations with past energy
demand in the same conditions, (ii) rank the overall building
performance with respect to nearby and similarly characterized
buildings. Experimental results on real energy consumption data
demonstrate the effectiveness and the efficiency of the proposed
distributed system to provide actionable knowledge at user
fingertips for actors interacting with ESA.

I. INTRODUCTION

Energy efficiency is a growing policy priority for many
countries around the world, as governments seek to reduce
wasteful energy consumption and encourage the use of renew-
able sources. The International Energy Agency (IEA) has esti-
mated that in terms of primary energy consumption, buildings
represent roughly 40% of total final energy consumption in
most countries. The amount of this energy used for heating
and cooling systems is about 60% in the residential sector and
45 % in the service one [1].

Innovative systems should be designed to continuously
monitor a smart city environment and provide all stakeholders
the tools to improve energy efficiency. To characterize energy
consumption different methods have been proposed in the
literature by energy scientists and professionals. Among them a
widely adopted energy indicator is the energy signature used to
estimate the total heat loss coefficient of a building. However,
providing a real time computation and a comparative analysis
of the energy signature to different user profiles (e.g., energy
analysts, consumers, users living in the building) definitely

calls for big data approaches due to a large volume of energy
related data collected in a smart city scenario.

In this work, we aim at studying the total heat loss coef-
ficient of a building (K;,:) by analyzing the power supplied
by the heating system with respect to the difference between
the internal temperature of the building (7;,) and external
temperature of the ambient (7,,). The estimation of the Ky,
value exploits a linear regression of average power samples at
different time granularity levels with respect to the average dif-
ference between T3, and T, . Differently from previous studies
that addressed the energy signature [2], [3] as a simulation
methodology, we propose a distributed system, named ESA,
to efficiently compute the performance of every building in a
city in near real-time and keep continuously informed users
(e.g., energy manager, people living in the building) on their
energy consumption and building performance. We believe that
energy awareness can be enhanced with detailed, actual and
actionable data as the ones provided by ESA.

ESA collects data from smart meters deployed in thou-
sands of buildings in a major Italian city by IREN [4], and a
large variety of data from different web services (e.g., mete-
orological data [5], contextual and topological features of the
monitored buildings [6], [7]). ESA also collects and analyzes
indoor climate conditions by means of temperature sensors
installed in a subset of the monitored buildings. Since the
collected energy data easily scale towards very large datasets,
ESA exploits a Big Data approach to perform a scalable and
distributed computation to characterize building performance
through two indicators based on the energy signature. Both
indicators compute the expected power consumption for given
contextual conditions in a specific time period. However, the
first one, named intra-building indicator, evaluates the building
performance by comparing latest observations with past energy
demand in the same conditions. The second one, named intra-
building indicator, ranks the overall building performance with
respect to nearby and similarly characterized buildings. Exper-
imental results on a large volume of real energy consumption
data show the effectiveness of ESA to effectively characterize
building performance, and its optimal scalability as well.

This paper is organized as follows. Section II introduces
the energy signature method, while Section III presents the
overview of the Energy Signature Analysis system. Sec-



tions IV, V, VI describe the main layers of the ESA system.
Section VII discusses the experimental results obtained on real
data. Section VIII reviews existing work, and Section IX draws
conclusions and presents future developments of this work.

II. THE ENERGY SIGNATURE

The energy signature is a world wide recognized method
for the analysis of building energy consumption. This method
was developed in the 80’s by American government after the
oil crisis, it has been introduced in the European regulatory
framework (EN 156036:2008) and was recognized at Italian
level in UNI (11300:2008). The energy signature method
has been used in many studies to extract the total heat loss
coefficient of a building [2], [3], [8]. The latter is recognised
as an interesting key energy indicator [2], [9] of a building.

Specifically, the fotal heat gain in a building (denoted as
Qtot) is expressed as Qiot = Quoss + Qayn Where Qloss
represents the ventilation and thermal losses and Q) gy, is the
heat dynamically stored or released by the building. The term
Qloss 18 expressed as Qioss = Kot - (Tin — Tex) Where Ty, is
the internal temperature of the building and T, is the external
temperature of the ambient, while Ky, is the total heat loss
coefficient of the building. The term @4y, takes into account
the dynamic of the building. Since Qgyn is related to the
thermal inertia of the building, the estimation of its value may
be a complex task. Q) gy, is expressed as Qqyn = C- % where
C is the thermal mass of the building, representing the building
capability to release or store heat. When the (g, value is
approximated to zero, the steady-state analysis of the building
efficiency can be performed [2], [3]. Specifically, the dynamic
contribution gy, decreases when energy data are analyzed
at coarse granularity (as monthly, weekly) [9]. Instead, these
effects are emphasized when finely-grained data are analyzed
(as every 15 minutes)[2].

The total heat gain Q4. in a building can also be expressed
based on the contribution of four terms as in Qi = Qp +
Qel + Qp + Qsun Where @, is the power supplied by the
heating system, while Q.;, Qp, and Q,., represent the heat
gains due to electricity usage (Q)¢;), people presence ((),,) and
solar radiation (Qsyy), respectively. The influence of random
variables (as occupancy, wind, solar gains) and the heat gains
due to the electricity usage can be neglected when coarsely-
grained data are analyzed [3]. In this case, terms Q;, )p, and
Qsun can be approximated to zero.

This study focuses on the steady-state analysis of the
building efficiency. Consequently, energy data are analyzed
at different coarse granularities to neglect both the dynamic
contribution ()qy, of and the influence of random variables.
Furthermore, K;,; estimation is normalized to a single unit
of volume, i.e., W/m3. It follows that the total heat gain Qyot
in the building is equal to the power supplied by the heating
system per unit of volume and to the ventilation and thermal
losses (i.e., Qtat = Qh = Qloss = Kiot - (/—Tz - Tem))- The
linearity of the model has been evaluated as done in [8].

III. THE ESA SYSTEM

Figure 1 shows the overall architecture of the ESA system
for monitoring and analyzing the building performance in
terms of energy efficiency. We focus our study on energy data
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Fig. 1. The ESA system architecture.

collected by the District Heating Network (DHN) managed by
IREN. IREN is a multi-utility company listed on the Italian
Stock Exchange and operates in the sectors of electricity, ther-
mal energy for district heating, gas, management of integrated
water services as well as the collection and disposal of waste.
As of March 2015, there are about 4 thousands monitored
buildings by IREN in Turin, Italy, each generating about 2,000
data frames per day. Thus, ESA needs to manage a growing
base of at least 8 million data frames per day.

As shown in Figure 1, the ESA architecture consists of four
layers: (i) Source Layer, (ii) Middleware Layer, (iii) Storage
Layer, and (iv) Application Layer. These layers are briefly
described below and detailed in the following sections.

The Source Layer includes all the objects that provide
source data to the ESA system such as smart meters and web
services that countinuously provide data of interest. Energy
consumption data are collected by means of a large number
of smart meters (4,000 as of March 2015) deployed in Turin
city (Italy) by IREN [4] to monitor thermal energy through
the District Heating Network. Thermal smart meters collect
data on different aspects of energy consumption (e.g., instan-
taneous power, cumulative energy consumption, water flows
and corresponding temperatures) monitored roughly every 5
minutes. Furthermore, indoor climate conditions are monitored
through indoor temperature sensors deployed in a subset of the
monitored buildings. ESA exploits different web services to
collect heterogeneous open data to feed a growing and enriched
base of interesting data. Specifically, collected smart meter data
are enriched with spatial and temporal information at differ-
ent granularity levels as well as with various meteorological
conditions available as open data sources.

Thermal energy data, indoor climate conditions and en-
riched data are managed by the Storage Layer component.
It aims at (i) processing and storing all the collected smart
meter data, (ii) enriching them with contextual and topological
features related to the monitored buildings, and (iii) storing
enriched and integrated data into a non-relational database to
effectively support different complex analytics services.

The Application Layer component analyzes the collected
data and produces useful feedbacks to the different users of the



ESA system. It addition it suggests ready-to-implement energy
efficient actions or strategies. Different heterogeneous analytics
services can be easily integrated in ESA. In this work we focus
on evaluating and analyzing the building performance through
the evaluation of energy signature. The analysis aims at (i)
characterizing, evaluating and ranking building efficiency with
respect to the nearby and similar buildings, and (ii) forecasting
energy demand by means of the computation of the expected
power consumption for a forecast outdoor temperature 7,
in a future time period. The first analysis is provided to
both consumers and users living in the building, while the
second one to both energy managers and energy analysts. Both
analyses are performed in a near real-time fashion.

In this study, we focus on the layers described above.
However, the Middleware Layer is also included in ESA. This
layer enables the interoperability across heterogeneous data
sources, both hardware and software, by creating a peer-to-
peer network in which the communication between peers is
trusted and encrypted. Thanks to the Event Manager unit, a
publish/subscribe approach is also provided to increase the
system scalability [10]. Such functionalities will support the
management of an “energetic repository” for the city in which
different actors (or peers) can publish and subscribe to energy
data providers.

IV. SOURCE LAYER

The Source Layer currently includes a large number of
smart meters, installed in buildings and providing energy
related data, and heterogeneous data retrieved from different
web services (e.g, meteorological data provided by the Weather
Underground web service [5]). ESA also collects indoor
climate conditions by means of temperature sensors installed
in a subset of the monitored buildings. However, any other
data source can be easily integrated in ESA.

Remote measurements of energy consumption are collected
by means of gateway boxes installed in the monitored build-
ings. Each gateway is an embedded device that manages all
the sensors deployed in the building. It includes a GPRS
modem with an embedded programmable ARM CPU. Each
gateway has in charge the management of all the sensors
deployed in its building. An ad-hoc software has been devel-
oped to execute the following activities: sensor management,
GPRS communication, remote software update, data collection
scheduling, and collected data sending to a remote server.
Thermal energy is measured under different aspects, such as
instantaneous power, cumulative energy consumption, water
flows and corresponding temperatures. Furthermore, gateways
also collect indoor temperature and the status of the heating
system. Every 5 minutes, the gateways send a data frame to
the Storage Layer (see Section V).

The Source Layer also collects the historical meteorologi-
cal data from the Weather Underground web service [5], which
gathers data from Personal Weather Stations (PWS) registered
by users. For the city of Turin more than twenty PWS are
available, reflecting with high accuracy the real conditions
registered in monitored building neighborhood, as opposed to
other services that provide estimated values with respect to a
wider area.

Furthermore, ESA also retrieved contextual and topolog-
ical features of the monitored buildings from different web
services. Specifically, Google Maps APIs [6] have been ex-
ploited for geocoding building street addresses. Topological
information about neighborhood names and district names have
been retrieved from open data sources provided by the local
public administration [7].

V. STORAGE LAYER

The Storage Layer provides a two-level database archi-
tecture for processing, storing, enriching data, and supporting
complex analytics services. The first level, named sensor data
storage, collects the sensor data continuously received from
smart meters. Sensor data then are integrated with meteorolog-
ical data and enriched with spatial and temporal information
at different granularity levels. The enriched dataset is stored in
the second level of the Storage Layer, named data warehouse,
exploiting a non-relational schema-free horizontally-scalable
database, MongoDB [11].

A. Sensor data storage

Gateways installed in buildings send the data frame in-
cluding energy related data to the Storage Layer. Each data
frame is assigned to one of four dispatchers to guarantee
the system reliability. Each dispatcher delivers the frame to
a cluster of computers including different processing servers
where data are stored in a HDFS distributed file system. The
dispatcher is able to recognize if the processing server has
stored the frame correctly. In this case it sends an ACK to
the gateway, which can then send the next data frame. Each
processing server elaborates the received data and stores the
result in an Oracle relational database. The logical model of the
database includes the following three tables: (i) The Building
table contains the main features characterizing each building
such as address and volume; (ii) the Sensor table stores the
list of sensors in each building and their characteristics (e.g.,
unit of measure, description, sensor type and model); (iii) the
History table stores all the collected measurements.

B. Data enrichment and integration process

Data collected through the smart meters are integrated with
meteorological information collected from the Weather Un-
derground web service [5], which gathers data from Personal
Weather Stations (PWS) registered by users. Each metereo-
logical measurement includes the air temperature (expressed
in degree Celsius), the relative humidity (percentage), the
precipitation level (mm), the wind speed (km/h) and the
sea level atmospheric pressure (hPa). The date and time
of each measurement is also included. For each PWS, we
considered an average measurement frequency equal to 5
minutes. Collected weather data are pre-processed before the
data integration phase because of different time and space
intervals with respect to the energy-related timeline and the
monitored building addresses. For example, weather data may
be unavailable for a specific building address or instant of time,
while the energy related data are instead available. The solution
adopted in ESA supposes that (i) weather data timestamp
is aligned to the closest timestamp available for the energy
data. An approximated join is computed between weather data
timestamp values and instantaneous power one. (ii) Weather



data associated with a specific building address are computed
as a distance-based weighted mean of the values provided by
the three nearest PWSs. The weight is inversely proportional
to the distance from the PWS to the building address. Hence,
three equally distant PWSs would have the same weight in
determining the outdoor values of a given building.

Integrated data are enriched with additional contextual
information acquired from external open data sources. More
specifically, to analyze the femporal distribution of thermal
energy/power, the following time granularities are considered:
day, week, month, 2-month, 3-month, 6-month time periods.
Moreover, each day is classified as holiday or working, and
the measurement time is aggregated into the corresponding
daily time slot (morning, afternoon, evening, or night). In
Turin, heating systems are operated only from October 15th
to April 14th, hence times periods outside this range were not
considered.

To analyze the spatial distribution of thermal energy/power
consumption, different space granularities are also considered
beyond the building addresses. In addition, each address is
mapped to the corresponding geographical coordinates (lon-
gitude and latitude degrees), neighborhood, and city district
including that neighborhood. While the address is an infor-
mation recorded for the monitored building, the geographical
coordinates and both the neighborhood and district names
corresponding to the address are added as additional contextual
features to the repository. We exploited the Google Maps
APIs [6] for geocoding street addresses. Furthermore, topo-
logical information about neighborhood names and districts
are integrated in the repository as well. The latter have been
retrieved from [7]. Topologies are used to graphically analyze
the most significant spatial trends in thermal energy/power
consumption data and were encoded in GeoJSON, which is
a standard format for encoding a variety of geographic data
structures.

C. Data warehouse

The data collection from smart meters exploits an Oracle
database due to the fixed and constant nature of those measure-
ments. Instead, being enriched data significantly more variable
and heterogeneous, their analysis requires a different techno-
logical solution. To this aim, enriched data are modeled into a
document-oriented distributed data warehouse providing rich
queries, full indexing, data replication, horizontal scalability
and a flexible aggregation framework, including a distributed
map-reduce engine. The current database empowering ESA
analytics is MongoDB [11]. As soon as new sensor-collected
data are available (i.e., within seconds), they are integrated
with meteorological information, enriched with topological
and contextual data, and added into a MongoDB sharded
collection.

Following best practices in data warehouse design, data
are de-normalized and redundant information is added to each
record (document) to speedup read performance by avoiding
join operations (which are not sopported by MongoDB). It
results in fast querying operations and energy building signa-
ture computation. The implemented data warehouse provides
horizontal scalability and data replication to increase read-
scalability. Horizontal scalability is obtained by exploiting data

sharding, i.e., storing documents across multiple distributed
machines by dividing the collection and distributing its data
over multiple servers, or shards. As the size of the data
increases, ESA only needs to add more machines to scale
and support the demand of a higher number of read and write
operations. Each shard processes relatively fewer operations as
the cluster grows, and the percentage of data that each server
needs to store is reduced. MongoDB provides automatic shard-
ing and the key design choice is the attribute whose values
partition the collection documents (i.e., the shard key). In ESA
the sharding is performed using a hash-based partitioning on
the value of the building ID field. The choice of the shard
key is motivated by the fact that the energy signature analysis
is typically computed by grouping measurements per building.
Since the number of buildings grows with the expansion of the
ESA framework, the shard key is a natural scaling indicator.
Hash-based partitioning has been chosen over the range-based
partitioning approach to ensure that data are evenly distributed
across the machines in the cluster, since no range queries are
performed on the building identifier. Replication is obtained
by exploiting MongoDB replica sets to provide redundancy
and high availability. With multiple copies of data on different
servers, replication avoids data loss from a single server failure.
Currently, in ESA each replica set consists of a primary server,
a secondary server and an arbiter. All writes go to the primary
server, while the secondary server can be exploited to increase
the read capacity at the cost of possible inconsistencies, which
are easily tolerated at the application layer.

VI. APPLICATION LAYER

The Application layer provides different services to the
actors interacting with the ESA system. In this paper we
focus on the specific energy signature service, which exploits
a Big Data approach to perform a scalable and distributed
computation of the total heat loss coefficient K;,; estimation,
and whose aim is twofold: to evaluate and rank building
efficiency/performance over time, and to forecast the power
demand.

To address the former objective, two indicators have been
designed: (i) an intra-building indicator, which addresses the
question of abnormal power consumptions given the current
conditions with respect to past energy demand in the same
conditions; to this aim, the most recent power consumption
data for each building is compared to its own historical energy
signature, thus identifying changes with respect to previously
modeled energy behaviors of the same building; (ii) an inter-
building indicator, comparing the building efficiency, given
by its energy signature, with respect to nearby and similarly
characterized buildings, where similarity takes into account
spatial co-location, building size, and usage patterns, e.g.,
residential or office or public building.

The key intuition behind the designed indicators is based
on exploiting the energy signature defined by Ky, to compute
the expected power consumption for given contextual con-
ditions in a specific time period. Contextual conditions can
include any relevant attribute for the specific problem under
investigation. In the current implementation, the difference
between the outdoor T, and the indoor 73, temperatures, and
the specific building characteristics (e.g., position, size, etc.)
are considered as the key attributes defining a context. If the



given temperatures and time periods are the current ones (e.g.,
current outdoor temperature, now), and we consider the same
building, then the intra-indicator is obtained, whereas using the
energy signature of a group of similar buildings, with respect to
the one under examination, leads to the inter-building indicator.

Finally, to reach the goal of forecasting the power demand,
the same approach can be used, by exploiting the energy
signature with a predicted value of outdoor temperature T,
and a fixed value of target indoor temperature 7;,, with
the former obtained by weather forecasts, and repeating the
computation for each future time period and each building of
interest. Such estimation of future power demand helps district
heating providers to better predict the energy demand.

To evaluate and rank building efficiency, its energy sig-
nature, defined by its total heat loss coefficient K, i
exploited. To this aim, the instantaneous power supplied by
the heating system per unit of volume (Q)y) is correlated
with the difference between the indoor temperature 73, and
the outdoor temperature T,,. The correlation is based on a
linear regression of average power samples per unit of volume,
aggregated at different time granularity levels. This process has
been designed and developed as a cloud-based service on top
of a MongoDB distributed cluster, and it is detailed in the
following.

The analysis can be focused by filtering heating power
consumption in a given date range tyerioq (€.8., @ winter period,
a month) and also in specific day time slots of interest ts;o;
(e.g., [5:00p.m-7:00p.m.], [10:00a.m.-7:00p.m.], [10:00a.m.-
9:00p.m.]). Hence the time-specific energy signature will be
relevant only for those subsets of time periods, both in the
characterization and in the prediction applications. Focusing
the energy signature by restricting the day and time periods
helps in modeling different behaviors such as those in the
steady state, in specific seasons, during office hours, etc.

The instantaneous power samples of interest are aggregated
by computing the mean value in a given time window, t.,indow
(e.g., hourly, daily, weekly). The resulting value indicates the
mean power consumption over an hour, a day, or a week. While
longer periods are more error-prone due to the large variance
of the outdoor temperature T,,, too short periods take into
account the thermal inertia of the building, as discussed in
Section II.

The application service can estimate K;,; by considering
any combination of ¢period, tsiot, and tyindow, Which are user-
defined parameters. It will be up to the end-user presentation
interface to choose the best indicators in any given context.

For each building, the instantaneous power values per
unit of volume, and the difference between the indoor 7T;,
and the outdoor 7., temperatures are extracted from the
MongoDB datawarehouse and aggregated over t.,;ndow. Lhe
result includes all the mean power values per unit of volume
and the average difference T.,-T;, for each t,indow-

Given the mean power values (denoted as y) and the mean
temperature difference values (denoted as x) we first compute
> Tiy Yoy Yis 2oy T;y;. Then the a and b terms of the
linear equation y = a + bx is computed as follows.

G v 2D =0 @) (i @iys)
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The b value corresponds to the total heat loss coefficient
of a building, i.e., K.

The MapReduce jobs of the estimation of K;,; were devel-
oped through custom JavaScript functions, and executed using
the MongoDB MapReduce framework. For each document,
the map function emits an object containing the values needed
to compute the energy signature equation parameters for the
related building. The reduce function is in a simple sum over
all the records of the same building. Finally, a finalize function
uses the aggregated results to compute the energy signature
equation and returns the K, estimation for each building.
Energy signatures can be aggregated over similar buildings by
computing the average K;,; among them.

VII. EXPERIMENTAL RESULTS

We performed experiments on real data collected through
sensors and smart meters from almost 2,000 buildings in Turin,
Italy, over three years (2012-2014), with samples every 5 min-
utes. Energy data include the instantaneous power measured
at sampling time in Watt (W) and the consumption since the
last sample in Watt-hour (Wh). Indoor temperature values in
Celsius degrees (°C) are also fetched from the sensor data
storage and synced with energy data. If different sensors for a
single measurement are present (e.g., indoor temperature), an
average value is considered for the whole building. The dataset
has been integrated and enriched as discussed in Section V-B
and loaded into the MongoDB datawarehouse. The complete
collection in the MongoDB cluster contains the subset of data
which have been used for the reported experiments, whose
current total size is almost 300 GB.

Experiments address three issues: (i) the characterization of
energy signatures for different buildings at different granularity
levels (Section VII-A), (ii) the sensitivity and robustness of the
energy signature method (Section VII-B), (iii) the horizontal
scalability of the ESA analytic system with respect to the
number of nodes in the cluster (Section VII-C).

Experiments were performed on a cluster of 8 nodes
running MongoDB version 2.6.8 and configured as a sharded
cluster, consisting of three different components. The nodes
were assigned to each component as follows: (i) Up to 5
dedicated nodes (node4 to node8) were configured as the
actual shards in charge of the data storage. (ii) One node
(node2) was configured as query router (mongos) and were
in charge of directing operations to the appropriate shards.
(iii) Three nodes (nodel to node3) were configured as Config
servers (mongod —configsvr) to store the cluster’s metadata,
such as the mapping of the data set to the shards. To efficiently
split documents among shards, the building ID property was
selected as shard key. Each cluster node is a 2.67 GHz six-
core Intel(R) Xeon(R) X5650 machine with 32 Gbyte of main
memory running Ubuntu 12.04 server with the 3.5.0-23 kernel.
All the reported execution times are real times.

To evaluate the quality of the linear regression that esti-
mates Ky, the Standard Error of Regression (denoted as 5)
is exploited:

_ r—7xT —a)]2
S = \/ﬁ[z (y - y)2 - [E(Z(m)_(g)zy)] ]




y=-0,6716x+ 14,72
§=0,7757

T.dcl

Fig. 2. Residential building, scatter plot of daily power consumption per unit
of volume (W/m?3) with respect to Tes (°C).

where Z and y are the sample means, and n is the sample
size. Small values of S identify a high accuracy of prediction
because the 95% of predicted values will fall in a range of
+25.

A. Characterization of energy signatures

Figures 2 and 3 show the energy signature of a random
building in the Turin area. The chosen ¢ndow Vvalues are
24 hours and 7 days, hence the analysis considers the daily
mean power values per unit of volume with respect to the daily
mean outdoor temperature'. The analysis has been performed
by considering as ?,¢ri0q the latest full Italian heating season
(at the time of writing), from October 15", 2013 to April 14",
2014. To focus the analysis on the steady state, t5,¢ has been
set to the time range from 5 to 9 pm.

Figure 2 focuses on the daily t,indow Scatter plot and its
resulting regression (red line) to estimate Ky,:. A low .S value
of 0.78 is obtained, whereas the estimated value of K;,; is
0.67, which is a good result in terms of energy performance,
as we will see later in the experiments. Even without knowing
which ranges of Ky, are good or bad, and we cannot suppose
all actors of the ESA system will be so skilled, providing
a performance comparison with similar buildings helps in
defining a perspective at a glance.

Figure 3 shows the linear regression by aggregating mean
power values over daily ¢,indow for the considered building
(dotted line). Figure 3 also shows the energy efficiency of the
considered building (dotted line) with respect to the energy
signature of (i) the most efficient building (dashed line) and (ii)
the average power profile (solid line), considering all buildings
in the corresponding district. Such comparative information,
suitably presented to each actor of the ESA system, allows
to rank the buildings within districts, immediately putting in
perspective the initial value of K;,=0.67: even if it is a
generally good value in terms of energy efficiency, as we
will see later, being better than its district average, the best
performing building in the same district is far better. In such
a situation, an end-user can consider to adopt energy-aware

'In most residential buildings, the indoor temperature is not monitored
through a sensor network, hence we considered in the analysis a fixed value
of 20°C, since it is the typical value set by local regulations. Being fixed
Tin, the charts report Te, only.
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Fig. 3. Residential building, linear regression of daily power consumption
per unit of volume (W/m?) with respect to Tes (°C).
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Fig. 4. School building, scatter plot of daily power consumption per unit of
volume (W/m?) with respect to T}y, -Te,, difference (°C).

structural improvements to reach and improve over the best
performing building.

Figure 4 shows the daily power consumption per unit of
volume of a Turin school building, where a sensor network has
been deployed for real-time monitoring of indoor temperature.
The analysis has been performed by considering ¢,¢;io4 from
the beginning of the heating season 2013-2014 in Turin, on
October 15", 2013, to the latest data available at the time
of writing, February 28", 2015. Since many indoor temper-
ature sensors are deployed in different rooms of the school
building, the instantaneous indoor temperature 7;, has been
computed as the mean temperature value for each timestamp.
The analysis has been performed by considering values in
tsior=[D 00p.m. — 9 00p.m| and data are aggregated
over daily t.,indow. Similarly to the regression of a residential
building presented in Figure 2, also the school building K¢
estimation (red line) from the linear regression has a low
S value (1.39). The estimated Ky, value is 1.42, indicating
a poor energy performance, at least when compared with
residential buildings.

B. Sensitivity and robustness of the energy signature method

The two main user-defined parameters of the ESA system
are the aggregation period tindow and the tg,¢ day-time
filter. Hence, we present an evaluation of the robustness of the
proposed energy signature analysis to such parameter settings.



Table I shows the K, estimation computed through the
linear regression and the S values indicating how the linear
regression is able to correctly model the studied phenomenon.
Furthermore, the comparison between the best and the average
building allows to see the results from a different perspective.

Focusing on S, the first evidence is that the longer the
twindow, the better the linear regression. For each tg, S
values are lower for weekly tyindow than daily tyindow. S
values for hourly t,,;nd0 are much higher than the rest. This
general behavior is expected and stems from the data smooth-
ing effect of considering averages over longer periods of time,
which hides outliers or temporary exceptional behaviors. Even
if the equation Vigor,t1 > t2 = Stovow=t1 = Stuindow=ts
holds true in all reported cases but one, we can see that the
S values for hourly ?yndow are more sensitive to the g0t
selection. In particular, both the 5:00-7:00pm and the 5:00-
9:00pm %, ranges yields similar results in terms of S values
(of course, periods also overlap), whereas the 6:00am-10:00pm
tsi0+ range for hourly ¢, ind0w has extremely high S values:
4.61 for the best building, 7.41 for a random building. From
such values, we can note that (i) the 6:00am-10:00pm 4,
range is generally the best fit for the linear regression, thanks
to the longer period facilitating steady state modeling of the
heating system and limiting the dynamic and thermal inertia
effects; (ii) the hourly t,indow Often leads to unsatisfactory
Ko estimations, due to the poor fit of the linear regression.
The exception to these findings is the 5:00-7:00pm ¢4, for
hourly tindow, Which has a low S value (0.88) with respect
to the average hourly model behavior (S always above 1.11).
Finally, we can note that all combinations of parameters that
have a low S (from Table I, lower than 1.2) lead to a coherent
and stable K, estimation: for each fixed ¢4, the best
building K;,; estimation delta is always lower than 0.02, and
the random building is always lower than 0.01.

Best Building Building N.* District Mean

twindow tsiot Kot S Kot S Kot
Weekly 6:00am-10:00pm 0.46 0.35 0.53 0.47 0.55
Weekly 5:00-7:00pm 0.51 0.67 0.72 0.55 0.74
Weekly 5:00-9:00pm 0.54 0.57 0.68 0.68 0.68
Daily 6:00am-10:00pm 0.46 0.64 0.53 0.55 0.54
Daily 5:00-7:00pm 0.53 1.02 0.72 0.90 0.73
Daily 5:00-9:00pm 0.55 0.62 0.67 0.77 0.67
Hourly 6:00am-10:00pm 0.36 4.61 0.49 7.41 0.51
Hourly 5:00-7:00pm 0.52 1.16 0.71 0.88 0.73
Hourly 5:00-9:00pm 0.53 1.11 0.64 2.38 0.64
TABLE I. twindow AND Tg1o¢ SENSITIVITY AND ROBUSTNESS.

C. Performance evaluation

We evaluated the scalability of the proposed architecture
by measuring the speedup achieved for different numbers of
shards in the MongoDB cluster (from 1 to 5 nodes). The
MongoDB chunk size parameter that determines the sharded
data balance among the nodes was left to its default value of
64 MB, being already more than three orders of magnitude
smaller than the total data collection size of almost 300 GB,
and thus leading to finely-grained balanced shards. The chosen
shard key for the experiments is the Building ID field.

Figure 5 reports the speedup achieved with the 2,000
building data set. The black line represents the (positive side
of the) ramp function, under which the computing speedup
would be identical to the number of shards or, equivalently,
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Fig. 5. Speedup on a 300GB-sized dataset (2,000 buildings).

the computing time for a cluster would be equal to that
employed by a single shard divided by the number of shards
in the cluster. The achieved results show that the algorithm
scales roughly linearly with the number of nodes and the
speedup approximately corresponds to the number of cluster
nodes. From a design perspective, we track the almost optimal
speedup back to the choice of the sharding key: it keeps data
locality among map, reduce, and re-reduce iterations, since
most of the energy signature computation is on a per building
basis, and only district and city averages or ranks involve
different nodes (but at that point the data set is so aggregated
that it is extremely small).

VIII. RELATED WORK

Important research activities have been carried out to
use database management systems, exploratory data mining
techniques, and statistical tools in the field of storage and
analysis of energy data to evaluate the efficiency of buildings.
The proliferation of sensor networks for monitoring indoor and
outdoor environmental parameters has brought to the facility
managers huge archives of measures with temporal and spatial
references. Research contributions on these large data volumes
have been carried out for: (i) supporting data visualization and
warning notification [12]; (ii) efficient storing and retrieval
operations based on NoSQL databases [13]; (iii) characterizing
consumption profiles among different users [14], [15]; (iv)
identifying the main factors that increase energy consumption
(e.g., floors and room orientation [16], location [15]). Dif-
ferently from the above research works, this paper proposes
an integrated and distributed system able to collect a large
volume of energy related data and efficiently compute two key
indicators based on the energy signature method.

A parallel effort has been devoted to designing and imple-
menting systems based on Big Data technologies to provide
different cloud-based analytics services. Proposed solutions are
general purpose [17] or tailored to a given application domain,
such as thermal energy consumption [18], residential energy
use [19], renewable energy [20], air pollution levels [21].
Authors in [17] highlight the key features that should be
included in an analytics cloud service. Thereafter, the concep-
tual architecture of a big data analytics service provisioning
platform in the cloud (CLAaaS) is presented. The platform
will provide on demand data storage and analytics services
through customized user interfaces and will apply Service



Level Agreements (SLAs) to provide controlled access to
software and data resources. The components of the proposed
platform are grouped into three functional categories: service
management, workflow management and data management.
In this paper we presented a distributed architecture similar
to [17] but tailored to the energy signature service. The
implemented system has been also evaluated on real data.

The work in [18] tries to point out the key features of
an Energy Management System, to support frequent pattern
discovering on event streams. A Data Stream Management
System (DSMS) is used, to better suit the typical queries
of real-time EMSs on time-varying data streams. Differently
from [18] the ESA system exploits a non-relational schema-
free database to efficiently support different and more complex
energy analytics services.

Finally, a small subset of the experimental dataset for ESA
has already been exploited by authors in [22]. Such previous
work has completely different target and analysis approach,
and a substantially different architecture (the only similarity
lays in the datawarehouse design). [22] exploits four levels of
data (energy, publication, social, and smart data net), whereas
the current paper has only two data levels; the target of [22]
is the power consumption analysis, whereas the current work
aims at energy efficiency.

IX. CONCLUSIONS

This paper presented the design and implementation of
the ESA system to provide different energy analytic services
exploiting a Big Data approach. The three main layers of
ESA, i.e., source, storage and application layers, have been
thoroughly presented and discussed in the context of the
specific energy signature service. Experimental results on real
data show the effectiveness and the efficiency of the ESA
system in exploiting the energy signature analytic service to
evaluate and rank building efficiency and energy performance
over time, and to forecast the power demand.

We are currently extending the ESA system with an ad-
hoc social platform where users are pro-actively engaged
in the act of generating data related to their perception of
thermal comfort, as well as useful feedbacks on thermal energy
consumption of the buildings where they live or work. The
social platform will also show to users both inter and intra-
building indicators in an informative fashion.
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