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Abstract—Near-infrared spectroscopy (NIRS) is a rapid, chem-
ical-free, easy to use, and non-destructive analytical technique 
that has been widely applied to a diverse range of fields. NIRS 
analyzes the investigated samples through their NIR spectra. 
However, NIR spectral data are complex and multivariate, so 
multivariate data analysis methods (chemometrics) are used to 
interpret and predict the spectra’s chemical and physical infor-
mation. The analysis process is also very complex, involving both 
data processing and modeling. This paper first introduces basic 
concepts of NIRS analysis with the aim to show its complexity. 
The paper then characterizes the NIR spectral data using the 
“3H” of scientific big data, with the aim to show their challenges. 
Finally, the paper describes our initial effort on the development 
of an integrated software system to support efficient real-time 
NIRS data analysis and management. The paper claims that this 
development is an important contribution to tackling the chal-
lenges of scientific big data. 

Index Terms— Near-infrared spectroscopy (NIRS), near-
infrared (NIR) spectral big data, software technologies for real-
time NIRS big data analysis and management, scientific big data 

I. INTRODUCTION 
Near-infrared spectroscopy (NIRS) is an instrumental 

method for acquiring near-infrared (NIR) spectra of materials 
for the purpose of quantitative and qualitative analysis [1]. In 
contrast to most other analytical and conventional chemical 
methods, NIRS is rapid, chemical-free, easy to use, and non-
destructive [2], [3]. More specifically, NIRS has four distinc-
tive advantages over other analytical methods [1]: First, it re-
quires little or no sample preparation or manipulation. Second, 
it is very fast as it can acquire a spectrum of a sample in as 
little as a tenth of a second. Third, it can perform multi-
constituent analyses from a single scan, as it is not necessary 
to scan the sample for each chemical constituent. Finally, it is 
a nondestructive measurement process so the analyzed sample 
can be returned to the original lot with no damage. NIRS is 
also environmental friendly, because no sample preparation or 
manipulation means that there are no hazardous chemicals, 
solvents, or reagents involved in the analysis [4].  

Due to these advantages, NIRS has experienced an ever-
increasing popularity in recent years and has gained wide-
spread acceptance in different industry sectors for new product 

testing, product quality control and process monitoring [5]. Its 
applications cover as diverse fields as agricultural [6], [7], 
chemical [8], fertilizer [9], food [1], [10], [11], oil  [12], envi-
ronmental [13], medicines [14], and pharmaceutical industries 
[15], [16], [17], [18]. In addition, NIRS is also a most versatile 
analytical method, suitable for analyzing solid, liquid, gas, and 
other forms of biotechnological or pharmaceutical products 
[17]. The recent advancement in instrument development has 
resulted in portable and, more recently, miniature NIRS in-
struments [1], [2], [3]. Such devices make it possible to con-
duct NIRS spectral data analysis in the fields (in-line), on site 
(on-line) and at production lines (at-line) [2], [3]. 

This paper reports on the development of software technol-
ogies for supporting fast real-time NIRS data analysis and 
management. This development is part of a collaborative pro-
ject undertaken by an interdisciplinary team, comprising bio-
physicists from Chinese Academy of Sciences and Anhui Uni-
versity, and computer scientists from University of Manches-
ter. The team was brought together to develop novel software 
technologies capable of supporting rapid, real-time NIRS data 
analysis and management, to address the unprecedented chal-
lenges of scale, rate, and complexity of scientific big data pro-
cessing and management.   

The remaining paper is organized as follows: Section II in-
troduces some basic concepts of NIRS data analysis. Section 
III then links the NIR spectral data to scientific big data 
through the “3H” characteristics [19]. Section IV describes our 
initial effort on the development of an integrated software sys-
tem to support real-time NIRS analysis and management. A 
brief review of related work is presented in Section V before a 
conclusion is drawn in Section VI. 

II. BASIC CONCEPTS OF NIRS DATA ANALYSIS 

A. NIR Spectra 
The NIR spectral region (800 – 2500nm) is situated in be-

tween the visible light (VIS) region (400 – 800nm) and the mid 
infrared (MIR) region (2500 – 15000nm), as shown in Figure 1. 
Spectra in the NIR region result from energy absorption by 
organic molecules, and comprise overtones and combinations 
of overtones originating from fundamental bond vibrations 



(stretching or bending) occurring in the MIR region of the 
spectrum [2].  

In the application of NIRS (see Figure 2), a NIR spectrome-
ter can obtain one single NIR spectrum of a tested sample by 
use of fiber optic probes (radiation light source). A NIR spec-
trum is composed of hundreds or even thousands of wave-
lengths within the NIR region [4]. The NIR wavelengths con-
tain both chemical and physical information of the sample. 
Precisely how many wavelengths are contained with a spec-
trum depends on the NIRS device used. For example, our NIRS 
device can record a NIR spectrum with 256 wavelengths (Fig-
ure 3).  

Wavelength λ (the length of one wave) is defined as the dis-
tance between adjacent peaks (or wavelength points), and may 
be measured in meters, centimetres or nanometres (10-9 meters 
or nm).  

NIRS data are multivariate in nature due to a large number 

of data points (one at each wavelength) being collected for each 
sample during spectral collection [2]. They are also multi-
dimensional, because each wavelength variable is mapped onto 
one point in a multivariate space (M-space), with as many axes 
as there are variables [20].  In other words, for a spectrum with 
p wavelengths (variables), the mapping will lead to a p dimen-
sional space [5]. In our case, since each spectrum has 256 vari-
ables, the transformation of these variables will lead to a 256 
M-space. For illustration purposes, Figure 4 shows a spectrum 
with three wavelengths and the transformation of these wave-
lengths to a three-dimensional space. 

NIRS data analysis requires the use of multiple samples in 
order to provide an accurate analysis of the tested product. 
Consequently, NIRS needs to record the NIR spectra of multi-
ple samples, not just one single sample. For example, in our 
case, each NIR analysis requires to use at least between 60 and 
80 samples. Since each sample gives rise to one NIR spectrum, 
each NIR analysis needs to deal with a bundle of 60 – 80 spec-
tra. As each spectrum contains 256 variables, each analysis 
needs to deal with at least between 60 ×  256 = 15360 and 80 
×  256 = 20480 variables or dimensions. Figure 5 shows the 
NIR spectra of rice flour obtained from 79 samples. 

NIR spectra are very complex and normally possess broad 
overlapping NIR absorption bands, resulting in many overlap-
ping peaks (referred to as “multicollinearity”) [2], [4]. Conse-
quently, it is difficult to interpret NIR spectra visually, assign 
specific features to specific chemical components or extract 
useful information contained in the spectra [2], [4], [21]. 

 
Fig. 1. The NIR spectral region (800 – 2500nm) is situated in be-
tween the visible light (VIS) region (400 – 800nm) and the mid infra-
red (MIR) region (2500 – 15000nm). 

 
Fig. 5. NIR spectra of rice flour, obtained from 79 samples (79 equal 
portions). The spectra contain 79 × 256 = 20224 wavelengths or varia-
bles. 

 
Fig. 3. A NIR spectrum of rice flour. The spectrum is composed of 
256 wavelengths (variables).  

 
Fig. 2. NIR spectrometer scans a batch of samples one by one and 
records a single NIR spectrum from each sample.  

 
Fig. 4. (a) A spectrum with three wavelengths (i.e., three variables); (b) 
the mapping of these wavelengths onto a three-dimensional space, with 
one axis for each wavelength. Both (a) and (b) are reproduced based on 
part of Fig. 3 of [5]. 



B. NIRS Multivariate Data Analysis 
The purpose of multivariate data analysis is to relate the 

spectral variables of the investigated samples to the properties 
of the analyte (the reference samples whose chemical constitu-
ents are being identified and measured) [5]. This requires the 
use of special mathematical and statistical methods, known as 
chemometrics [20], [22], to extract relevant information and 
reduce irrelevant  information in the NIR spectra of the inves-
tigated samples. NIRS data analysis is therefore fundamentally 
multivariate data analysis [2] or chemometric data processing 
[5].   

The overall process of multivariate data analysis for NIRS 
is depicted in Figure 6, where the first step is pre-processing, 
which is concerned with spectral pretreatment and variable 
reduction. Spectral pretreatment aims to reduce noise or un-
wanted background information, whereas variable reduction is 
to reduce the number of variables to a few uncorrelated varia-
bles containing only relevant information from the samples [2], 
[3], [5]. The most common pretreatment methods include the 
moving-average method (Savitzky–Golay or SG), normaliza-
tion, derivatives SG, multiplicative scatter correction (MSC) 
and standard normal variate (SNV) [2], [3], [5]. For variable 
reduction, the best known and most widely used is principal 
component analysis (PCA) [3], [5].  

After pre-processing, the second step in multivariate data 
analysis is quantitative data analysis, which is then, optionally, 
followed by the third step of qualitative data analysis.   

Quantitative multivariate data analysis uses the pre-existing 
knowledge about the reference samples to prognosticate the 
composition of the investigated samples. This knowledge is 
represented as a multivariate calibration model, which ex-
presses a mathematical relationship between the NIR spectra 
of the analyzed samples and the respective reference values 
(i.e., chemical constituents, physical characteristics or other 
indirect properties) of a set of known reference samples [2]. 
The development of calibration models normally requires 
qualification by independent, reference analytical procedures 
[21] as well as substantial investment, although reuse of these 
models in future analyses can offset this development effort 
[3]. The most frequently used chemometric methods for cali-
bration models are principal component regression (PCR) and 

partial least-squares (PLS) regression. These methods aim to 
construct calibration models capable of accurately predicting 
the chemical and physical characteristics and properties of the 
samples under investigation [2],  [3],  [4], [5]. The process of 
model construction contains the following basic steps: 

1. Select a representative calibration sample set 
2. Acquire sample spectra and determine reference values 
3. Construct the calibration model to establish the spec-

trum–property relationship using multivariate methods  
4. Validate the model. 
Qualitative analysis is used to confirm the identity or the 

quality of the unknown samples on the basis of their physical 
or chemical attributes [2], [5]. The most frequently used mul-
tivariate calibration methods are principal component regres-
sion (PCR) and partial least-squares (PLS) regression [2], [5].  

Qualitative analysis requires the use of a library of repre-
sentative spectra to compare the spectrum of the investigated 
sample, to identify the similarities and differences between the 
sample spectrum and the spectra in the library [2], [5]. Qualita-
tive analysis methods are based on multivariate classification 
methods, also known as pattern-recognition methods. These 
methods are divided into supervised methods, such as cluster 
analysis, and non-supervised methods, such as linear discrimi-
nant analysis (LDA) and PLS discriminant analysis (PLS-DA), 
depending on whether or not the class to which the samples 
belong is known [5]. 

 This brief introduction shows that both NIR spectral data 
and NIRS data analysis methods are very complex. 

III.     NIR SPECTRAL DATA: A CASE OF SCIENTIFIC BIG DATA 
Blanco and Villarroya [3] stated: “the powerful NIR in-

struments currently available quickly provide vast amounts of 
data that require speedy, efficient processing if it is to yield 
useful analytical information.” We argue that NIR spectral data 
are scientific big data. In this section, we characterize NIR 
spectral big data according to the “3H” characteristics of scien-
tific big data defined by Guo et al [19], which are high dimen-
sion, high complexity, and high uncertainty.  

High dimension. Guo et al stated [19]: “In general, the ex-
ternal representations of ‘scientific big data’ have high correla-
tion and multiple data attributes. In principle, scientific big 
data has a high dimension.”    

As stated in Section II, NIR spectral data are multivariate 
data, consisting of hundreds or even thousands of variables. 
NIR spectral data are represented as points in a multivariate 
space (M-space), with as many axes as there are variables. 
Multivariate data are known to contain a huge number of cor-
related variables (called multicollinearity or collinearity).  

High complexity. Guo et al stated [19]: “Scientific big data 
mostly applies to complex nonlinear systems, and is accompa-
nied by a complex data model. Therefore, the issue for scien-
tific big data computation is not merely a matter of data pro-
cessing and analysis; it is also a matter of joint modeling and 
computation with complex system modeling and data.”  

As described in Section II, NIR spectra are very complex 
and difficult to interpret. NIRS data analysis requires the use 
of complex chemometric methods to pretreat and analyze the 

 
Fig. 6. The main steps in NIRS multivariate data analysis. Quantita-
tive analysis requires the use of calibration models whereas qualita-
tive analysis is based on classification methods.  



spectra, involving reduction of unwanted background infor-
mation and correlated variables, and construction of calibra-
tion models to extract relevant analytical information. The 
whole analysis process is therefore very complex, consisting 
of data processing and modeling.  

High uncertainty.  Guo et al stated [19]: “Scientific big da-
ta, in general, comes from the natural process of perception 
and data acquisition. Because of the characteristics of these 
data sources, scientific big data generally has some error and 
incompletion, which results in data with high uncertainty. Sci-
entific big data is often applied to the disciplines of natural 
systems…”  

NIR spectra are obtained from natural products and often in 
the natural environment, rather than the controlled laboratory 
environment. NIR spectral data are therefore affected by sam-
ple variations and environmental conditions. In addition, NIR 
spectral data can also be affected by device variations (as no 
two devices can be exactly the same). Hence NIR spectral data 
are highly heterogeneous, with the high uncertainty and high 
variety.  

Figure 7 summarizes these “3Hs” of NIR spectral big data. 
NIR spectral data can also be characterized by the three de-

fining characteristics of big data: volume, variety, and velocity 
[23]: Volume. NIR spectral data have the large sample size. 
Variety. NIR spectral data contain a large variety of samples 
and calibration models. Velocity. NIR spectral data are gener-
ated at the high speed. 

Fan et al [24] posited that the challenges of big data analy-
sis are characterized by high dimensionality and large sample 
size. They explained: “(i) High dimensionality brings noise 
accumulation, spurious correlations, and incidental homogene-
ity; (ii) High dimensionality combined with large sample size 
creates issues such as heavy computational cost and algorith-
mic instability; (iii) The massive samples in Big Data are typi-
cally aggregated from multiple sources at different time points 
using different technologies.”  These challenges are clearly 

reflected in scientific big data in general and NIR spectral big 
data in particular. 

IV. SOFTWARE SUPPORT FOR REAL-TIME NIRS ANALYSIS  

A. System Architecture and Process  
As Section II alludes, before NIRS data analysis can be per-

formed on the investigated samples, the corresponding calibra-
tion models that provide the reference values of the analytical 
target property must exist. Therefore, NIRS data analysis is 
necessarily a two-stage process, made of the model construc-
tion (also called modeling or calibration) stage and the spectral 
data analysis stage. Since the modeling stage is mainly a man-
ual process, requiring the input and actions from expert ana-
lysts, our software development effort has concentrated on the 
analysis stage.  

Specifically, the overall aim of our system is to enable real-
time NIRS data analysis by automating all the analysis process 
steps. Currently our system only supports quantitative multi-
variate data analysis, but it can be extended easily to support 
qualitative analysis should the needs arise. Figure 8 displays 
the architecture of our system as well as the process flows of 
the system. The main components of this system are briefly 
described as follows: 

• Spectral Scanner. Used to operate the NIRS spectrom-
eter. It is responsible for 1) configuring the spectrome-
ter, 2) scanning the sample one at a time, 3) recording 
the sample spectrum, and 4) calculating the absorbance 
of the spectrum. This component is implemented in C 
programming language for efficiency. 

• Spectral Preprocessor. Supporting spectral pretreat-
ment and variable reduction operations. Pretreatment 
and variable reduction methods (e.g., SNV and SG) are 
implemented using both Java programming language 
and the MATLAB library of chemometric methods. 

• Quantitative Multivariate Analyser. Supporting quanti-
tative multivariate data analysis. With an imported cal-
ibration model, this component employs the regression 
principles of multivariate calibration methods (e.g. 
PCR or PLS) to predict the chemical or physical prop-
erty in the sample. These methods are also implement-
ed using Java and the MATLAB library of chemomet-
ric methods. 

• Spectral Visualizer. Used to display the analysis results, 
consisting of the analyzed spectrum and the predicted 
chemical or physical property of the sample. This 
component is implemented in Java. 

• NIR Spectral Database. This database stores and man-
ages the output data from the aforementioned four 
components. Specifically, five types of data are stored 
in this database: 1) NIR spectrometer information; 2) 
sample information; 3) NIR spectra; 4) information of 
chemometric methods and multivariate calibration 
methods; and 5) calibration models. MySQL is used to 
implement this database system.  

 
Fig. 7. Characterizing NIR spectral big data using “3Hs” of scientific 
big data. 



• Chemometric Method Library. Used to store the im-
plementations of chemometric methods. This compo-
nent is implemented using MATLAB. 

Finally, the overall system control, the integration of the 
system components and the coordination between them are 
implemented using the Java programming language. 

Under our system, real-time NIRS data analysis can be per-
formed automatically in this order: 

1. The conveyor belt moves the investigated sample un-
der the light source.  

2. Spectral Scanner receives the sample information and 
produces a spectrum for the sample.  

 
Fig. 8. Software system architecture for real-time NIRS analysis. The architecture shows the main system components and the interactions among 
these components. Arrows represent process data flows.  

 
Fig. 9. The UI dashboard displays the spectrum of a grain sample and the analysis results (the chemical information) of the sample. 



3. Spectral Preprocessor performs pre-treatment and vari-
able reduction on the spectrum and generates the pro-
cessed spectrum.  

4. Quantitative Multivariate Analyzer analyzes the pro-
cessed spectrum. 

5. Spectral Visualizer displays the analysis results on the 
user interface dashboard, comprising the predicted 
chemical or physical property of the sample. It also 
displays the sample spectrum.  

Figure 9 shows the analysis results of a grain spectrum dis-
played by Spectral Visualizer. 

B. A Data Model for NIR Spectral Big Data  
The NIR Spectral Database in our system intends to serve a 

dual purpose: 1) to support seamless and rapid real-time NIRS 
data analysis through efficient data input and output, and 2) to 
enable long-term spectral data sharing and calibration model 
reuse through efficient storage and management of different 
data types. The structure of this database is still evolving. The 

current version consists of nine entities and the relationships 
between them. Figure 10 shows the Entity-Relationship (ER) 
diagram of this basic data structure. The entities correspond to 
the concepts that we have already introduced in Section II and 
should therefore be self-explanatory. 

Our long-term goal is to build a metadata model of NIR 
spectral big data. The importance of metadata for scientific big 
data is nicely explained by Gray et al. [25]: “Metadata is the 
descriptive information about data that explains the measured 
attributes, their names, units, precision, accuracy, data layout 
and ideally a great deal more. Most importantly, metadata in-
cludes the data lineage that describes how the data was meas-
ured, acquired or computed.” 

The use of data types Vector, Matrix and Tensor in Spec-
trum, Spectra and Calibration_model entities needs some ex-
planation: As mentioned in Section II, NIRS data are multivari-
ate in nature due to a large number of data points (one at each 
wavelength) being collected for each sample during spectral 
collection [2]. For each spectrum, the data points are related to 

 
Fig. 10. The Entity-Relationship Diagram for the NIR spectral database. The diagram shows the key entities of the database. 



a group of discrete values, represented as a mathematical vector. 
As each investigation (experiment) requires multiple samples, 
the spectral data of these samples thus constitute a matrix (a 
vector of vectors). As the mapping from the values of the in-
vestigated sample to the values of the reference sample has to 
be the one-to-one and onto relationship, the reference values of 
the spectra should also be matrix. Since a calibration model 
relates the relationship between the spectral values and refer-
ence values, it should be expressed as a tensor, consisting of a 
sequence of spectral matrices and reference values.  

However, since MySQL does not support vector, matrix 
and tensor data types, we have worked around it by imple-
menting vector data as a string and matrix data as a sequence 
of strings. We added an attribute “string_sequence” to the rel-
evant tables to record the positions of data items in a string so 
that we can reconstruct a matrix or tensor from sequences dur-
ing the computation. One future work will investigate alterna-
tive types of database system and build our own types to pro-
vide direct support for these NIR-specific data types.  

Managing the enormous amount of scientific data being 
collected is regarded as the key to scientific progress [26]. Yet, 
as Ailamaki et al. [26] noted, although technology (e.g., NIRS) 
and instrumentation (e.g., NIR spectrometer) allow for the 
extreme collection rates of scientific data, data storage and 
management is still performed with stale techniques developed 
for small data sets (e.g., existing database management sys-
tems).  Therefore, in order to exploit the value of scientific big 
data and support efficient processing of these data, advanced 
data storage and management technology are needed. 

C. Initial Validation 
So far, we have used our system to analyze water concen-

tration and protein content of rice and grains, and urine 
concentration in urea granules. Our predicted values for these 
products are very accurate, as they are very close to their refer-
ence values.  

Table 1 shows the predicted results of the urine 
concentration in 10 urea granule samples from our system, their 
corresponding reference values and the standard deviation be-
tween two sets of values. The results for other types of sample 
are not provided here for space consideration. 

V. RELATED WORK 
In spite of the wide applications of NIRS in recent years, 

little has been written about the development of software tech-
nologies to support NIRS data analysis or data management. 
Our literature review shows that there is only one persistent 
research project on the development of a spectral database 
called SPECCHIO over a period of 10 years [27], [28], [29], 
[30], [31]. According to Hueni et al., the researchers behind 
SPECCHIO [30], only three spectral database systems ap-
peared in literature, which are SPECCHIO [27], [28], Spec-
traProc [29] and a free online reference spectral library [32]. 
However, our literature review shows that SpectraProc is in 
fact an incremental development of SPECCHIO, developed by 
the same research team. Therefore, suffice it to say that so far 
there are only two clear examples of spectral databases. 

Yet, both SPECCHIO and the online reference spectral li-
brary store spectral signatures of images obtained from remote 
sensors, such as Google Earth or any Earth observation sys-
tems. They are therefore not suitable for storing and managing 
NIR spectral big data.  

We have used two commercial NIRS data analysis software 
systems, Unscrambler and OPUS. But commercial confidenti-
ality means that we can only get a glimpse of these systems 
from an end-user perspective, which is described (in compari-
son with our system) as follows. 

• Unscrambler. This system does not support real-time 
NIRS analysis so it cannot scan the samples and per-
form the analysis instantly. In addition, it uses a spe-
cial file format to store the data, which cannot be 
shared with other NIRS devices or systems. Unscram-
bler integrates the implementation of chemometric 
methods with the hardware device so that users cannot 
access the code of these methods.  

• OPUS. This system can only be used in the laboratory 
environment for lab experiments. It also uses its own 
file format file to store data, which cannot be shared 
with other NIRS devices or systems. Like Unscram-
bler, OPUS also integrates the implementation of 
chemometric methods with the hardware device so 
that users cannot access the code of these methods.  

This brief overview shows that there is an important gap in 
the research and development of NIRS software technologies 
to support efficient data storage, management and analysis. 
Our work represents a first step towards filling this gap. 

VI.  CONCLUSION 
This paper has made two important contributions to scien-

tific big data: 1) It has characterized NIRS data as scientific 
big data and introduced NIRS as a new scientific big data ap-
plication; 2) It has reported on the development of an integrat-
ed software system to support efficient, real-time NIRS data 
analysis and management. 

In presenting these contributions, we sought to illustrate the 
complexity of the NIRS field and the importance of software 
technologies in addressing this complexity. The paper has also 
identified the inadequacy of relational database management 

TABLE 1 
NIRS ANALYSIS RESULTS FOR 10 UREA GRANULE SAMPLES 

PRODUCED BY OUR SYSTEM 
Sample 
Number 

Predicted Value Standard 
Deviation 

Reference Value 

1 94.806 0.324 94.200 
2 94.446 0.247 94.500 
3 95.908 0.311 95.700 
4 95.881 0.282 95.900 
5 96.304 0.327 96.200 
6 96.669 0.438 96.800 
7 97.617 0.323 97.300 
8 98.566 0.372 97.900 
9 98.884 0.299 98.200 

10 98.429 0.291 98.400 



systems and the research gap in the literature.  
Due to the complexity of the topic and space constraints, 

this paper has necessarily placed more emphasis on the de-
scription of NIRS data analysis concepts and methods. We 
plan to expand on the description of software development and 
validation in a forthcoming journal article. 
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