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ABSTRACT
In this paper we address the problem of rule-based stream
data cleaning, which sets stringent requirements on latency,
rule dynamics and ability to cope with the unbounded na-
ture of data streams.

We design a system, called Bleach, which achieves real-
time violation detection and data repair on a dirty data
stream. Bleach relies on efficient, compact and distributed
data structures to maintain the necessary state to repair
data, using an incremental version of the equivalence class
algorithm. Additionally, it supports rule dynamics and uses
a “cumulative” sliding window operation to improve clean-
ing accuracy.

We evaluate a prototype of Bleach using a TPC-DS de-
rived dirty data stream and observe its high throughput, low
latency and high cleaning accuracy, even with rule dynam-
ics. Experimental results indicate superior performance of
Bleach compared to a baseline system built on the micro-
batch streaming paradigm.

1. INTRODUCTION
Today, we live in a world where decisions are often based

on analytics applications that process continuous streams of
data. Typically, data streams are combined and summa-
rized to obtain a succint representation thereof: analytics
applications rely on such representations to make predic-
tions, and to create reports, dashboards and visualizations
[15, 23, 26]. All these applications expect the data, and
their representation, to meet certain quality criteria. Data
quality issues interfere with these representations and dis-
tort the data, leading to misleading analysis outcomes and
potentially bad decisions.

As such, a range of data cleaning techniques were pro-
posed recently [28, 22, 19]. However, most of them focus
on “batch” data cleaning, by processing static data stored
in data warehouses, thus neglecting the important class of
streaming data. In this paper, we address this gap and focus
on stream data cleaning. The challenge in stream cleaning

is that it requires both real-time guarantees as well as high
accuracy, requirements that are often at odds.

A näıve approach to stream data cleaning could simply
extend existing batch techniques, by buffering data records
in a temporary data store and cleaning it periodically before
feeding it into downstream components. Although likely to
achieve high accuracy, such a method clearly violates real-
time requirements of streaming applications. The problem
is exacerbated by the volume of data cleaning systems need
to process, which prohibits centralized solutions. Therefore,
our goal is to design a distributed stream data cleaning sys-
tem, which achieves efficient and accurate cleaning in real-
time.

In this paper, we focus on rule-based data cleaning, whereby
a set of domain-specific rules define how data should be
cleaned: in particular, we consider functional dependen-
cies (FDs) and conditional functional dependencies (CFDs).
Our system, called Bleach, proceeds in two phases: viola-
tion detection, to find rule violations, and violation repair,
to repair data based on such violations. Bleach relies on ef-
ficient, compact and distributed data structures to maintain
the necessary state (e.g., summaries of past data) to repair
data, using an incremental equivalence class algorithm.

We further address the complications due to the long-term
and dynamic nature of data streams: the definition of dirty
data could change to follow such dynamics. Bleach supports
dynamic rules, which can be added and deleted without re-
quiring idle time. Additionally, Bleach implements a sliding
window operation that trades modest additional storage re-
quirements to temporarily store cumulative statistics, for
increasing cleaning accuracy.

Our experimental performance evaluation of Bleach is two-
fold. First, we study the performance, in terms of through-
put, latency and accuracy, of our prototype and focus on
the impact of its parameters. Then we compare Bleach to
an alternative baseline system, which we implement using
a micro-batch streaming architecture. Our results indicate
the benefits of a system like Bleach, which hold even with
rule dynamics. Despite extensive work on rule-based data
cleaning [1, 6, 9, 10, 13, 20, 7, 19], we are not aware of any
other stream data cleaning system.

The paper is organized as follows. Section 2 introduces our
problem statement. The system design of Bleach is discussed
in Section 3; dynamic rule management and windowing are
discussed respectively in Section 4 and Section 5. Section 6
presents our experimental results. Section 7 overviews re-
lated work. Finally, Section 8 concludes our work.
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2. PRELIMINARIES
Next, we introduce some basic notations we use through-

out the paper, then we define the problem statement we
consider in this work.

2.1 Background and Definitions
Similar to data cleaning systems in data warehouses, that

read a dirty dataset and write back a cleaned dataset, in this
paper we assume that a stream data cleaning system ingests
a data stream and outputs a cleaned data stream instance.
We consider an input data stream instance Din with schema
S(A1, A2, ..., Am) where Aj is an attribute in schema S. We
assume the existence of unique tuple identifiers for every tu-
ple in Din: thus given a tuple ti, id(ti) is ti’s identifier. In
general we define a function id(e) which returns the iden-
tifier (ID) of e where e can be any element. A list of IDs
[id(e1), id(e2), ..., id(en)] is expressed as id(e1, e2, ..., en) for
brevity. The output data stream instance Dout complies to
schema S and has the same tuple identifiers as in Din, with-
out any loss or duplication. The basic unit, a cell ci,j , is
the concatenation of a tuple id, an attribute and the projec-
tion of the tuple on the attribute: ci,j = (id(ti), Aj , ti(Aj)).
Note that ti(Aj) is the value of ci,j , which can also be ex-
pressed as v(ci,j). Sometimes, we may simply express ci,j as
ci when the cell attribute is not relevant to the discussion.
In our work, when we point at a specific tuple ti, we also
refer to this tuple as the current tuple. Tuples appearing
earlier than ti in the data stream are referred to as earlier
tuples and those appearing after ti are referred to as later
tuples.

To perform data cleaning, we define a set of rules Σ =
[r1, ..., rn], in which rk is either a functional dependency
(FD) rule or a conditional FD rule (CFD). Each rule has a
unique rule identifier id(rk). A CFD rule rk is represented
by (X → A, cond(Y )), in which cond(Y ) is a boolean func-
tion on a set of attributes Y where Y ⊆ S. X and A are
respectively referred to as a set of left-hand side (LHS) at-
tributes and right-hand side (RHS) attribute: LHS(rk) =
X, RHS(rk) = A. When the rule is clear in the context,
we omit rk so that LHS = X, RHS = A. Cells of LHS
(RHS) attributes are also referred to as LHS (RHS) cells.
Y is referred to as a set of conditional attributes. For a
pair of tuples t1 and t2 satisfying condition cond(t1(Y )) =
cond(t2(Y )) = true, if t1(B) = t2(B) for all B ∈ X but
t1(A) 6= t2(A), then it is a violation for rk. A data stream
instance D satisfies rk, denoted as D |= rk, when there are
no violations for rk exist in D. A FD rule can be seen as a
special case of CFD rule where cond(Y ) is always true and
Y is ∅. We refer to an attribute as an intersecting attribute
if it is involved in multiple rules.

If D satisfies a set of rules Σ, denoted D |= Σ, then D |= rk
for ∀rk ∈ Σ. If D does not satisfy Σ, D is a dirty data stream
instance.

2.2 Challenges and Goals
An ideal stream data cleaning system should accept a

dirty input stream Din and output a clean stream Dout,
in which all rule violations in Din are repaired (Dout |= Σ).
However, this is not possible in reality due to:

• Real-time constraint: As the data cleaning is incre-
mental, the cleaning decision for a tuple (repair or not
repair) can only be made based on itself and earlier

item category clientid city zipcode 

… … … … … 

MacBook computer 11111 France 75001 

bike sports 33333 Lyon null 

Interstellar movies  22222 Paris 75001 

bike toys 44444 Nice 06000 

Titanic movies 11111 Paris null 

… … … … … 

t1 

t2 

t3 

t4 

t5 

tim
e 

Figure 1: Illustrative example of a data stream con-
sisting of on-line transactions.

tuples in the data stream, which is different from data
cleaning in data warehouses where the entire dataset
is available. In other words, if a dirty tuple only has
violations with later tuples in the data stream, it can
not be cleaned. A late update for a tuple in the output
data stream is not accepted.

• Dynamic rules: In a stream data cleaning system,
the rule set is not static. A new rule may be added
or an obsolete rule may be deleted at any time. A
processed data tuple can not be cleaned again with an
updated rule set. Reprocessing the whole data stream
whenever the rule set is updated is not realistic.

• Unbounded data: A data stream produces an un-
bounded amount of data, that cannot be stored com-
pletely. Thus, stream data cleaning can not afford to
perform cleaning on the full data history. Namely, if a
dirty tuple only has violations with tuples that appear
much earlier in the data stream, it is likely that it will
not be cleaned.

Consider the example in Figure 1, which is a data stream
of on-line shopping transactions. Each tuple represents a
purchase record, which contains a purchased item (item),
the category of that item (category), a client identifier (clientid),
the city of the client (city) and the zip code of that city
(zipcode). In the example, we show an extract of five data
tuples of the data stream, from t1 to t5.

Now, assume we are given two FD rules and one CFD rule
stating how a clean data stream should look like: (r1) the
same items can only belong to the same category; (r2) two
records with the same clientid must have the same city; (r3)
two records with the same non-null zip code must have the
same city:

(r1) item→ category

(r2) clientid→ city

(r3) zipcode→ city, zipcode 6= null

If we focus on the detection of tuples that violate such
rules, we recognize three violations among the five tuples:
(v1) t1 and t3 have the same non-null zip code (t1(zipcode) =
t2(zipcode) 6= null) but different city names (t1(city) 6=
t2(city)); (v2) t2 claims bikes belong to category sports while
t4 classifies bikes as toys (t2(item) = t4(item), t2(category) 6=
t4(category)); and (v3) t1 and t5 have the same clientid but
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t3(city) t1(city) t5(city) 

v1, v3 

v2 
t2(category) t4(category) 

Figure 2: An example of a violation graph, derived
from our running example.

different city names (t1(clientid) = t5(clientid), t1(city) 6=
t5(city)).

Note that when a stream data cleaning system receives
tuple t1, no violation can be detected as in our example t1
only has violations with later tuples t3 and t5. Thus, no
modification can be made to t1. Furthermore, delaying the
cleaning process for t1 is not an option, not only because
of real-time constraints, but also because it is difficult to
predict for how long this tuple should be buffered for it to
be cleaned.

Although performing incremental violation detection seems
straightforward, incremental violation repair is much more
complex to achieve. Coming back to the example in Fig-
ure 1, assume that the stream cleaning system receives tu-
ple t5 and successfully detects the violation v3 between t5
and t1. Such detection is not sufficient to make the correct
repair decision, as the tuple t1 also conflicts with another
tuple, t3. An incremental repair in stream data cleaning
system should also take the violations among earlier tuples
into account.

To account for the intricacies of the violation repair pro-
cess, we introduce the concept of violation graph [19]. A
violation graph is a data structure containing the detected
violations, in which each node represents a cell. If some vi-
olations share a common cell, they will be grouped into a
single subgraph (sg). Therefore, the violation graph is parti-
tioned into smaller independent subgraphs. A single cell can
only be in one subgraph. If two subgraphs share a common
cell, they need to merge.

The repair decision of a tuple is only relevant to the sub-
graphs in which its cells are involved. A violation graph for
our example can be seen in Figure 2. Given this violation
graph, to make the repair decision for tuple t5, the cleaning
system can only rely on the upper subgraph which consists
of violation v1 and v3 with the common cell t1(city).

We now give our problem statement as following.
Problem statement: Given an unbounded data stream
with an associated schema1 and a dynamic set of rules,
how can we design an incremental and real-time data clean-
ing system, including violation detection and violation re-
pair mechanisms, using bounded computing and storage re-
sources, to output a cleaned data stream? In the next three
sections, we give a detailed description of our distributed
stream data cleaning system, that we call Bleach.

3. BLEACH DESIGN AND ALGORITHMS
In this section, we overview the Bleach architecture and

provide details about its components. As shown in Figure 3,

1Note that although we restrict the data stream to have a
fixed schema in this work, it is easy to extend our work to
support a dynamic schema.

Repair

Violation 
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History

Intermediate 
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Figure 3: Stream data cleaning Overview
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Data
History

Detect Worker

Rule r3:
(zipcode -> city)
(zipcode != null)

clientID city

... ...

zipcode city

... ...

item category

... ...

Figure 4: The Detect Module

Bleach consists in two main blocks, namely the detect and
repair modules, and a rule controller module, which is dis-
cussed in Section 4.

The input data stream first enters the detect module,
which reveals violations against defined rules. The interme-
diate data stream, output from the first module, is enriched
with violation information, which the repair module uses to
make repair decisions. Finally, the system outputs a cleaned
data stream.

Next, we delve into the details of the first two modules and
outline several optimizations that aim at achieving efficiency
and performance.

3.1 Violation Detection
The violation detection module aims at finding input tu-

ples that violate rules. To do so, it stores them in an in-
memory, efficient and compact data structure that we call
the data history. Input tuples are thus compared to those
in the data history to detect violations.

Figure 4 illustrates the internals of the detect module: it
consists of an ingress router, an egress router and multiple
detect workers (DW). Bleach maps violation rules to such
DW: each worker is in charge of finding violations for a spe-
cific rule.

3.1.1 The Ingress Router
The goal of the ingress router is to partition and distribute

incoming tuples to DWs. Now, as discussed in Section 2,
only a subset of the attributes of an input tuple are relevant
when verifying data validity against a given rule. For exam-
ple, a FD rule only requires its LHS and RHS attributes to
be verified, ignoring the rest of the input tuple attributes.

Therefore, when the ingress router receives an input tuple,
it partitions the tuple based on the current rule set, and
only sends the relevant information to each DW in charge
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of each specific rule. As such, an input tuple is broken into
multiple sub-tuples, which all share the same identifier of the
corresponding input tuple. Note that some attributes of an
input tuple might be required by multiple rules: in this case,
sub-tuples will contain redundant information, allowing each
DW to work independently.

An example of tuple partitioning can be found in Figure 4,
where we reuse the input data schema and the rules from
Section 2.

3.1.2 The Detect Worker
Each DW is assigned a rule, and receives the relevant

sub-tuples stemming from the input stream. For each sub-
tuple, a DW needs to perform a lookup operation in the
data history, and eventually emit a message (that is part
of an intermediate data stream) to downstream components
when a rule violation is detected.

To achieve efficiency and performance, lookup operations
on the data history need to be fast, and the intermediate
data stream should avoid redundant information. Next, we
first describe how the data history is represented and mate-
rializes in memory; then, we describe the output messages
a DW generates, and finally outline the DW algorithm.
Data history representation. A DW accumulates rele-
vant input sub-tuples in a compact data structure that en-
ables an efficient lookup process, which makes it similar to
a traditional indexing mechanism.

The structure2 of the data history is illustrated in Fig-
ure 5. First, to speed-up the lookup process, sub-tuples are
grouped by the value of the LHS attribute used by a given
rule: we call such group a cell group (cg). Thus, A cg stores
all RHS cells whose sub-tuples share the same LHS value.
The identifier of a cell group cgl is the combination of the
rule assigned to the DW, and the value of LHS attributes,
expressed as id(cgl) = (id(rk), t(LHS)) where rk is the rule
assigned to the DW.

Next, to achieve a compact data representation, all cells
in a cg sharing the same RHS value are grouped into a
super cell (sc): scm = [c1,j , c2,j , ..., cn,j ]. From Section 2,
recall that a cell is made of a tuple ID, an attribute and
a value: (id(ti), Aj , ti(Aj)). Therefore, a super cell can be
compressed as a list of tuple IDs, an attribute and their com-
mon value: scm = (id(t1, t2, ..., tn), Aj , t(Aj)) where t(Aj) =
t1(Aj) = ... = tn(Aj). Hence, within an individual DW,
sub-tuples whose cells are compressed in the same sc are
equivalent, as they have the same LHS attributes value (the
identity of the cell group) and the same RHS attribute value
(the value of super cell). A cell group cgl now can be ex-
pressed as: cgl = ((id(rk), t(LHS)), [sc1, sc2, ...]) including
a identifier and a list of super cells.

In summary, the lookup process for a given input sub-
tuple is as follows. Cell groups are stored in a hash-map
using their identifier as keys: therefore the DW first finds
the cg corresponding to the current sub-tuple. Cells in the
corresponding cg are the only cells that might be in conflict
with the current cell. Overall, the complexity of the lookup
process for a sub-tuple is O(1).
Violation messages. DWs generate an intermediate data
stream of violation messages, which help downstream com-
ponents to eventually repair input tuples. The goal of the

2The techniques we use are similar to the notion of partitions
and compression introduced in Nadeef [10].

data 

history

cell 

group

cell 

group

cell 

group

sc sc sc sc sc

indexing by v(LHS)

indexing by v(RHS)

Figure 5: The structure of the data history in a
detect worker

DW is to generate as few messages as possible, while allow-
ing effective data repair.

When the lookup process reveals the current tuple does
not violate a rule, DWs emit a non-violation message (msgnvio).
Instead, when a violation is detected, a DW constructs a
message with all the necessary information to repair it, in-
cluding: the ID of the cell group corresponding to the cur-
rent tuple and the RHS cells of the current and earlier tuples
in data history: msgvio = (id(cgl), ccur, cold).

Now, to reduce the number of violation messages, the DW
can use a super cell in place of a single cell (cold) in conflict
with the current tuple. In addition, recall that a single cg
can contain multiple super cells, thus possibly requiring mul-
tiple messages for each group. However, we observe that two
cells in the same cg must also conflict with each other, as
long as their values are different. Since the data repair mod-
ule in Bleach is stateful, it is safe to omit multiple violation
messages for such cells.
Algorithm details. Next, we present the DW violation
algorithm details, as illustrated in Algorithm 1.

Algorithm 1 Violation Detection

1: given rule r = (X → Aj , cond(Y ))
2: procedure Receive(sub-tuple ti) .

cond(ti(Y )) = true
3: if ∃id(cgl) = (id(r), ti(X)) then
4: if |cgl| = 1 then . cgl contains scold
5: if v(scold) = ti(Aj) then
6: Emit msgnvio

7: else
8: Emit msgvio (id(cgl), ccur, scold)
9: end if

10: else
11: Emit msgvio (id(cgl), ccur, null)
12: end if
13: else
14: Create cgl . Create a new cell group
15: Emit msgnvio

16: end if
17: Add ccur to cgl
18: end procedure

The algorithm starts by treating FD rules as a special case
of CFD rules (line 1).

Then, when a DW receives a sub-tuple ti satisfying the
rule condition (line 2), it performs a lookup in the data
history to check if the corresponding cell group cgl exists
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Violation 
Graph

Violation 
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Figure 6: Violation Repair

(line 3). If yes, it determines the number of sc contained in
the cgl (line 4).

If there is only one sc scold, violation detection works as
follows. If the RHS cell of the current sub-tuple, ccur, has
the same value as scold, it emits a non-violation message
(line 5-6). Otherwise, a violation has been detected: the
DW emits a complete violation message, containing both
the current cell and the old cell (line 8).

If the cg contains more than one sc, the DW emits a sin-
gle append-only violation message, which only contains the
cell of the current sub-tuple (line 11). Such compact mes-
sages omits the sc from the data history, since they must be
contained in earlier violation messages.

Finally, if the lookup procedure (line 3) fails, the DW
creates a new cell group and emits a non-violation message
(line 14-15).

At this point, the current cell ccur is added to the corre-
sponding group cgl (line 17), either in an existing sc, or as
a new distinct cell.

It is worth noticing that, following Algorithm 1, a DW
emits a single message for each input sub-tuple, no matter
how many tuples in the data history it conflicts with.

3.1.3 The Egress Router
The egress router gathers (violation or non-violation) mes-

sages for a given data tuple, as received from all DWs. Such
messages are then sent together downstream towards the
repair module.

3.2 Violation Repair
The goal of this module is to take the repair decisions for

dirty data tuples, based on an intermediate stream of viola-
tion messages generated by the detect module. To achieve
data repair, Bleach uses a data structure called violation
graph, as outlined in Section 2. Violation messages con-
tribute to the creation and dynamics of the violation graph,
which essentially groups those cells that, together, are used
to perform data repair.

Figure 6 sketches the internals of the repair module: it
consists of an ingress router, the repair workers (RW), and
an aggregation component that emits clean data. An ad-
ditional component, called the coordinator, is used to steer
violation graph management, with the contribution of RWs.

3.2.1 The Ingress Router

The ingress router is a simple component that actually
broadcasts all incoming violation messages to all RWs. As
opposed to its counterpart in the detection module, the
ingress router does not perform data partitioning: instead,
RWs are in charge of using only relevant information con-
tained in the violation messages they receive, with the goal
of creating and maintaining the violation graph.

3.2.2 The Repair Worker
Next, we delve into the details of the operation of a RW.

First, we focus on the violation graph and the data repair
algorithm we implement in Bleach. Then, we move to the
key challenge that RWs address, that is how to maintain a
distributed violation graph. As such, we focus on graph par-
titioning and maintenance. Due to violation graph dynam-
ics, coordination issues might arise in a distributed setting:
such problems are addressed by the coordinator component.
The repair algorithm. Current data repair algorithms use
the concept of a violation graph to repair dirty data based
on user-defined rules. As outlined in Section 2, a violation
graph is a succinct representation of cells (both current and
historical) that are in conflict according to some rules. A vi-
olation graph is composed of subgraphs. As incoming data
streams in, the violation graph evolves: specifically, its sub-
graphs might merge or split, depending on the contents of
violation messages.

Using the violation graph, several algorithms can perform
data cleaning, such as the equivalence class algorithm [5] or
the holistic data cleaning algorithm [9]. Currently, Bleach
relies on an incremental version of the equivalence class al-
gorithm, that supports streaming input data, although al-
ternative approaches can be easily plugged in our system.
Thus, a subgraph in the violation graph can be interpreted
as an equivalence class, in which all cells are supposed to
have the same value.
Distributed violation graph. Due to the unbounded na-
ture of streaming data, it is reasonable to expect the viola-
tion graph to grow to sizes exceeding the capacity of a single
RW. As such, in Bleach, the violation graph is a distributed
data structure, partitioned across all RWs.

However, unlike for DWs, the partitioning scheme can not
be simply rule based, because a cell may violate multiple
rules, creating issues related to coordination and load bal-
ancing. More generally, no partitioning scheme can guaran-
tee that cells from a single violation message to be placed
in the same partition to store subgraphs in a single RW.

Next, we describe how Bleach builds and maintains a dis-
tributed violation graph. The graph is built using msgvio
output by the egress router, which all RWs receive. Upon
receiving a violation message, RWs process it independently,
according to the following rules: i) if any of the current or
old cells encapsulated in the message are already contained
in an existing subgraph, both cells are added to the exist-
ing subgraph; ii) if an existing subgraph has cells which are
in the same cell group as any of the cells in the message,
the cells in the message are both added to the existing sub-
graph; iii) if any of these two cells are contained in multiple
subgraphs, these subgraphs need to merge; iv) if none of
these two cells is already contained in any subgraph, a new
subgraph will be created with these two cells.

We define a subgraph identifier id(sgk) to be the list of cell
group IDs comprised in msgvio: id(cg1, cg2, ...). A subgraph
can be expressed as sgk = (id(cg1, cg2, ...), [sc1, sc2, ...]): it
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c1 c3 

 sgid(cg1)  sgid(cg2) 

rw1: 

rw2: c2 

c5 

c4 

(a) initial state

c1 c3 c5 

c6 

   sgid(cg1, cg3)    sgid(cg2) 

rw1: 

rw2: c2 c4 

 sgid(cg1)  sgid(cg3) 

(b) merge only in rw1

c1 c3 

   sgid(cg1, cg3)   sgid(cg2) 

rw1: 

rw2: c2 

c5 

c4 c6 

(c) merge in rw1 and rw2

Figure 7: Violation graph build example

consists of a group of sc, stored in compressed format, as
shown in Section 3.1.2. Note that when two subgraphs
merge, their identifiers are also merged by concatenating
both cg ID lists. To make the subgraph ID clear, sgk can
be presented as sgid(cg1,cg2,...).

Since subgraphs are collections of cells, we distribute the
latter across all RWs, using the cells tuple IDs for parti-
tioning. Then, we use the subgraph identifier to recognize
partitions from the same subgraph. As a consequence, a
subgraph spans several RWs, each storing a fraction of the
cells comprised in the subgraph.

Finally, we note that the violation graph, and in particu-
lar the subgraph partitions stored by each RW, materializes
as a data structure stored in RAM. Such data structure is
organized similarly to that of the data history presented in
Section 3.1, which allows an efficient execution of the repair
algorithm, and a compact data representation.

An illustrative example is in order. Let’s assume there
are two RWs, rw1 and rw2, and the current violation graph
consists in two subgraphs sgid(cg1), containing cells c1, c2, c3,
and sgid(cg2), containing cells c4, c5. In our example, the
violation graph is partitioned as in Figure 7(a): both RWs
have a portion of cells of every subgraph.

3.2.3 The Coordinator
The problem we address now is due to the dynamics of

the violation graph, which evolves as new violation mes-
sages stream into the Repair module. As each subgraph
is partitioned among all RWs, subgraph partitions must be
identified by the same ID: this is because a subgraph is a
proxy for an equivalence class, and all its cells contribute to
the correct functioning of the repair algorithm.

Continuing with the example from Figure 7(a), suppose
a new violation message {id(cg3), c6, c1} is received by all
RWs. Now, in rw1, the new violation is added to sub-
graph sgid(cg1) since both the message and the subgraph
share the same cell c1: as such, the new subgraph becomes
sgid(cg1,cg3). Instead, in rw2, the new violation triggers the
creation of a new subgraph sgid(cg3), since no common cells
are shared between the message and existing subgraphs in
rw2. The violation graph becomes inconsistent, as shown
in Figure 7(b): this is a consequence of the independent op-
eration of RWs. Instead, the repair algorithm requires the
violation graph to be in a consistent state, as shown in Fig-

ure 7(c), where both RWs use the same subgraph identifier
for the same equivalence class.

To guarantee the consistency of the violation graph among
independent RWs, Bleach uses a stateless coordinator com-
ponent that helps RWs agree on subgraph identifiers. In
what follows we present three variants of the simple proto-
col RWs use to communicate with the coordinator.
RW-basic. When a RW receives violation messages for a
tuple, it adds the cells in the messages to the violation graph,
according to its local state. Then, the RW creates a merge
proposal containing the subgraph id for each conflicting at-
tribute, and sends it to the coordinator.

Once the coordinator receives merge proposals from all
RWs, it produces a merge decision, which contains a list
of all cg IDs contained in the various merge proposals, and
broadcasts it to all RWs. RWs merge their local subgraphs
and converge to a globally consistent state.

Clearly, such a simple approach to coordination harms
Bleach performance. Indeed, the RW-basic scheme requires
one round-trip message for every incoming data tuple, from
all RWs.

However, we note that it is not necessarily true that the
coordination is always needed for every tuple. For example,
when every cell violates at most one rule, every subgraph
would only have a single cg ID. Thus, coordination is not
necessary. More generally, given violation messages for a tu-
ple, coordination is only necessary when there is a complete
violation message containing an old cell which already exists
in the violation graph because of a different violation rule.

Figure 8 gives an example, where the initial state (Fig-
ure 8(a)) is the same as in Figure 7(a). Then, two violation
messages, {id(cg1), c6, null} and {id(cg2), c6, null}, are re-
ceived. Cell c6 is a current cell contained in the current
tuple. Obviously sgid(cg1) and sgid(cg2) should merge into
sgid(cg1,cg2). This can be accomplished without coordina-
tion by both repair workers, as shown in Figure 8(b). In-
deed, each RW is aware that c6 is involved in two subgraphs,
although c6 is only stored in rw2 because of the partitioning
scheme.

Next, we use the above observations and propose two
variants of the coordination mechanism that aim at bypass-
ing the coordinator component to improve performance. In
both variants, if there exist subgraphs which can merge cor-
rectly without coordination like the example of Figure 8,
they merge immediately.
RW-dr. In RW-dr, the coordination is only conducted if it
is necessary, and the repair worker sends a merge proposal to
the coordinator and waits for the merge decision. However,
this approach is not exempt from drawbacks: it may cause
some data tuples in the stream to be delivered out of order.
This is because the repair worker wait for the merge decision
in a non-blocking way. The violation messages of a tuple
which do not require coordination may be processed in the
coordination gap of an earlier tuple.
RW-ir. With this variant, no matter if the violation mes-
sages of a tuple require coordination or not, a RW immedi-
ately updates its local subgraphs, executes the repair algo-
rithm and emits a repair proposal downstream to the aggre-
gator component. Then, if necessary, the RW lazily executes
the coordination protocol.

Clearly, this approach caters to system performance and
avoids tuples to be delivered out of order, but might harm
cleaning accuracy. Indeed, individual data repair proposals
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Figure 8: Example of violation graph built without
coordination

from a RW are based on a local view prior to finishing all
necessary merge operations on subgraphs, which has a direct
impact on equivalence classes.

3.2.4 The Aggregator
Using the distributed violation graph, each RW executes

independently the Bleach repair algorithm and emits a data
repair proposal, which includes all3 candidate values and
their frequency computed in a local subgraph partition. The
aggregator component collects all repair proposals and se-
lects the candidate value to repair a given cell as the one
having the highest aggregate frequency. Finally, the aggre-
gator modifies the current data tuple and outputs a clean
data stream.

Note that the aggregator only modifies current tuples. In-
stead, more importantly, the cells stored in the violation
graph are not modified regardless of the repair decision: this
allows to update frequency counts as new data streams into
the system, thus steering the aggregator to make different
repair decisions as the violation graph evolves.

4. DYNAMIC RULE MANAGEMENT
In stream data cleaning the rule set is usually not im-

mutable but dynamic. Therefore, we now introduce a new
component, the rule controller, shown in Figure 3, which al-
lows Bleach to adapt to rule dynamics. The rule controller
accepts rule updates as input and guides the detect and the
repair module to adapt to rule dynamics without stopping
the cleaning process and without loosing state. Rule up-
dates can be of two types: one for adding a new rule and
one for deleting an existing rule.
Detect. In the detect module, the addition of a rule trig-
gers the instantiation of a new DW, as input tuples are par-
titioned by rule. The new DW starts with no state, which
is built upon receiving new input tuples. As such, violation
detection using past tuples cannot be achieved, which is con-
sistent with the Bleach design goals. Instead, the deletion of
an existing rule simply triggers the removal of a DW, with
its own local data history.
Repair. In the Repair module, the addition of a new rule is
not problematic with respect to violation graph maintenance
operations. Instead, the removal of a rule implies violation
graph dynamics (subgraphs might shrink or split) which are
more challenging to address.

Thus, in a subgraph, we further group cells by cell groups.
A subgraph now can also be expressed as:
sgk = (id(cg1, cg2, ...), [cg1, cg2, ...]), where each cell group
gathers super cells. Some cells might span multiple groups,

3In case there are too many candidate values, we only send
the top-k values, where k = 5.
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Figure 9: Subgraph split example

as they may violate multiple rules. We label such peculiar
cells as hinge cells. For each hinge cell, the subgraph keeps
the IDs of its connecting cell groups: c∗i,j = (ci,j , id(cgi1 , cgi2 , ...)).
Hinge cells with the same value and the same connecting cell
groups are also compressed into super cells.

With the new organization of cells in subgraphs, the vi-
olation graph updates as following upon the removal of a
rule. If a subgraph contains a single cell group related to
the deleted rule, RWs are simply instructed to remove it. If
a subgraph contains multiple cell groups, RWs remove the
cell groups related to the deleted rule and update the hinge
cells. With the remaining hinge cells, RWs check the con-
nectivity of the remaining cell groups in the subgraph and
decide to split the subgraph or not4.

An example of a split operation can be seen in Figure 9.
The initial state of a subgraph is shown in Figure 9(a): the
subgraph is sgid(cg1,cg2,cg3), and its contents are three cell
groups. Cell c1 and c7 are hinge cells, which work as bridges,
connecting different cell groups together. Now, as a simple
case, assume we want to remove the rule pertaining to cg2:
the subgraph should become sgid(cg1,cg3), as shown in Fig-
ure 9(b). Note that cell c7 looses its status of hinge cell. A
more involved case arise when we delete the rule pertaining
to cg3 instead of the rule pertaining to cg2. In this case,
the subgraph should not become sgid(cg1,cg2) as shown in
Figure 9(c). Indeed, removing cg2 eliminates all existing
hinge cells connecting the remaining cell groups. Thus, the
subgraph must split in two separate subgraphs sgid(cg1) and
sgid(cg2) as shown in Figure 9(d).

5. WINDOWING
Bleach provides windowed computations, which allow ex-

pressing data cleaning over a sliding window of data. De-
spite being a common operation in most streaming systems,
window-based data cleaning addresses the challenge of the
unbounded nature of streaming data: without windowing,

4A detailed algorithm can be found in our technical report:
http://www.eurecom.fr/~tian/bleach/bleachTR.pdf
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the data structures Bleach uses to detect and repair a dirty
stream would grow indefinitely, which is unpractical.

In this section, we discuss two windowing strategies: a ba-
sic, tuple-based windowing strategy and an advanced strat-
egy that aim at improving cleaning accuracy.

5.1 Basic Windowing
The underlying idea of the basic windowing strategy is to

only use tuples within the sliding window to populate the
data structures used by Bleach to achieve its tasks. Next,
we outline the basic windowing strategy for both DWs and
RWs operation.
Windowed Detection. We now focus on how DWs main-
tain their local data history. Clearly, the data history only
contains cells that fall within the current window. When
the window slides forward, DWs update the data history
as follows: i) if a cell group ends up having no cells in the
new window, DWs simply delete it; ii) for the remaining cell
groups, DWs drop all cells that fall outside the new window,
and update accordingly the remaining super cells.

Note that, if implemented naively, the first operation above
can be costly as it involves a linear scan of all cell groups.
To improve the efficiency of data history updates, Bleach
uses the following approach. It creates a FIFO queue of k
lists, which store cell groups. In case the sliding step is half
the window size, k = 2; more generally, we set k to be the
window size divided by the sliding step. Any new cell group
from the current window enters the queue in the k-th list.
Any cell group updates, e.g. due to a new cell added to
the cell group, “promotes” it from list j to list k. As the
window slides forward, the queue drops the list (and its cell
groups) in the first position and acquires a new empty list
in position k + 1.
Windowed Repair. Now we focus on how to maintain
the violation graph in RWs. Again, the violation graph only
stores cells within the current window. When the window
slides forward, RWs update the violation graph as follows:

• If a subgraph has no cells in the new window, RWs
delete the subgraph;

• For the remaining subgraphs, if a cell group has no
cells in the new window, RWs delete the cell group;

• RWs also delete hinge cells that are outside of the new
window. This could require subgraphs to split, as they
could miss a “bridge” cell to connect its cell groups;

• For the remaining cell groups, RWs drop all cells out-
side of the new window, and update the remaining
super cells accordingly.

For efficiency reasons, Bleach uses the same k-list approach
described for DWs to manage violation graph updates due
to a sliding window.

5.2 Bleach Windowing
The basic windowing strategy only relies on the data within

the current window to perform data cleaning, which may
limit the cleaning accuracy. We begin with a motivating
example, then describe the Bleach windowing strategy, that
aims at improving cleaning accuracy. Note that here we
only focus on the repair module and its violation graph,
since Bleach windowing does not modify the operation of
the detect module.
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a c 

a b 

window  
[1, 4] 
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t6 
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t4 

t5 

t6 

(b) output data with basic
windowing

A B 

a b 

a b 

a b 

a b 

a b 

a b 

t1 

t2 

t3 

t4 

t5 

t6 

(c) output data with Bleach
windowing

Figure 10: Motivating example: Basic vs. Bleach
windowing.

Figure 10(a) illustrates a data stream of two-attribute tu-
ples. Assume we use a single FD rule (A → B), a window
size of 4 tuples, a sliding step of 2 tuples, and the basic
windowing strategy.

When t4 arrives, the window covers tuples [1, 4]. Accord-
ing to the repair algorithm, Bleach repairs t4(B) and sets
it to the value b. Now, when tuple t5 arrives, the window
moves to cover tuples [3, 6], even though t6 has yet to arrive.
With only three tuples in the current window, the algorithm
determines t5(B) is correct, because now the majority of tu-
ples have value c. The output stream produced using basic
windowing is shown in Figure 10(b). Clearly, cleaning ac-
curacy is sacrificed, since it is easy to see that t5(B) should
have been repaired to value b, which is the most frequent
value overall. Hence, the need for a different windowing
strategy to overcome such problems.

Bleach windowing relies on an extension of a super cell,
which we call a cumulative super cell. The idea is for the vi-
olation graph to accumulate past state, to complement the
view Bleach builds using tuples from the current window.
Hence, a cumulative super cell is represented as a super cell,
with an additional field that stores the number of occur-
rences of cells (both hinge as well as super cells within a cell
group) with the same RHS value, including those that have
been dropped because they fall outside the sliding window
boundaries.

When using Bleach windowing, RWs maintain the vio-
lation graph by storing cumulative super cells. When the
window slides forward, RWs update the violation graph as
follows. The first two steps are equivalent to those for the
basic strategy. The last two steps are modified as follows:

• For the remaining subgraphs, RWs update hinge cells,
and “flush” those that do not bridge cell groups any-
more because of the update. Also, RWs split sub-
graphs according to the remaining hinge cells;

• For the remaining cell groups and hinge cells, RWs
update compressed super cells, “flushing” cells which
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fall outside the new window while keeping their count.

The “flush” operation used above only drops the content of
a super cell, but keeps its structure and its count field.

Now, going back to the example in Figure 10(a), when
tuple t5 arrives, Bleach stores two cumulative super cells:
csc1(id(t) = 3, value = ‘b’, count = 3) and csc2(id(t) =
[4, 5], value = ‘c’, count = 2). Although t1 and t2 have been
deleted because they are outside the sliding window, they
still contribute to the count field in csc1. Therefore, tu-
ple t5(B) is correctly repaired to value b, as shown in Fig-
ure 10(c).
Additional notes: When using cumulative super cells,
Bleach keeps tracks of candidate values to be used in the
repair algorithm as long as cell groups remain. By using
cumulative super cells for hinge cells, subgraphs only split if
some cell groups are removed when the window moves for-
ward. Note that the introduction of cumulative super cells
does not interfere with dynamic rule management: in partic-
ular, when deleting a rule, subgraphs update correctly when
hinge cells use the cumulative format. Overall, to compute
the count of a candidate value in a subgraph, cumulative su-
per cells accumulate the counts of relevant compressed super
cells from all cell groups, taking into account any duplicate
contributions from hinge cells.

Obviously, Bleach windowing requires more storage than
basic windowing, as cumulative super cells store additional
information, and because of the “flush” operation described
earlier, which keeps a super cell structure, even when it has
an empty cell list. Section 6 demonstrates that such addi-
tional overhead is well balanced by superior cleaning accu-
racy, making Bleach windowing truly desirable.

6. EVALUATION
Bleach prototype implementation is built using Apache

Storm [27].5 Input streams, including both the data stream
and rule updates, are fed into Bleach using Apache Kafka [18].

Our goal is to demonstrate that Bleach achieves efficient
stream data cleaning under real-time constraints. Our evalu-
ation uses throughput, latency and dirty ratio as performance
metrics. We express the dirty ratio as the fraction of dirty
data remaining in the output data stream: the smaller the
dirty ratio, the higher the cleaning accuracy. The process-
ing latency is measured from uniformed sampled tuples (1
per 100). All our experiments are conducted in a cluster of
18 machines, with 4 cores, 8 GB RAM and 1 Gbps network
interface each.

We evaluate Bleach using a synthetic dataset generated
from TPC-DS (with scale factor 100 GB). To do so, we join
a fact table store sales with its dimension tables in TPC-DS
to build a single table (288 million tuples). By exporting this
table to Kafka, we simulate an “unbounded” data stream.
We manually design eight CFD rules, as shown in Table 1.
Among these rules, r4 and r5 have the same RHS attribute
s store name, while r6 and r7 have the same RHS attribute
c email addr, as intersecting attributes.

We generate a dirty data stream, according to our rules,
as follows: we modify the values of RHS attributes with
probability 10% and replace the values of LHS attributes

5Nothing prevents Bleach to be built using alternative sys-
tems such as Apache Flink, for example.

Table 1: Rule Sets
r0 : ss item sk → i brand, (ss item sk 6= null)
r1 : ss item sk → i category, (ss item sk 6= null)
r2 : ca state, ca city → ca zip, (ca state, ca city 6= null)
r3 : ss promo sk → p promo name, (ss promo sk 6= null)
r4 : ss store sk → s store name, (ss store sk 6= null)
r5 : ss ticket num → s store name, (ss ticket num 6= null)
r6 : ss ticket num → c email addr, (ss ticket num 6= null)
r7 : ss customer sk → c email addr, (ss customer sk 6= null)

with NULL with probability 10%.6 In all the experiments,
we set the window size to 2 M and the sliding step to 1 M
tuples respectively, regardless which windowing strategy we
use. If not otherwise specified, we use Bleach windowing as
the default strategy.

6.1 Comparing Coordination Approaches
In this experiment we compare the three RW approaches

discussed in Section 3.2, according to our performance met-
rics, as shown in Figure 11: RW-basic requires coordination
among repair workers for each tuple; RW-dr omits coordi-
nation for tuples when possible; RW-ir is similar to RW-dr,
but allows repair decisions to be made before finishing co-
ordination. Next, we use our synthetic dataset and rules r0
to r5.

Figure 11(a) shows how Bleach throughput evolves with
processed tuples. The throughput with both RW-dr and
RW-ir is around 15K tuples/second, whereas RW-basic achieves
roughly 13K tuples/second. The inferior performance of
RW-basic is due to the large number of coordination mes-
sages required to converge to global subgraph identifiers,
while RW-dr and RW-ir only require 7% coordination mes-
sages in RW-basic.

Figure 11(b) shows the CDF of the tuple processing la-
tency for the three RW approaches. RW-basic has the high-
est processing latency, on average 364 ms. The processing
latency of RW-ir is on average 316 ms. RW-dr average la-
tency is slightly higher, about 323 ms. This difference is
due again to the additional round-trip-messages required by
coordination: with RW-ir, RWs make their repair proposals
without waiting for coordination to complete, therefore the
small processing latency.

Figure 11(c) illustrates the cleaning accuracy. All three
approaches lower the ratio of dirty data significantly, from
the initial 10% to at most 0.5% (even 0% for rule r3 and r4).
For the first five rules, the three approaches achieve similar
cleaning accuracy. Instead, for rule r5 the RW-ir method
suffers and the dirty ratio is larger. Indeed, for rule r5 whose
cleaning accuracy is heavily linked to rule r1, RW-ir fails to
correctly update some of its subgraphs because it eagerly
emits repair proposals without waiting for coordination to
complete.

6.2 Comparing Windowing Strategies
In this experiment, we compare the performance of the

basic and Bleach windowing strategies, and use the RW-dr
mechanism. As for the previous experiment, we use rules r0
to r5. Additionally, for stress testing, we increase the input

6In our experiments we also use BART [3], which is a well
accepted dirty data generator. However, due to the sheer
size of our data stream, we present results obtained using
our custom process, which mimics that of BART but scales
to large data streams.
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Figure 11: Comparison of coordination mechanisms: RW-basic, RW-dr and RW-ir.
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Figure 12: throughput of two windowing strategies
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Figure 13: processing latency CDF of two window-
ing strategies

dirty data ratio from 10% to 50% for data in the interval
from 40 M to 42 M tuples.

As shown in Figure 12 and Figure 13, the two windowing
strategies are essentially equivalent in terms of throughput
and latency: this is good news, as it implies the requirement
for cumulative super cells is a negligible toll on performance.

Next, we focus on a detailed view of the cleaning accuracy,
which is shown in Figure 14. Bleach windowing achieves
superior cleaning accuracy: in general, the dirty ratio is one
order of magnitude smaller than that of basic windowing.
This advantage is kept also in presence of a 50% dirty ratio
spike in the input data. In particular, for rules r3 and r4,
Bleach windowing achieves 0% dirty ratio, irrespectively of
the dirty ratio spike.

Overall, Bleach windowing reveals that keeping state from
past windows can indeed dramatically improve cleaning ac-
curacy, with little to no performance overhead.

6.3 Dynamic Rule Management
Next, we study the performance of Bleach in presence

of rule dynamics, as shown in Figure 15. To do this, we
initially use the same input data stream and rule set as
in Section 6.1. However, while Bleach is cleaning the input
stream, we delete rule r5 and add rule r6 and r7, as indicated

in the Figure. In this experiment, we use Bleach windowing
strategy and RW-dr coordination.

Figure 15(a) and Figure 15(b) show the evolution in time
of throughput and latency, whereas Figure 15(c) gives the
CDF of the processing latency.

Figure 15(a) shows that rule dynamics can result in an
increase in throughput. Indeed, removing r5 (at the 60M
tuple) implies that Bleach needs to manage fewer rules; in
addition, r4 becomes simpler to manage, as there are no
more intersections with r5. Similarly, Figure 15(b) shows
that also latency decreases upon r5 removal. When rules r6
and r7 are added (at the 90 M tuple), the throughput drops
and the latency grows, as Bleach has more rules to man-
age and because the new rules have intersecting attributes,
requiring more work from RWs.

Figure 15(c), shows the latency distribution computed
from output tuple samples. While the average latency is
roughly 320 ms, we notice a tail in the distribution, indicat-
ing that some (few) tuples experience latencies up to sec-
onds. This has been observed across all our experiments,
and is due to the sliding window mechanism, which imposes
computationally demanding operations when updating the
violation graph, resulting also in rather low-level garbage
collection problems.

Overall, we conclude that Bleach supports dynamic rule
management seamlessly, with essentially no impact on per-
formance, and no system restart required.

6.4 Comparing Bleach to a Baseline Approach
We conclude our evaluation with a comparative analysis

of Bleach and a baseline approach, which follows the ideas
discussed in Section 1.

To do so, we design and implement a new system that
is based on the micro-batch streaming paradigm: essen-
tially, such system buffers input data records and performs
data cleaning periodically, as determined by a sliding win-
dow. Our implementation uses Apache Spark, and uses its
Streaming API that supports all necessary operators.7 We
refer to the baseline approach as micro-batch cleaning.

To demonstrate the performance of micro-batch cleaning
and compare it to Bleach, we perform a series of experiments
whereby we increase the sliding window size. We use the
same stream data input from our previous experiments, but
only use a single rule, r0. Here, we focus on performance
analysis expressed in terms of latency and dirty ratio, thus

7To be precise, note that window processing in Spark
Streaming is time-based and not tuple-based. For our ex-
periment, this difference is negligible.
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Figure 14: cleaning accuracy of two windowing strategies
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Figure 16: micro-batch cleaning result

we feed the input stream at a constant throughput of 15000
tuples/second.

Figure 16 illustrates the performance of both systems. As
expected, for the micro-batch baseline approach, the average
latency is proportional to the window size: larger sliding
windows entail higher latencies. Indeed, since the data in the
input stream is uniformly distributed, the average latency
equals the sum of half of the window size and the average
execution time for cleaning data in each window.

As for the cleaning accuracy, the larger the sliding win-
dow, the more opportunities the micro-batch system has to

clean the input stream, hence a smaller output stream dirty
ratio. In particular, we notice that to achieve the same
cleaning accuracy as Bleach, micro-batch cleaning requires
the sliding window to be larger than 120 seconds, which in-
curs in an average latency larger than 1 minute. Instead, in
Bleach, the average latency is about 320 ms.

We conclude that Bleach represents a valuable tool in the
data cleaning landscape if real-time requirements must be
met, while achieving high cleaning accuracy.

7. RELATED WORK
In recent years, data cleaning systems have flourished.

Many approaches [6, 20, 4, 9, 10, 19, 16] tackle the problem
of detecting and repairing dirty data based on predefined
data quality rules. [9] proposes a way to combine multiple
rules together and to perform data cleaning work holisti-
cally. [7] focuses on functional dependency violations in a
horizontally partitioned database, aiming to minimize data
shipment and parallel computation time. NADEEF[10] is a
extensible and generic data cleaning system and BigDans-
ing[19] is a large-scale version of NADEEF, which executes
data cleaning job in frameworks like Hadoop and Spark.
These approaches are effective when data is static.

[12, 13] provide incremental algorithms to detect errors
in distributed data when data is updated, which is similar
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to violation detection in Bleach. [29] introduces a continu-
ous data cleaning framework that can be applied to evolving
data and rules driven by a classifier. These works focus on
cleaning data stored in a data warehouse by batch process-
ing, which achieves high accuracy but suffers high latency.

In contrast, stream processing requires to be real-time,
a challenge that has drawn increasing attention from re-
searchers [2, 14, 21, 11]. Nevertheless, stream data cleaning
approaches are still in their infancy. Some works[24, 31,
17] focus on RFID or sensor stream data cleaning where
the data is a sequence of numerical values. These works
achieve data cleaning by operations like smoothing or delet-
ing outliers. Instead, Bleach focuses on more general cases
where data can be both numerical and categorical. In Spark
Streaming [25], a data stream can be cleaned by joining it
with precomputed information. However, precomputed in-
formation is not always available nor sufficient for accurate
data cleaning. To the best of our knowledge, Bleach is the
first stream data cleaning system based on data quality rules
providing both high accuracy and low latency.

There are many other research work about data cleaning.
For example, [30] and [8] are about how to perform data
cleaning via knowledge base and crowdsourcing. BART [3]
is an dirty data generator for evaluating data-cleaning algo-
rithms. [1] studies the problem of temporal rules discovery
for dirty web data. All such works are orthogonal to ours.

8. CONCLUSION
This work introduced Bleach, a novel stream data cleaning

system, that aims at efficient and accurate data cleaning
under real-time constraints.

First, we have introduced the design goals and the related
challenges underlying Bleach, showing that stream data clean-
ing is far from being a trivial problem. Then we have il-
lustrated the Bleach system design, focusing both on data
quality – we have introduced dynamic rule sets, and a state-
ful approach to windowing – and on systems aspects – we
have addressed problems related to data partitioning and
coordination, which are required by the distributed nature
of Bleach. We also have provided a series of optimizations to
improve system performance, by using compact and efficient
data structures, and by reducing the messaging overhead.

Finally, we have evaluated a prototype implementation
of Bleach: our experiments showed Bleach achieves low-
latency and high cleaning accuracy, while absorbing a dirty
data stream, despite rule dynamics. We also have com-
pared Bleach to a baseline system built on the micro-batch
paradigm, and explained Bleach superior performance.

Our plan for future works is to support a more varied rule
set and to explore alternative repair algorithms, that might
require revisiting the inner data structures we use in Bleach.
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