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Abstract

Social media has become an important platform to gauge public opinion on topics related to our 

daily lives. In practice, processing these posts requires big data analytics tools since the volume of 

data and the speed of production overwhelm single-server solutions. Building an application to 

capture and analyze posts from social media can be a challenge simply because it requires 

combining a set of complex software tools that often times are tricky to configure, tune, and 

maintain. In many instances, the application ends up being an assorted collection of Java/Scala 

programs or Python scripts that developers cobble together to generate the data products they 

need. In this paper, we present the Twitter Health Surveillance (THS) application framework. THS 

is designed as a platform to allow end-users to monitor a stream of tweets, and process the stream 

with a combination of built-in functionality and their own user-defined functions. We discuss the 

architecture of THS, and describe its implementation atop the Apache Hadoop Ecosystem. We 

also present several lessons learned while developing our current prototype.
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I. Introduction

Social media has become an important platform to gauge public opinion on topics related to 

our daily lives, for example, the results of the 2016 U.S. Presidential Election. Posts to social 

platforms (e.g., Twitter, Facebook) can be collected and mined in search for information 

about issues that concern a given population. These concerns can include diseases, political 

issues, or economic considerations, to name a few. For example, sentiment analysis [1], [2], 

[3], [4], [5] has been used to track Twitter posts related with the Flu and other diseases. 

These same techniques can be used to study potential psychological effects (e.g., anger, 

depression) that political or economical events can exert on a population. Such information 

is vital for public officials and health care providers that seek mitigation of the problems that 

erupt from such events.

In practice, processing these posts requires big data analytics tools since the volume of data 

and the speed of production overwhelm single-server solutions. Machine learning and 

statistical methods are used to analyze the data, typically using classification techniques to 

assign posts to specific topics or determine trends [5]. Such analysis can be done in batch 
mode, where analytics jobs run over a collection of data previously collected and currently 

sitting on stable storage. For example, we might run a classification process (training, 
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validation, and actual usage) on data sitting on a parallel file system (e.g., Apache HDFS). In 

contrast, processing in online mode refers to analysis done on a live data stream, in which 

data become available for analysis as soon as acquired through a data streaming system. In 

this case, we might run a classifier for tweets as soon they become available from the Twitter 

Stream API. This later approach can be used to show live trending, or to raise notifications 

when some event of interest is detected as it starts to develop.

Building an application to capture and analyze posts from social media can be a challenge 

simply because it requires combining a set of complex software tools that often times are 

tricky to configure, tune, and maintain. For instance, setting up a processing pipeline that 

captures tweets into Apache Kafka, then feeds those tweets from Kafka into Apache Spark, 

and finally stores the results in HDFS requires understanding the intricacies of three very 

different platforms. Coding an application against these software stacks is also challenging 

due to the number of dependencies that must be linked into the application. In many 

instances, the application ends up being an assorted collection of Java/Scala programs or 

Python scripts that developers cobble together to generate the data products they need. This 

makes it difficult for small business, or enterprises not focused on IT (e.g., manufacturing, 

health care) to acquire and operate big data technology necessary to revamp their operations.

Our team at the University of Puerto Rico, Mayagüez is currently developing the Twitter 

Health Surveillance (THS) application framework. THS is designed as a platform to allow 

end-users to monitor a stream of tweets, and process the stream with a combination of built-

in functionality and their own user-defined functions. THS enables online processing 

capabilities of the raw tweet stream, which is a departure from methods in [1], [2], [3], [4], 

[5], which mostly use curated collections of tweets for their analysis. We currently focus on 

Twitter because it is a popular social platform that provides access to posts without the need 

for establishing “friendship” relationships between its users. Nonetheless, the ideas 

associated with THS can be applied to any other platform comprising of text messages that 

are streamed to a large audience, and which can be analyzed in search for keywords, 

hashtags, topics, and so on. In the future, we shall expand our efforts into other social 

platforms. In this paper, we present the architecture of THS, and describe its implementation 

atop the Apache Hadoop Ecosystem. We discuss our implementation rationale and several 

lessons learned while developing our current THS prototype.

A. Contributions

In this paper, we describe THS and make the following contributions:

• Describe how the problem of sentiment analysis can be formulated as a big data 

online streaming problem.

• Present THS as a reference architecture for applications that need to process 

stream data with non-trivial methods.

• Describe a reference implementation of THS, using Java, Python, and big data 

software tools from Apache Hadoop/

• Discuss lessons learned during the implementation process that could help other 

developers facing similar situations.
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B. Paper Organization

The rest of this paper is organized as follows. Section II contains the motivation for THS and 

an overview of the problem we want to solve. In section III, we go into the details of the 

THS architecture. The current implementation status is presented in section IV. Section V 

presents a list of lessons learned so far. Related works are presented in section VI. Finally, a 

summary of the paper is presented in section VII.

II. System Overview

In this section we provide an overview of the THS platform, and describe its major 

components.

A. Motivation

Sentiment analysis [6], [7], [8], [9], [10], [11] is a popular technique to analyze social media, 

blogs, and news articles in search for keywords that denote positive or negative views 

against a particular product, person, or situation. In the context of THS, one of our goals is 

to collect a stream of messages (“tweets”) m1, m2, …, mn that make reference to a particular 

subject T. Next, we have a dictionary consisting of k pairs w1, w2, …, wk, where each wi is a 

pair of the form (ti, si). The component ti represents some word or phrase, and the 

component si is a number that provides a sentiment score for ti. If the word ti is not found on 

a message, then we score a value of 0 for it. Each message mj is then matched one by one 

against each wi in the dictionary, and the sentiment values s1, s2, …, si, …, sk are used to 

compute the overall message sentiment σ(mj). One approach to compute this sentiment is for 

σ(mj) to add the individual sentiment values for each word wi found in the message mj. 

Other methods [12] first segregate the sentiment values into two lists: those from positive 

words and those for negative words, Then, a ratio r is computed by dividing the sum of the 

negative sentiments over the sum of the positive sentiments. Ratio r becomes the sentiment 

σ(mj) of the message mj.

B. Processing Pipeline

Conceptually, the tweets are processed using a pipeline as shown in Figure 1. As tweets are 

generated, they are captured and then filtered based on keyword so they can be assigned to a 

given topic. Next, tweets are routed for processing at additional stages. One stage performs 

sentiment analysis as described in the preceding section. More stages can be added to 

perform custom-processing such as additional keyword filtering, emoji analysis, 

classification, or computing target keyword frequency. The output from all these stages can 

be configured to go into dash boards, databases, HDFS, etc. In our case, raw tweets are 

always stored into HDFS to enable further analysis in the future. Notice that it is possible to 

re-ingest some of the output back into the sentiment analysis or custom processing stages, 

perhaps to fine tune the results as models get re-calibrated.

III. THS Architecture

We are developing THS as a collection of daemons and web services that work together to 

collect, index, analyze, support queries on the tweets, and help make predictions. Figure 2 
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depicts the components of THS: a) Data Acquisition Component (DAC), b) Sentiment 

Analyzer (SA), c) Predictive Analytics Component (PAC), and d) Data Access Provider 

(DAP).

A. Data Acquisition Component

We use the Twitter’s Stream API to continuously monitor a sample of the stream of 

messages coming from Twitter. One or more Data Acquisition Components (DAC) capture 

these messages from the social network, as shown in Figure 3. Each DAC is a lightweight 

server-side application, written in Java, which continuously monitors the social network, 

scanning and matching messages based on user-defined criteria.

In our current experimental set up, messages are matched against a set of health-related 

keywords (e.g., fever, joint pain) to ensure that tweets that might be health related get 

captured even if no additional stage has been explicitly configured to capture them. These 

filtering parameters are fed into the DAC by means of configuration files encoded in JSON. 

For example, suppose a user wants to monitor all messages with keyword influenza 

posted within the State of Florida by any user. Then, the JSON configuration file will look 

like this:

{

    "Hashtag" : "influenza",

    "Location" : "FL",

    "Sender" : *

}

In this example, the character * is used as a wildcard indicating that posted messages from 

any users must be captured. Alternatively, one or more Twitter screen names (separated by 

commas) can be specified in this field.

In the near future, these files will be generated from a web app, designed with a friendly 

User-Interface (UI). This would make the system easy to use by one of our target audiences: 

public health officials, epidemiologists are other professionals whose job is to monitor 

diseases and health conditions.

In a sense, our DAC solves a similar issue that SQL solved for early database developers, 

namely, removing the need to write a program for each query that was posed to the database. 

Instead, SQL enables users to specify the data they require as a string that specifies target 

data collections (tables), attributes, and filtering criteria. Similarly, the DAC enables users to 

specify what keywords must be used to capture tweets, with no need to setup scripts and 

programs to do so. Thus, data acquisition becomes a ready-to-use service provided by THS.

The DACs store the captured tweets into Hive, which is a cluster-based data warehouse, built 

atop Hadoop MapReduce and the HDFS file system. Each tweet is stored as read, but also 

additional attributes (disease, date, geo-location, hashtag) are added into the Hive tables to 

help index the tweets and simplify/accelerate searches. Summarized data, for example 
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number of tweets per topic, week, users, are kept in a PostgreSQL database that can be 

queried to see trending over time. In section IV, we present more implementation details of 

the current DAC prototype.

B. Sentiment Analyzer (SA)

In THS, one or more Sentiment Analyzer (SA) awaken periodically to sift over a collection 

of tweets to be analyzed. Some of these SAs work directly on the tweet stream, while others 

act upon tweets stored in Hive. The former types are intended for near real-time trending 

information (online work), while the later types are geared toward more complex and time-

consuming work. In our current prototype, the SA works as a daemon application written in 

Python, which can be customized by developers to create specific functionality into the SA. 

Custom analysis functions are implemented and bundled into the application, as well as the 

specific tweet topic (e.g., keyword(s)) to be analyzed. By using Python, we can leverage on 

the wealth of existing Python code for sentiment analysis. The organization of the SA is 

depicted in Figure 4. Although not shown in the picture, the SA relies on Apache Spark and 

Spark Streaming to process the tweets in a cluster.

Each SA is configured with a dictionary containing the words and phrases it must search for, 

and the sentiment scores for each one of them. Currently, our dictionary is mostly health 

related. The dictionary is loaded from a JSON file that the user supplies, and can be 

modified as needed to adapt the dictionary. In our project, we assume these words and 

phrases are in English or Spanish. However, the SA can be expanded to include dictionaries 

in any of the other languages supported by Twitter. The SA performs sentiment analysis on 

each tweet, using either built-in or user-supplied sentiment functions that implement the 

desired algorithms. By default, we a variation of the formulation in [12], defining the 

sentiment of a message m, as

For trending purposes, a topic x (e.g., influenza) can be linked to a sequence of tweets m1, 

m2, …, mk. Thus, at time t the sentiment on topic x, denoted as xt can be computed by 

aggregating and averaging the sentiment of the associated tweets. A simple method is to use 

the average:

Other alternatives include using weighted averages to give more importance to more recent 

messages. Similarly, we can find averages for the sentiment on a topic over a time period [t1, 

t2].

The SA stores the results of the analysis for each tweet back into Hive and also stores a 

record to remember each tweet it has already seen. These results can be used for several 

purposes, besides trending. In one instance, the results can be used to train a classifier that 
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detects if a new, unseen tweet is positive or negative. Such tweets can then be send to 

analysts for further reviews. For example, health care users might wish to determine if the 

messages being posted denote complaints about symptoms, relief that a diseases is gone, or 

concerns about some possible outbreak. In another instance, the result go into a reporting 

system that generate daily statistics on tweet activity, with special focus on a given region 

and topic combination.

C. Predictive Analytics Component

The Predictive Analytics Component (PAC) provides the “hooks” to access basic analytics 

functionality to help developers build customized applications for making predictions. This 

will enable value-added apps for end-users to access the system, run predictions, and 

visualize the data at hand. The PAC is being built as a REST API using Python Flask. 

Underneath, the REST API connects to the Machine Learning Library (MLLib) of the Spark 

system, to capitalize on the performance obtained by running queries and machine learning 

operations on memory-resident data.

Figure 5 presents the organization of the PAC. At the top of the figure, we have the REST 

API that enables users to communicate with the PAC. The Data Loader component provides 

a series of classes to load tweets from the Hive Warehouse (actually from the HDFS) into 

Spark. The Operations Coordinator provides the mechanism to pose commands to Spark and 

run analytics operators on the target tweets. These two components are implemented as Java 

daemons. The main idea with all these components at the PAC is to provide a higher layer of 

abstraction at the analytics layer that helps integrate the different pieces of the system while 

reducing the amount of boilerplate code that developers need to write in their applications. 

At the moment of this writing the PAC is rather rudimentary, and we expect to enhance its 

functionality within the next six months.

D. Data Access Provider (DAP)

The Data Access Provider (DAP) serves as the entry point for visualization applications built 

atop THS. We are building the DAP as a REST-based service powered the Python-based 

Django web framework. Figure 6 shows the organization of the DAP. The DAP is hosted 

inside the Django web container, which in turn is hosted inside the Apache2 web server. 

Requests for data are received as REST operations. These request are handled by one of our 

custom-built Django view controllers, which are Python objects. Each request is examined 

to determine if an HTML response or a JSON response is expected. HTML responses are 

returned to browser applications, while JSON responses are given to Javascript web apps 

and native applications running on the mobile devices. Based on this determination, the view 

controller object instantiates a request handler object to manage the data extraction process. 

The request handler follows the functionality of the front controller and the façade patterns.

The request handler instantiates objects in the data model in order to: a) query the 

underlying database (e.g., Hive, PostgreSQL) to fetch records necessary to answer the 

request from the user, b) assemble model objects from database records, c) perform any 

necessary business logic, and d) build collections with the results of the operation. The 

request handlers use the services of the data access objects (DAOs) to access the underlying 
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database. In turn, the DAOs use a simple representation of the database records that has no 

business logic and is provided by the classes at the Data Transfer Objects (DTO) layer. 

Notice that both DAOs and DTOs are design patterns. Finally, the DB API provides the 

DAO with the necessary code to read data from the database. This layer includes not only 

code to access either Hive or Spark, but also code to make appropriate invocation of 

predictive analytics routines.

IV. Implementation status

At the moment of this writing, we an have alpha-state implementation of the system. All 

Java modules have been developed using Java 1.8, and all Python modules have been 

developed using Python 2.7.10. Our development team has used maven, pip, and virtualenv 

for dependency management. The system is run on a cluster of about twenty machines with 

various hardware specifications. All machines have 8 GB of RAM, and 1 TB of disk space. 

However, around ten machines have AMD Phenom 2 Quad Core CPUs, while the rest have 

Intel Xeon Quad Core CPUs. The machines have 1Gbps Nic, but are connected to the new 

UPRM SciNet Science DMZ Network, which features 10Gbps bandwidth. All machines in 

this cluster run Ubuntu Linux 14.04 LTS as their OS.

Most of our current efforts have focused on the DAC since we need that component to 

collect the tweets that are processed by the rest of the system. Figure 7 depicts the current 

implementation of the DAC. As mentioned before, the tweets are consumed by a Java 

daemon, and are then sent to a fleet of Apache Kafka servers. Kafka implements a 

distributed streaming platform, using a publish-subscribe model. Our main rationale for 

using Kafka was to ensure that we could keep up with the Twitter stream. The 

documentation for the Twitter Stream API explicitly indicates that applications that cannot 

keep up receiving tweets are automatically disconnected. In our early implementation of the 

DAC, we frequently had that problem because we were trying to capture the tweets and 

route them directly for the next processing state. Using Kafka eliminated that problem by 

simplifying the process. Right now, out capture daemon uses the Twitter4J API to collect the 

tweets and channels them straight to the Kafka system. This communication is done 

asynchronously by Kafka’s client API, so the daemon can get back to retrieve the next tweet.

Kafka implements a log-base storage abstraction that enables the next stage in our pipeline 

to consume tweets without concern about getting disconnected from the stream. Moreover, 

Kafka keeps track of the last record consumed by a client, and this has become handy for us 

in order to recover from failures while testing the system. In our case, the next stage after 

ingestion into Kafka is the filtering module, which inspect the text of the tweet and other 

metadata in the JSON representation of the tweet. This stage is implemented by a Java 

application that invokes the Spark Streaming engine on batches of tweets. The filters include 

keyword, sender, location (if available), date, and language, to name a few.

The result of the filtering phase are then stored as follows: a) the raw tweet is stored in 

HDFS, and b) metadata derived from the tweet are stored in PostgreSQL. For example, for 

each tweet we store in PostgreSQL a record containing the id of the tweet, the screen name 
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of the sender, and the date it was created. In addition, we add a record in PostgreSQL for 

each topic to which the tweet can be related.

The remaining components of the system have been implemented as described in section III, 

and we shall report on their status in the near future.

V. Lessons Learned

During the course of our implementation effort we have learned several lessons that we 

would like to share now with the reader in hope of helping those with similar development 

efforts.

A. The Learning Curve is Steep

Building a system like THS requires learning about a set of very different software tools, 

each one having its complexity and idiosyncrasy. Do not expect that by just reading the 

documentation, you will be able to get things running quickly. Rather, you will need 

working with the tools extensively to get a grasp of the tricks and pitfalls to get them to 

operate they way you want. Working with the tools in standalone and pseudo distributed 

mode is easy. Once you get into cluster mode, you end up trying various settings (e.g., 

directory for logs, network ports) until you get the system to run consistently without 

problems. Despite the abundance of tutorials and books about Hadoop, HDFS, and Spark, 

we often had to spend hours and days to debug our configurations and applications to make 

them work.

Another factor that complicates matters is that different tools feel at home with different 

programming languages. While HDFS and Hadoop MapReduce are Java based, Spark feels 

more at home with Scala. Our team of students had ample experience with Java and Python, 

but not so much with Scala. So we did not attempted much coding in Scala as we are trying 

to get an operational system as quickly as possible.

B. Networking is Tricky

Often times, our problems were not bugs or misconfigurations but rather issues with the 

network. In one instance, we had trouble running HDFS on a fleet of VMs. It turned out that 

the VMs did not had the reverse DNS mapping properly configured in the DHCP server, 

thus preventing the HDFS datanotes from properly registering with the HDFS namenode. In 

addition, our network firewalls were blocking the VMs as they did not like their MAC 

address configuration. After several attempts, we scratched VMs and ran HDFS straight on 

the host OS. For similar reasons, we gave up on using containers (e.g., Docker). In the end, 

we felt that we would need heavy interaction with the IT staff to get these things sorted out, 

but our staff did not have the man power to accommodate our needs.

C. Start Small

Given the previous lessons, it should be clear that you have to start small. It is tempting to 

try to run things on a cluster of 100 nodes, but you will be asking for trouble. We got most of 

our problems worked out on a cluster configuration with four nodes: a) master node for 
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running the namenode, b) two slaves nodes to run the datanodes, and c) a node to run the 

client. Once we got that running, we ran Spark on another set of three nodes. Then, we ran 

Kafka in one node before moving to a three node configuration. After these configurations 

worked as expected, we moved to deploy the system on our full cluster.

D. Keep it Simple

There are many systems within the Apache Hadoop Ecosystem and its other related Apache 

projects. At first we tried to use tools like Apache Storm, MapReduce, HDFS, Spark, 

Zookeeper and Ozzie. We soon realized it was simply too much. We settled on using Spark 

for data processing because it has batch processing, streaming, SQL-like capabilities, Graph 

processing capabilities, and MLLib. We also decided to use Kafka for helping with data 

ingestion. This decision helped us to move from a “fighting the tools” mode into a more 

productive “finding my bugs” mode.

E. Maven is a Must

Running your Java apps with Spark or Hadoop requires assembling a jar file with your own 

code, plus all the dependencies (or a way to specify where to find those dependencies). Here 

dependencies refer to third-party libraries (e.g., Twitter 4J) that your application needs. In 

our initial implementation efforts we attempted to build the jar files either from the IDE or 

with tools other than Maven. We faced all sorts of problems putting the dependencies into 

the jar, and getting right the configuration for the Log4j logger (used extensively by the 

Apache tools). Moving to Maven solved all of our building and packaging problems right 

away. In our view, it makes little sense to look elsewhere because these tools play well with 

Maven.

F. Log4j is a Must

The distributed nature of the applications makes debugging difficult. Most (if not all) of the 

Apache tools use Log4j for logging purposes. Since most of these Apache tools run as 

daemons, you need to send your debugging output to log files. And they should not be the 

same log files as those used by tools because they really throw a lot of messages into their 

logs. You will have a hard time finding your logging messages there. You need to configure 

your own logger and trace as much as possible to make sure the system is behaving as you 

expect. We had several instances where our application was reading the wrong configuration 

file, and the only way to find that out was to use Log4j to trace the actual configuration 

parameters that the application was reading.

VI. Related Works

The term “big data” refers to data collections whose gargantuan volume and speed of 

generation, typically at Petabyte scale, makes them impractical for storage and processing 

using traditional, single-computer relational database systems (e.g., MySQL). Instead, 

computer clusters, parallel processing techniques, Map-Reduce [13], and statistical inference 

are needed to analyze the data at this level of scale. Big Data collections naturally arise in 

experiments associated with social media, gene sequencing, high-energy physics, and health 

care monitoring, just to name a few.
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Apache Hadoop has become the principal software platform for big data processing. An 

ecosystem of tools has evolved around Hadoop and its HDFS file system [14] including 

Hive [15] (SQL-style data warehouse for Hadoop), HadoopDB [16](integration of 

PostgreSQL and Hadoop), and SpatialHadoop [17](Spatial Indexing for Hadoop). Recently, 

Spark [18], [19] has emerged as a popular alternative for big data processing. Spark uses 

HDFS, but it is not based on MapReduce. Instead, is uses a Direct Acyclic Graph (DAG) 

model to represent the flow of computational tasks, and keeps all data items in main 

memory. This enables Spark to achieve better response time for data processing operations, 

particularly analytics and machine learning jobs, versus MapReduce variants that rely on 

disk-resident data.

Sentiment analysis [6], [7], [8], [9], [10], [11] is a popular technique to analyze social media, 

blogs, and news articles in search for keywords that denote positive or negative views 

against a particular product, person, or situation. Clues about health conditions affecting 

citizens of a region can be obtained from the public messages that these citizens post in 

social media apps such as Twitter. In fact, recent research work has focused on using Twitter 

as a tool to help uncover health trends [1], [2], [3], [4], [5] by looking at keywords in the 

messages that mention specific health conditions. THS leverages on many of these 

techniques, while proving a turnkey solution to build applications without much boiler plate 

code, and accessing the live Twitter stream instead of using a curated collection. To the best 

of our knowledge no other system offers the capabilities that THS has.

VII. Summary

In this paper, we have presented the Twitter Health Surveillance (THS) application 

framework. THS is designed as a platform to allow end-users to monitor a stream of tweets, 

and process the stream with a combination of built-in functionality and their own user-

defined functions. THS enables online processing capabilities of the raw tweet stream, 

which is a departure from methods that mostly use curated collections of tweets for their 

analysis. We have presented the architecture of THS and its principal components: a) Data 

Acquisition Component (DAC), b) Sentiment Analyzer (SA), c) Predictive Analytics 

Component (PAC), and d) Data Access Provider (DAP). We have also discussed the current 

implementation status of the system atop the Apache Hadoop Ecosystem, and the lessons 

learned while performing that implementation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Tweet Processing Pipeline
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Figure 2. 
General System Architecture
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Figure 3. 
DAC Organization
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Figure 4. 
Organization of the Sentiment Analyzer
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Figure 5. 
Organization of the PAC
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Figure 6. 
Organization of the DAP.
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Figure 7. 
Current DAC Implementation.
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