
AIOps for a Cloud Object Storage Service

Anna Levin, Shelly Garion, Elliot K. Kolodner, Dean H. Lorenz, Katherine Barabash IBM Research Haifa
lanna,shelly,kolodner,dean,kathy@il.ibm.com

Mike Kugler, Niall McShane IBM Cloud and Cognitive Software Mike.Kugler@ibm.com, nmcshane@us.ibm.com

Published in: 2019 IEEE International Congress on Big Data (BigDataCongress)

c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works. DOI: 10.1109/BigDataCongress.2019.00036

This work has been partially supported by the SODALITE project, grant agreement 825480, funded by the EU Horizon
2020 Programm.

ar
X

iv
:2

00
5.

03
09

4v
1 

 [
cs

.D
C

] 
 6

 M
ay

 2
02

0



AIOps for a Cloud Object Storage Service

Anna Levin, Shelly Garion, Elliot K. Kolodner,
Dean H. Lorenz, Katherine Barabash

IBM Research – Haifa
{lanna,shelly,kolodner,dean,kathy}@il.ibm.com

Mike Kugler, Niall McShane

IBM Cloud and Cognitive Software
Mike.Kugler@ibm.com, nmcshane@us.ibm.com

Abstract— With the growing reliance on the ubiquitous avail-
ability of IT systems and services, these systems become more
global, scaled, and complex to operate. To maintain business
viability, IT service providers must put in place reliable and
cost efficient operations support. Artificial Intelligence for IT
Operations (AIOps) is a promising technology for alleviating
operational complexity of IT systems and services. AIOps
platforms utilize big data, machine learning and other advanced
analytics technologies to enhance IT operations with proactive
actionable dynamic insight.

In this paper we share our experience applying the AIOps
approach to a production cloud object storage service to get
actionable insights into system’s behavior and health. We
describe a real-life production cloud scale service and its
operational data, present the AIOps platform we have created,
and show how it has helped us resolving operational pain points.

I. INTRODUCTION

Information Technology (IT) has transformed almost all
industries and areas of human life. Technology has gone
all the way from automating tedious computations and
eliminating paper-driven office processes to governing life-
saving surgery and competing with humans on trivia, game,
and debate contests. As humanity’s reliance on computing
becomes ubiquitous, IT installations grow larger and more
complex, demanding increasingly more resources for their
bring up and operation. Cloud-scale IT operators own tens
of data centers full of compute, network, and storage devices,
running complex multi-layer software stacks and hosting a
multitude of clients. Cloud-scale service providers develop
and run multi-region multi-datacenter solutions under ever
increasing availability, performance, and security demands.
Till very recently, IT operators, while offering advanced
data-driven analytics to their clients in various domains,
employed old-fashioned manual processes for running their
own business operations. Finally, it has become apparent that
to cope with growing operational complexity and costs, the
IT business itself requires digital transformation.

To highlight the growing interest and investment in
this transformation, Gartner has introduced the concept of
AIOps [1]. The concept originally stood for Algorithmic IT
Operations and later became known as Artificial Intelligence
for IT Operations. Today, most planet-scale service oper-
ators employ their own AIOps to collect logs, traces and
telemetry data, and analyze the collected data to enhance
their offerings [2]–[5]. In addition, multiple new vendor
products for smaller scale operators and enterprise IT have
been created or rebranded as AIOps [6]–[8]. Some AIOps

platforms are intrinsically integrated into the IT system they
help to operate. Other solutions, mostly vendor products and
services, are more generic. These often cover only a part of
the AIOps stack, such as data collection, or specific analytical
methods and algorithms, or data integration in a data lake,
etc. Such point solutions are hard to integrate into existing
operational production systems in a meaningful way. We
have addressed this gap by creating a useful AIOps system
around an existing cloud-scale service, namely an object stor-
age service. Cloud-scale object storage may contain trillions
of objects, serve massive amounts of simultaneous access
requests, and generate tons of operational data. Our goal is
extracting useful business insights from the operational data
collected dynamically from a production service. However,
the sheer magnitude of data, as well as variability of formats
and data sources, and speed of data generation, make it
difficult to turn abstract theories into practice.

In this paper, we share our experience and lessons learned
creating a data driven AIOps platform for a production cloud
object storage service at IBM. Our contributions are: (1)
describing service operations in production and the available
operational data, (2) presenting the AIOps solution we have
built for gaining operational insights, and (3) showing the
operational pain points our solution helps to resolve.

II. PROBLEM DEFINITION

We are developing AIOps capabilities for IBM Cloud
Object Storage (COS) so that its operation will be data driven
and automated. We collect several types of operational data
from object storage, and do several different analyses on it.
IBM COS encrypts and disperses the objects stored in it us-
ing erasure coding across multiple geographic locations [9].
Access to objects is over HTTP using a REST API. IBM
COS has a two tier architecture: (1) front-end servers, called
Accesser R© nodes, that receive the REST commands and then
orchestrate their execution across (2) storage-rich back-end
servers, called Slicestor R© nodes, that store the data.

1) Operational data: There are many types of IBM COS
operational data, e.g., logs and metrics. We describe two
kinds that we use in our analyses.

The first are access logs [10]. These are in JSON format.
These logs contain an entry for each operation invoked on the
object storage. The entry contains a wealth of information
regarding the operation; this includes items such as the opera-
tion type, the bucket and object names on which the operation
works, the HTTP return code, the start and end times of the



operation, and various latency statistics (total latency, time
spent waiting for the client, time spent waiting for the storage
back end, time for authentication and authorization, etc.). The
access logs are generated on the Accesser nodes.

The second are connectivity logs. These are structured
JSON logs produced once a minute on each IBM COS
server. They provide information about the connectivity of
the servers across all the offerings of IBM COS.

2) Goals and challenges: Our aim is to detect, predict
and prevent failures and performance slowdowns that could
impact users. Cloud object storage is engineered with re-
dundancy, so that it continues working despite failures of
individual components. Thus, when a failure occurs it is
masked by the redundancy, which makes it difficult for the
operators to discover. Our goal is to discover these failures
and pinpoint their cause through analysis of the data.

In turn, the analysis of the operations data also poses
several challenges. The first is that the schema of the log
data is dynamic. Each log record is JSON, so its fields are
labeled, but each individual record might have a different
subset of the fields, e.g., depending on the operation type,
the authentication mechanism, or whether the object data
is encrypted. The second is the scale of the data to be
processed. As described in Section III-B, we converted the
JSON data to Apache Parquet, partitioned it and added
derived fields in order to save space and speed subsequent
processing. Poor choices, e.g., for partitioning, or producing
Parquet objects that are too small, could lead to the costly
need to reconvert and reprocess the data. Also, programs
tested on small samples of data might fail after long running
times when processing very large amounts of data, e.g., when
encountering a new log record instance.

3) Our Approach: We apply the following stages:
Ingestion (Sec. III-A): Ingestion of historical data is from

batch files, e.g., Elasticsearch dump files, as well as of
streaming data, e.g., from Apache Kafka.

Curation (Sec. III-B): Data curation, cleaning and prepara-
tion for analytics is crucial, and requires a huge investment.
In data warehousing this stage is called Extract, Load and
Transfer (ELT).

Features (Sec. III-C): Features need to be generated in
order to use statistical and machine learning algorithms.
We present a ”smart groupBy” method to generate features
efficiently in parallel at scale using Apache Spark.

Model (Sec. IV-A): We use both statistics and machine
learning to create our models and analyze incoming data.

Causality (Sec. IV-B): We do feature isolation to detect the
root cause of a problem, such as a failing component.

Visuals (Sec. IV-C): Finally we present the root cause of
the problem to the operator through reports, dashboards
(e.g., Grafana), or by notifications (e.g., Slack).

III. DATA PROCESSING

Our data processing flow was implemented in two ways.
Initially the data samples were copied to a local storage
system for easier exploration, see Fig. 1. However, moving
the data far from its collection became unfeasible for the real

logs sizes we faced. Thus, we now do the data processing
flow in the cloud, as shown in Fig. 2.

Fig. 1 shows the initial data processing flow. The IBM
COS access logs in JSON format are collected in Elas-
ticsearch [11] (ES) and historical dumps of ES are stored
in an IBM COS bucket. In order to build a non-intrusive
exploration pipeline, we copied the ES dumps to a local
storage system: splitting files into chunks to optimize parallel
copying and verifying correctness with MD5. The copied
chunks were stored in HDFS [12] and converted to Par-
quet [13] to ease the analytics. For analytics we used Spark
together with Zeppelin notebooks [14], a common platform
for interactive data analytics.

Despite the advantages of having data close to the data
scientist for efficient development and easy data manipu-
lation, the initial solution was not scalable enough for our
needs. As a result, we now do the processing in the cloud, as
depicted in Fig. 2. In this second pipeline, the data processing
is integrated with the collection stage and the logs are stored
in IBM COS in Parquet format. The data is consumed for
analytics by Apache Spark [15] applications running on the
IBM Analytics Engine [16]. For interactive development,
we use Jupyter notebooks [17] provided by IBM Watson
Studio [18]. In the remainder of this section we describe our
experience with the processing flows presented above.

A. Ingestion

One of the common ways to ingest log files into a data
lake is a Logstash processing pipeline [19] that ingests data
from multiple sources simultaneously, transforms it, and
then sends it to Elasticsearch - an open-source, RESTful,
distributed search engine. We started with this ingestion
approach in Fig 1. IBM COS operational logs were collected
from the Accesser nodes, sent over Apache Kafka and stored
in ES through Logstash. The ability to test development
directly against ES before working with the full data volume
provided fast initial time to value because of the easy
integration with Spark and with visualization and reporting
tools, e.g. Kibana.

We started the development of the pipeline by ingesting the
access logs through ES to a local HDFS system, as depicted
in Fig. 1. The log data was moved to HDFS, close to the
processing, and after cleaning and format adjustment, the
data was consumed for analytics. This method of ingestion
provided an isolated environment for exploration indepen-
dent from the production pipeline. This approach worked
well for exploring relatively small samples; however, as the
volume of the log data grew, it became infeasible to move
the logs to HDFS.

Therefore, we decided to switch to a pipeline based on
cloud services shown in Fig. 2. In this approach we collect
and stream the logs directly to IBM COS, storing them close
to the collection points and organizing them in Parquet, and
also move the processing close to the data creation. Note that
while this cloud-based approach is closer to a full data-lake
pipeline, it is still a development environment. This approach
is useful during development as it provides a sandbox with a



Fig. 1. Pipeline for processing operational logs Fig. 2. Cloud-based pipeline

”cached” snapshot of the data. As demonstrated in the next
section, this approach allows exploration of analytic methods
in a repeatable manner without having to re-run the entire
data pipeline.

B. Curation

It is not enough to collect the data to make it useful and
meaningful. The ingested data must be cleaned, formatted
and organized in order to make it useful for data scientists
engaged in data discovery and analysis. The process of man-
aging data, archiving and representing is called data curation.
Data curators collect data from diverse sources and integrate
it into repositories that are many times more valuable than
the independent parts. Curation also ensures data quality and
makes machine learning (ML) more effective.

It is hard to overestimate the importance of data cleaning
and sanity checking. Our sanity checks include row counts,
timestamps consistency checks and statistical data validation.
In addition to counts, it is important to validate that statistical
characteristics are preserved, e.g., the mean and median val-
ues of the important numerical fields. Further data cleaning
and standardization require a unifying format for numerical
data to allow numerical operations, and filling in missing data
with appropriate values, e.g., null values of the appropriate
type. Another important aspect of data cleaning is validating
timestamps consistency and correctness, needed to ensure
that no data is missing, ignored or duplicated. Validating
timestamp consistency is a complex task in a heterogeneous
system. Our data set is collected from different systems using
multiple formats across many timezones. In order to validate
timestamp consistency and enable data analysis, we unified
the format and converted all timestamps to UTC.

In the data lake pipeline, curation prepares the data for
consumption by analytic tools. Curation transforms the raw
data into a structured view, annotates it using metadata,
combines current inputs with historical data, and integrates
previously aggregated data. During development, we chose
to use a staging transformation approach. Staging the data
in Parquet format greatly speeds up the debugging process
while developing new analytic methods; it reduces the time
wasted waiting for computations to complete. Moreover,
staging simplifies repeatable experiments. We experimented
with several choices before deciding on the right staging
transformations and format to achieve the best performance.

Apache Parquet is a columnar data format, which supports
compression and encoding schemes. The schema is embed-
ded in the data itself, so it is a self-describing format. These
features make it efficient to store data in Parquet as opposed
to row-oriented schemes like CSV and TSV. Fig. 3 shows the

results of our experiments on the effectiveness of storing our
log samples in Parquet. The figure shows for our case, when
no explicit options are set and Spark uses default snappy
compression, storing logs in Parquet rather than leaving them
in JSON format in a form of compressed ES indexes, reduced
the size by more than 10 times.

In addition, the columnar nature of Parquet enables effi-
cient querying since most queries involve few columns and
can be enhanced further by partitioning based on the values
of one or more columns. It is crucial to know the common
queries in order to benefit from by data partitioning. For
example, among other fields our schema involves dates, lo-
cations and customer information. Since our typical analysis
was done on a daily basis, we decided to partition data by
date and location, storing it in an order dictated by dates
and location columns. When the query is done for specific
day and location only small sub-set of data is accessed. This
order of partitioning served us well for daily performance
logs analysis, but proved to be inefficient when per customer
analysis was requested. In order to access specific customer
data, we needed to access whole data set regardless of its
date and location, losing all the advantages of partitioning.

Partitioning not only has benefits for performance, it also
helps managing the data. Spark supports programmatic parti-
tioning and can discover partitions automatically if the stored
data is already partitioned. To store partitioned data in the
most efficient way we performed experiments with Spark to
determine the best way to write the data. The following write
options were evaluated: (1) Each day-location gets its own
dataset. (2) Hive-style partitioning using partition by.write in
append mode. (3) Hive-style partitioning explicitly writing
each virtual directory in overwrite mode. Our experiments
showed that option 1 is the slowest one. Options 2 and 3 are
similar in terms of performance and twice as fast as option
1. The latter two options store the data and access it in a
similar way; however, there is a difference between options
2 and 3 when a write job fails. If Spark job fails in option 2
in the middle of data writing, it cannot be easily reverted as
the written data becomes part of a big data set with a single
flag for successful writes. As a result retrying the write job
might create duplicate data chunks. On the other hand, with
option 3, if the write job fails writing a virtual directory, the
partial results can be easily cleaned by rerunning the job,
overwriting the specific directory. Therefore, we chose hive-
style partitioning, explicitly writing a virtual directories in
overwrite mode, as the fastest and safest option.



C. Feature extraction
In large scale data sets, such as operational log data

(e.g. [20]), a big challenge is preparing the raw data for
use with statistical and ML methods. In the language of
ML the prepared data is called ”features”. Moreover, for
many statistical and ML methods, such as anomaly detection,
choosing and generating the right features is much more
important than the actual algorithm. For example, with the
proper features basic outlier detection methods can find
anomalies (see the discussion in [3]).

We use Spark [15], [21], which supports the Map/Reduce
programming model, to generate the features efficiently in
one parallel pass over the huge amount of log data. For
the development of algorithms and code we use Jupyter
notebooks, and for running the code in batch in production
we use ”spark-submit” to the IBM Analytics Engine [16].
We describe our ”smart groupBy” method to generate the
features efficiently, assuming that the input data is in a table
format (e.g., Spark DataFrame) and that the processing is
done using an SQL API (e.g., Spark-SQL).
Map Step We enrich the input data with additional columns:

1) Computing ranges and buckets: by ranges of timestamps
(e.g., day/hour/minute), sizes, and other numerical compo-
nents.
2) Reducing a large set of values to a smaller subset (often
called data cleaning): by parsing the original values and
taking only dominant substrings, or taking only the most
popular subset of values, etc.
3) Computing a function over several columns: by choosing
a derived value based on values appearing in the input
columns.
4) Doing derivations and differences: by computing a
derived column C, adding a new column Cshift, which
is a copy of C shifted in one cell, and then computing the
derived column Cderived = C − Cshift.
5) Computing statistical functions: counts, mean, standard
deviation, ranks, percentiles, etc.
The one pass pipeline combines these transformations into
a single map step.

Reduce Step We perform one SQL ”group by” operation
on many columns at once, including the columns generated
in the map step, to produce all the features in parallel.

In order to choose the specific ranges, buckets, and subsets
in steps 1 and 2, we use prior domain knowledge or learn
from a small sample of the large data set. The statistical
functions in step 5 may also be used to check the reliability
of the generated features, for example, checking whether the
number of items per feature is statistically meaningful. Since
Spark is lazy [15], the entire calculation is done on-demand
in the ”Reduce step” to obtain the features. We perform the
ML algorithm or statistical analysis on these features.

IV. ANALYTICS AND INSIGHTS

In order to gain insight we perform statistical analysis and
create ML models using the extracted features. Our analysis
is done using Python packages, such as pandas [22] for
general statistics, and scikitlearn [23] for ML.

A. Analytical model: statistical or machine learning (ML)

In our use-cases we are able to provide an efficient solution
using basic statistical and ML methods, and did not need
deep-learning methods, which are less efficient and require
more resources, especially when implemented at large scale.

Statistical approach. Computing statistical invariants of
the large-scale dataset, such as counts, mean, standard devia-
tion, histograms, median and other percentiles, is extremely
useful to provide an overview of the operations data and
perform basic reliability and sanity checks. This calculation
can also be done efficiently at large scale using the ”smart
groupBy” method described above. We perform hierarchical
aggregation of various metrics in order to detect and focus
on a failed component, as can be seen in Fig. 6, to find the
highest possible level of aggregation/hierarchy, representing
the most significant problem currently occurring in the
system. However, in cases where there are too many metrics
and signals, it is not possible to manually handle too many
graphs and alerts, so it is better to use automated ML tools.

Machine learning approach. There are various anomaly
detection methods, for an extensive survey see [24]. The
basic approach is based on calculating the z-score of a single
metric, namely, the signed fractional number of standard
deviations by which the value x of an observation differs
from the metric’s mean value. In addition to a univariate ap-
proach, there exist multivariate anomaly detection methods,
e.g., [25], which reduce false alerts. We use a multivariate
anomaly detection algorithm on the features generate using
the ”smart groupBy” method described in Sec. III-C. These
features include aggregations of various latency metrics of
several components in the system, and our algorithm is in
the spirit of Ng’s algorithm in [26]. Fig. 4 shows a graph
of our aggregated anomaly score and computed threshold ;
Fig. 5 focuses on the anomaly inside the rectangle.

B. Root cause and problem isolation

After completing the statistical and ML analysis, we
perform feature isolation in order to find the root cause and
detect the failed component. Figs. 5 and 6 demonstrate two
equivalent points of view of the same failure that occurred
in our system at the same time (from time Tstart to Tend).

Fig. 6 shows the connectivity point of view. We observe
that certain application components were disconnected from
the other components from time Tstart to Tend. In order
to detect the most relevant problematic component for an
alert, we reduced the problem of determining the failing
components to a hierarchical flow problem. This approach
allows us to pinpoint the problem at the most relevant level of
aggregation/hierarchy, and notify the operations team of the
most significant problem currently occurring in the system.

Fig. 5 shows the performance view. Our multivariate
anomaly detection tool on the latency metrics shows a high
peak at time Tstart that stays above the anomaly threshold for
the same period from Tstart to Tend. In this case, we isolate
the problem and focus on the misbehaving component by
indicating the top features with the highest z-scores during



35

25

20

10

5

Pa
rq

u
et

 s
iz

e 
(G

B
)

Raw JSON logs compressed (GB)

0

30

15

0 50 100 150 200 250 300 350

Fig. 3. Size ratio Parquet vs. Raw
JSON Logs Index Compressed

100

80

60

40

20

A
gg

re
ga

te
 L

at
en

cy
 S

co
re

Time

Anomaly
Threshold

TSTART TEND

Fig. 4. Anomaly score of the
aggregated latency

100

80

60

40

20

TSTART TENDA
gg

re
ga

te
 L

at
en

cy
 S

co
re

Time

Anomaly
Threshold

Fig. 5. Anomaly score of the
aggregated latency – zoom in

%
 o

f 
co

n
n

ec
te

d
 c

o
m

p
o

n
en

ts

Time

100

70

60

30

10

0

80

40

90

50

20

TSTART TEND

Fig. 6. Connectivity point of view:
disconnected component

this anomalous period, and checking how many of them
come from the same component.

C. Visualizations and dashboards
In order to provide alerts and reports to the operation team,

one can use static reporting tools that mainly present period-
ical graphs and textual reports. Another option is presenting
semi-static tools, which allow interactive exploration of the
pre-calculated results and support drill down and zoom-in
at problematic points, such as Grafana [27]. Moreover, such
semi-static tools allow to incorporate all the produced graphs
into a few dashboards. However, such tools do not cover
all types of required insights and graphs. For example, in
our use-cases a connectivity matrix heatmap turned-out to
be the most useful tool for presenting failed component in
the context of overall system.

In addition to the graphical tools and dashboards, when an
action of an operator is needed, it is necessary to provide a
direct alert or real-time notification via tools like slack [28].
For example, our automated tool provides a slack notification
to the operator, containing the identity of the specific appli-
cation or network component experiencing issue. In addition
to identifying the specific troubled component, the context
of the issue is provided including exact time of the event, its
geographical location, an estimation of the problem severity
and the list of the additional components affected by this
failure. It is important to provide the context of the event in
order to assist the operator to discover the root cause of the
problem and act quickly to restore normal system behavior.

V. CONCLUSIONS
We have presented an AIOps solution that provides in-

sights useful for the operation of the IBM COS service. The
solution is now in the process of being globally deployed
across multiple service offerings in IBM Cloud and will
be further refined, optimized, and extended, e.g., to work
with more cloud services and for cross-service operations.
To conclude the paper we share a concise summary of the
most important lessons and best practices that can illuminate
the path to success for others who pursue similar goals.

Know your tools. There are multiple applicable tools and
methods and it is very important to have good understand-
ing of the suitability, efficiency, and compatibility of these
methods in the context of a particular operational challenge.

Keep it simple. This timeless wisdom is your best friend
when developing AIOps. The appeal of advanced analytics,
including machine and deep learning, is so great that many
fall in the trap of needless over complication.

Iterate and refine as you go. In an ideal world, one
assumes sufficient and reliable data sources and specific

questions to guide AIOps exploration. In reality, however, the
data sources often are not intended for analytical purposes
and asking the right questions is a significant challenge. Use
an iterative approach whereby insights are gained incremen-
tally, using snapshots, historical data, and calibration.

Feed and sustain the engagement. Last but not least, do
not underestimate the importance of mutual trust between
IT system owners and the AIOps team. System owners
are often overwhelmed by their day-to-day load and if not
seeing immediately useful results, may disengage and lose
interest. Great cross-team collaboration is key to putting in
place an AIOps system alongside the production service in
a reasonable amount of time.

REFERENCES

[1] A. Lerner, “AIOps Platforms,” https://blogs.gartner.com/andrew-
lerner/2017/08/09/aiops-platforms/.

[2] B. H. Sigelman and et al., “Dapper, a large-scale distributed systems
tracing infrastructure,” Google, Inc., Tech. Rep., 2010.

[3] D. Goldberg and Y. Shan, “The importance of features for statistical
anomaly detection,” in USENIX Workshop, HotCloud’15.

[4] M. Chow and et al., “The mystery machine: End-to-end performance
analysis of large-scale internet services,” in OSDI’14.

[5] “Introducing atlas: Netflix’s primary telemetry platform,”
https://medium.com/netflix-techblog/introducing-atlas-netflixs-
primary-telemetry-platform-bd31f4d8ed9a.

[6] “Moogsoft,” https://www.moogsoft.com/.
[7] “OpsRamp,” https://www.opsramp.com/.
[8] “Zenoss,” https://www.zenoss.com.
[9] J. K. Resch et al., “Aont-rs: Blending security and performance in

dispersed storage systems,” in FAST’11.
[10] “IBM Cloud Object Storage System Logs,” www.ibm.com/support/

knowledgecenter/STXNRM 3.14.1/coss.doc.
[11] “Elasticsearch,” https://www.elastic.co/products.
[12] “Apache Hadoop,” https://hadoop.apache.org/.
[13] “Apache Parquet,” https://parquet.apache.org/.
[14] “Apache Zeppelin,” https://zeppelin.apache.org.
[15] M. Zaharia and et al., “Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing,” in NSDI’12.
[16] “IBM Analytics Engine,” https://console.bluemix.net/catalog/services/

analytics-engine.
[17] “Project Jupyter,” https://jupyter.org/.
[18] “IBM Watson Studio,” https://console.bluemix.net/catalog/services/

watson-studio.
[19] “Logstash,” http://www.elastic.co/products/logstash.
[20] J. Barr, “Amazon s3 – two trillion objects, 1.1 million requests per

second,” AWS News Blog 2013.
[21] “Apache Spark,” https://spark.apache.org/.
[22] “Pandas: Python Data Analysis Library,” https://pandas.pydata.org/.
[23] “scikit-learn: Machine Learning in Python,” https://scikit-learn.org/.
[24] V. Chandola and et al., “Anomaly detection: A survey,” ACM Com-

puting Surveys, Jul. 2009.
[25] H. Cheng and et al., “Detection and characterization of anomalies in

multivariate time series,” SIAM Int. Conf. on Data Mining’09.
[26] A. Ng, “Anomaly detection using the multivariate gaussian distribu-

tion,” in Machine Learning Yearning, 2018.
[27] “Grafana,” https://grafana.com/.
[28] “Slack,” https://slack.com/.

https://blogs.gartner.com/andrew-lerner/2017/08/09/aiops-platforms/
https://blogs.gartner.com/andrew-lerner/2017/08/09/aiops-platforms/
https://medium.com/netflix-techblog/introducing-atlas-netflixs-primary-telemetry-platform-bd31f4d8ed9a
https://medium.com/netflix-techblog/introducing-atlas-netflixs-primary-telemetry-platform-bd31f4d8ed9a
https://www.moogsoft.com/
https://www.opsramp.com/
https://www.zenoss.com
www.ibm.com/support/knowledgecenter/STXNRM_3.14.1/coss.doc
www.ibm.com/support/knowledgecenter/STXNRM_3.14.1/coss.doc
https://www.elastic.co/products
https://hadoop.apache.org/
https://parquet.apache.org/
https://zeppelin.apache.org
https://console.bluemix.net/catalog/services/analytics-engine
https://console.bluemix.net/catalog/services/analytics-engine
https://jupyter.org/
https://console.bluemix.net/catalog/services/watson-studio
https://console.bluemix.net/catalog/services/watson-studio
http://www.elastic.co/products/logstash
https://spark.apache.org/
https://pandas.pydata.org/
https://scikit-learn.org/
https://grafana.com/
https://slack.com/

	I Introduction
	II Problem Definition
	II-.1 Operational data
	II-.2 Goals and challenges
	II-.3 Our Approach


	III Data Processing
	III-A Ingestion
	III-B Curation
	III-C Feature extraction

	IV Analytics and Insights
	IV-A Analytical model: statistical or machine learning (ML)
	IV-B Root cause and problem isolation
	IV-C Visualizations and dashboards

	V CONCLUSIONS
	References

