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Abstract—This paper proposes a new recommendation sys-
tem preserving both privacy and utility. It relies on the local
differential privacy (LDP) for the browsing user to transmit his
noisy preference profile, as perturbed Bloom filters, to the service
provider.

The originality of the approach is multifold. First, as far as
we know, the approach is the first one including at the user
side two perturbation rounds - PRR (Permanent Randomized
Response) and IRR (Instantaneous Randomized Response) - over
a complete user profile. Second, a full validation experimentation
chain is set up, with a machine learning decoding algorithm
based on neural network or XGBoost for decoding the perturbed
Bloom filters and the clustering Kmeans tool for clustering users.
Third, extensive experiments show that our method achieves good
utility-privacy trade-off, i.e. a 90% clustering success rate, resp.
80.3% for a value of LDP ε = 0.8, resp. ε = 2. Fourth, an
experimental and theoretical analysis gives concrete results on
the resistance of our approach to the plausible deniability and
resistance against averaging attacks.

Index Terms—Local differential privacy, recommendation,
privacy, RAPPOR, profiles perturbation, Bloom filters, neural
networks, XGBoost, Kmeans

I. INTRODUCTION

With the increase of online services, individuals are con-
fronted with a lot of choices when making purchases. For
better user experience, service providers rely on recommender
systems helping users find items of interest. For this purpose,
service providers are massively collecting and analyzing users’
data which may threaten users’ privacy. Hence, for individuals
to get tailor-made services but not at the price of their privacy,
as exposed in the survey of 2.000 people [16], and for
recommenders to monetize the attention of consumers with
targeted advertising, products and services selling, there is a

strong need to elaborate new recommendation systems taking
privacy and utility into account.

Contributions This paper proposes a new recommendation
system preserving both privacy and utility. The idea is to
ensure protection against honest-but-curious entities - service
providers and outsiders - while still getting useful recommen-
dations. With that objective in mind, our approach relies on the
LDP principle for the user preference profile to be perturbed at
the browsing user side through a two-round processing - PRR
(Permanent Randomized Response) and IRR (Instantaneous
Randomized Response). That perturbation is an adaptation of
the LDP-based RAPPOR approach [9] being made suitable for
both classification and clustering tasks under local differential
privacy. As far as we know, this is the first time that a two-
round perturbation processing has been applied to a complete
user profile.

With the objective of getting experimental utility vs privacy
validation results, a full validation experimentation chain is
set up with a recommender being implemented. At the recom-
mender side, two successive mechanisms are performed: a ma-
chine learning decoding algorithm based on neural networks
or XGBoost for decoding the perturbed Bloom filters and a
clustering Kmeans tool for clustering users. It has to be noted
that an appropriate user clustering leads straight to relevant
recommendations for the user. The idea of the experiment
is thus to assess how much users clustering is successful
according to their perturbed preferences and a related privacy
budget quantifying how much noise is included into their
preferences.

Our approach is validated through both extensive exper-
iments and a security analysis. The experiments show that
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our method achieves a good utility-privacy trade-off with a
90% clustering success rate, resp. 80.3% for a value of LDP
ε = 0.8, resp. ε = 2. The experimental and theoretical
security analysis demonstrates that our approach supports both
plausible deniability and resistance against averaging attacks.

Paper organization. Section II gives the useful background
about Local Differential Privacy (LDP). Section III surveys ex-
isting LDP-related works highlighting their deficiencies. Then
our approach is described in Sections IV and V. Section IV
introduces the system model with the actors, the utility metrics,
the privacy properties and the threat model. Section V details
the step-by-step processing phases at both the user side and
the recommender side. The three following sections provide a
full evaluation of our approach. Section VI studies the utility
performance achievements of our decoding and clustering al-
gorithms according to several experimental conditions (privacy
budget, Bloom filter parameters). Section VII gives a security
analysis of our scheme with regard to the plausible deniability
and averaging attacks. Section VIII discusses the utility vs
privacy trade-off. Conclusions are given in Section IX.

II. LOCAL DIFFERENTIAL PRIVACY BACKGROUND

Local Differential Privacy (LDP) has its roots in Differential
Privacy (DP) works [8], [13]. DP matches the global model
where a trusted third party uses DP to produce statistics over a
dataset, while withholding information about individuals in the
dataset. LDP [18] matches the local model where data can be
perturbed right at the source, locally to the user, thus leading
to higher privacy guarantees as the trusted third party is no
longer necessary.

Definition. A randomized algorithm M satisfies the ε local
differential privacy [18] where ε > 0 if for all pairs of the
client ’s values x and y and for all S ⊆ range(M ):

Pr[M(x) ∈ S] ≤ eε Pr[M(y) ∈ S] (1)

The definition introduces ε, known as the privacy budget
or the privacy loss. It controls to what extent the output of an
algorithm depends on the input, and thus it reflects the desired
level of privacy. The smaller is the privacy budget ε, ε being
a positive value, the higher is the privacy level.

III. RELATED WORK

This section makes an overview first on some LDP well-
known use cases, and then on some privacy preserving systems
including LDP recommender systems.

LDP use cases. LDP concepts are applied in various
domains in the literature. For instance, Google proposed RAP-
POR [9] so as to collect statistics about malicious URLS from
users browsers without causing privacy threats. The proposed
solution relies on encoding the values to be sent, by applying
two ε-LDP perturbation levels. In Microsoft, LDP enables
collecting data about the time spent by users in different appli-
cations, therefore, identifying its favorite ones and improving
the users’ experience [7], while still preserving privacy. For
reducing possible privacy leakage in deep learning models, [6]
proposes LATENT as an intermediate layer designed to satisfy

LDP in deep learning models. The suggested solution enables
a data owner to perturb data at the owner’s device before the
data reach out an untrusted machine learning service.

Privacy preserving recommender systems. The need for
privacy preservation in recommender systems triggered re-
search efforts in the last decades. Two main axes based on
cryptography and data perturbation are investigated. Kaaniche
et al. [11] designed a privacy-preserving framework for rec-
ommender systems. They suggested that a user perturbs his
profile relying on a collaborative secure computation, that
incorporates intermediate nodes between end-users and service
providers. Their framework generates additional computation
overhead. In [4], [5], Canny proposes cryptographic protocols
to preserve privacy in recommender systems. The suggested
scheme uses matrix projection and factor analysis. Both tech-
niques result in heavy computational and communication over-
head. Aı̈meur et al. [1] designed the Alambic system where
users private data are shared between the service provider and
a semi-trusted third party. The whole public key infrastructure
is adopted so as to ensure data protection. Yet, only if the
service provider doesn’t collude with the semi-trusted third
party, the user privacy is protected. Recently, Kim et al. [12]
suggested SPIREL, a location based recommender system
under LDP. The framework uses the Optimized Randomized
Response [18] approach to perturb the transition patterns and
refers to the piecewise mechanism [17] in order to perturb
gradients. Both suggested algorithms are ε−LDP . The solu-
tion drawback is its high communication cost, as the transition
patterns are encoded in a n2-sized bit-array (n denoting the
domain of possible locations) by the user before perturbing
them with the Optimized Randomized Response. Moreover,
the framework takes into account only one location transition
from the user’s check-in history. Nevertheless, using LDP to
protect only one transition doesn’t fit well in practice as the
user may have many transitions to report. The extension of
SPIREL to report many items under LDP is far from obvious
as the process relies on the gradient perturbation. While most
of the existing works tackle the issue of only one item
perturbation, BLIP [2] focuses on perturbing a whole profile
using the LDP mechanism. However, the achieved utility in
terms of recall does not exceed 0.26 for ε = 3. Moreover, the
utility computation is performed on perturbed Bloom filters,
and does not refer to any decoding algorithm, which is not
compatible with an integration into a recommender system.
Furthermore, as the similarity computation between profiles is
done at user side each time a new node joins the system, the
solution can be considered as cost-prohibitive.

IV. SYSTEM MODEL AND OVERVIEW

This section details our full system model, and an overview
of our approach. It presents the actors, the metrics for mea-
suring utility, the supported privacy properties along with the
considered threat model.

A. Actors

Our system model is composed of the following entities:



• Client C: a browsing user submits a query to a Web
Search Engine WSE along with his profile made of
individual attributes (preferences). C who cares about
his privacy, sends to WSE his perturbed preferences
according to the LDP method and a privacy budget ε.

• Web Search Engine WSE: the WSE server responds to
the client’s query according to the transmitted preference
profile. WSE can suggest its own recommendations
to C, and can take on the role of a proxy between
C and third parties TP by relaying the profile and
the TP ’s recommendations back to C. Note that the
intermediate WSE between C and TP could be any
Service Providers.

• Third Party TP : TP is an advertising provider or any
recommendation provider. Its main goal is to provide
users with targeted recommendations.

B. An overview

To avoid leaking his preferences while still getting appro-
priate recommendations, a user C can decide to send a search
query to WSE along with his perturbed preferences. The
full processing for perturbing the preferences is detailed in
subsection V-A and includes the following steps which are
depicted in Figure 1:

1) C preferences using a Bloom filter [9]
2) Execute the permanent randomized response (PRR) step

over the Bloom filter [9]
3) Execute the Instantaneous Randomized Response (IRR),

as a second perturbation step [9], over the modified
Bloom filter

4) Send the query along the perturbed preferences to WSE

Upon receiving the request, WSE forwards the perturbed
profile to the recommender, either TP or WSE, and next
referred for clarity as TP . TP next needs to decode the given
preferences using a machine learning algorithm, resulting in
a reconstructed approximate user profile (cf. subsection V-B).
Then based on the obtained profile and the similarity among
profiles, TP executes a clustering algorithm (cf. subsection
V-C) and classifies C in one of the group of users, for next
delivering targeted recommendations suitable for that group of
users to C via WSE.

C. Metrics for Measuring Utility

Our recommendation system should preserve the utility -
i.e. the adequacy between C’s expectations and the returned
recommendations - for maintaining the user experience. This
means that the user clustering being performed by recom-
menders WSE or TP on the perturbed C profile should be
as close as possible to the one achieved with the unperturbed
C profile.

To measure the utility, the metrics well known for clustering
algorithms - accuracy, precision, recall, and F1 score - rely on
the following values:
• True Positive (TP). The instance belongs to the class,

and is predicted to be in the class.

• False Positive (FP). The instance does not belong to the
class, but it is predicted as a class member.

• False Negative (FN). The instance belongs to a class,
but it is predicted as not being a member of that class.

The following metrics are used for measuring utility:
1) Accuracy. The rate of the correct predictions out of all

the predictions. Accuracy is sensitive to class imbalance,
and is expressed as follows:

Accuracy =
Number of correct predictions
Total number of predictions

(2)

2) Precision. The proportion of items correctly identified
to be within a class i out of all the items identified to
belong to that class. A low precision helps to identify
where the model made incorrect classification. It is
defined as:

Precisioni =

∑
TPi∑

TPi + FPi
(3)

3) Recall. The proportion of items that should have been
annotated with a given label, and that were actually
annotated with that label. This is a measure of com-
pleteness and is formally defined as follows:

Recalli =

∑
TPi∑

TPi + FNi
(4)

4) F1 score. A weighted average of recall and precision.
Thereby, the metric takes into account both false posi-
tives and false negatives, as follows:

F1 = 2 ∗ Recall ∗ Precision
Recall + Precision

(5)

D. Privacy Properties
This section defines the basic privacy properties supported

by our approach.
• Plausible deniability. This property is granted through

the use of an algorithm that satisfies the LDP definition
as an obfuscation scheme. In fact, by observing the output
of the algorithm, an adversary can not tell with high
confidence whether a particular preference was definitely
used as an input of the algorithm.

• Resistance against averaging attacks. Any adversary
having knowledge of several versions of the perturbed
Bloom filters can not find out the original preferences
through an averaging attack.

E. Threat Model and Privacy Games
Our threat model considers a honest-but-curious adversary

attempting to learn the preferences of client C from the
perturbed Bloom filters sent by client C. We next define three
privacy games, with regard to two adversaries provided with
the following abilities:

1) Basic Adversary BA. BA is not provided with any
Machine Learning algorithms. BA is an outsider, i.e.
external to our system.

2) Advanced Adversary AA. AA is provided with Ma-
chine Learning algorithms. AA is an honest-but-curious
WSE or an honest-but-curious TP .



Fig. 1. System overview including a user C and a server (TP or WSE)

1) The Plausible Deniability Game Conducted over one
Preference by a Basic Adversary: An outsider BA is chal-
lenged with the following privacy game:

• Setup. The challenger C provides the adversary BA with
a set of N preferences, the Bloom filter size M , k hash
functions and the privacy budget ε.

• Training phase. Upon receiving the mentioned param-
eters, BA is given a polynomial computation time in
order to compute some Bloom filters for the transmitted
N preferences. Therefore, he can reconstruct a database
DBF of perturbed Bloom filters.

• Challenge phase. C selects a preference i and sends to
C a related perturbed Bloom filter. BA sends back to C
his guess about the preference.

BA wins the game if he is able to correctly guess the
encoded preference.

If the probability to win the game is negligible, then our
approach is said to be resistant against the plausible deniability
attack conducted over one preference by a basic adversary.

2) The Plausible Deniability Game Conducted over multi-
ple preferences by the Advanced Adversary: The insider AA
is challenged with the following privacy game:

• Setup. The challenger C provides AA with a set of
perturbed preferences along with their original values.

• Training phase. AA trains his ML algorithm with pro-
vided values.

• Challenge phase. C samples a set of preferences from
his dataset, and sends to C a related perturbed Bloom
filter. AA sends back to C his guess about the set of

preferences, which comes down to correctly decoding the
perturbed Bloom filters.

The adversary wins the game if he gets high precision and
recall.

If the probability to win the game is negligible, then our
approach is said to be resistant against the plausible deniability
attack conducted over multiple preferences by an advanced
adversary.

3) Averaging Game: Any BA or AA adversary is chal-
lenged to find out the original preferences from a set of
perturbed Bloom filters issued over the same set of C’s
preferences.

V. DETAILED PROCESSING PHASES OF OUR APPROACH

In this section, we detail the main three phases of the new
recommendation system, an overview of which is described in
Section IV-B.

A. Perturbation Phase at the Client

The perturbation is handled at C’s device with the objective
to obfuscate C’s preferences. It has to be noted that the set
of preferences forms a profile composed of one or many
categories where each category is denoted by Ci, i ∈ {1...l}
where l denotes the maximum number of supported categories.
Each category is composed of groups of interests Iij (i.e.
j ∈ {1...g}) where g represents the maximum number of
groups of interests for category i.

1) Encoding. As the first step of the perturbation process,
the encoding algorithm maps C’ preferences into bits in
a Bloom filter.



Fig. 2. Empty Bloom filter, m = 10

Fig. 3. Feeding the Bloom filter with the preference ”Action”, m = 10,
k = 2

The first operation is to compute the optimal Bloom filter
size m, given the maximum number of preferences en-
coded into the Bloom filter (i.e. n = l∗g if each category
includes the same number of groups of interests), and a
fixed false positive rate fp, according to equation 6 [3]:

m = −n× ln(fp)

(ln 2)2
(6)

Then, the optimal number of hash functions [14] is
computed as given by equation 7.

k =
m

n
× ln 2 (7)

After selection of m and k appropriate values, the
Bloom filter B is initialized with all ”0” values, as given
in Figure 2. For feeding B with the set of preference
values v, C first applies the k hash functions to v,
and feeds B with the hash output providing indices.
For illustration, let us consider a Bloom filter of size
m = 10 bits, with k = 2 hash functions (h1, h2), and
two preferences {Action, Fantasy} to be included into
the Bloom filter. As given in Figure 3, C first computes
the two hashes of the preference Action, and gets the
results h1(Action)= 3 and h2(Action)= 6, thus leading
to positioning the 3rd and the 6th bits of the Bloom
filter to value 1. The same applies for the preference
Fantasy as depicted in Figure 4 where h1(Fantasy)= 2
and h2(Fantasy)= 8.

2) Permanent Randomized Response (PRR). This first
level perturbation applies over the Bloom Filter B ob-
tained through the encoding phase. This step is executed
once over a set of preferences v, whatever the number
of search requests done by C to WSE. A noisy bit is
derived from each bit of B thus resulting in a perturbed
Bloom filter vector B

′
. The derivation is compliant with

the RAPPOR works [9] and considers the following
probabilistic processing:

Fig. 4. Feeding the Bloom filter with the preference ”Fantasy”, m = 10,
k = 2

B
′
[i] =


1 with probability 1

2f

0 with probability 1
2f

B[i] with probability 1− f
(8)

Where f is the privacy level parameter configured by
C.
The obtained bit vector B

′
remains stored and known

to C only. This first level perturbation PRR algorithm
is ε-differential privacy with the following quantified ε1
privacy budget:

ε1 = k ln

(
1− 1

2f
1
2f

)
(9)

3) Instantaneous Randomized Response (IRR). To guar-
antee stronger short-term privacy, this second level per-
turbation [9] is executed for each request done by C
to WSE. After getting B

′
, the user initializes a bit

vector S with all zeros and then applies the following
probabilistic processing:

p(S[i] = 1)

{
q if B

′
[i] = 1

p if B
′
[i] = 0

(10)

Where p denotes the probability of flipping a bit that
equals to 0 into 1 whereas q represents the probability
of keeping bits equal to 1.
This second level perturbation IRR algorithm is ε-
differential privacy with the following quantified ε2
privacy budget [9]:

ε2 = k ln

(
q
′
(1− p′

)

p′(1− q′)

)
(11)

Where p
′
, resp. q

′
, is the probability of observing 1 given

that the same Bloom filter bit was set to 0, resp. 1, as
defined in the following equations.

p
′

=
1

2
fq + (1− 1

2
f)p (12)

q
′

= (1− 1

2
f)(1− q) +

1

2
f(1− p) (13)



TABLE I
NEURAL NETWORK CONFIGURATION

Parameter Value

The number of nodes
Input layer: 80

First hidden layer: 60
Second hidden layer: 50

Loss function Categorical crossentropy

The activation function Output layer: Softmax
Other layers: ReLu

Number of epochs 25
Batch size 70
Optimizer Adam

TABLE II
XGBOOST CONFIGURATION

Parameter Preference dataset Flight dataset
N estimators 100 100
Max depth 3 3

Min child weight 1 1
Subsample 0, 8 0, 9

Gamma 0, 4 0, 4

B. Decoding Phase by the Recommender

Upon receiving C’s perturbed preferences, TP decodes the
received C’s perturbed preferences into some approximate
preferences, based on a machine learning algorithm. The prob-
lem is modeled as a multiclass classification task, aiming at
predicting the classes of perturbed Bloom filters. For instance,
given the music category, which contains eight classes (groups
of interest): classical, jazz, pop... TP should identify for each
perturbed Bloom filter its right label. Two machine learning
algorithms - neural network and XGBoost - were selected for
their ability to work on perturbed data. Both algorithms are
calibrated to fit the specificities of the two following datasets,
thus resulting into 2 configurations as detailed below:
• Preference dataset. The set of preferences includes 3

categories - movies, music and sports - and 7 classes for
movies, 8 for music and 12 for sports.

• Flight dataset. The set of preferences includes 3 cate-
gories - destination and flight class type - which are made
up 11 classes for destination and 3 for flight class type.

1) Neural network configuration. The neural network
is composed of an input layer which is fed with the
perturbed preferences, two hidden layers, and an out-
put layer. Two dropouts are introduced to mitigate the
overfitting issue. For both of our datasets, the layers of
the algorithm are configured according to the parameters
given in Table I.

2) XGBoost configuration. XGBoost is a gradient boost-
ing algorithm. Table II gives the parameters calibrated
for each dataset to optimize the model’s performances.
As can be shown, the configuration is slightly the same,
except for parameter Subsample.

C. Clustering Tool and Accuracy Measurement

Clustering is done with Kmeans, considering K = 4 clusters
for a number of profiles that is equal to 80.000 and K = 5

Fig. 5. Searching for the optimal number of clusters

clusters for 90.000 profiles (used later to study the privacy
utility trade-off). This choice of K is based on the elbow
method [15]. The main idea behind the technique is to run
the Kmeans algorithm for different values of clusters and
to calculate the Within Cluster Sum of Squares (WCSS).
According to this metric, the variability of observations is
computed in each cluster. A cluster that has a low value of
WCSS is more homogeneous than a cluster with a high WCSS
value. Formally, the objective is to minimize the following
function.

WCSS =
∑
i∈n

(Xi − Yi)2 (14)

Where Yi represents the centroid for observation Xi. Then,
for a range of k numbers, the WCSS variation is plotted with
respect to k. The optimal value of k = 4 was obtained through
an experiment we did over 80.000 cleaned traces from a Qwant
dataset to the Kmeans, and a range of k varying between 1
and 15. As depicted in Figure 5, there is a sudden huge drop
in the WCSS value when increasing the number of clusters
from 1 to 2, and a second drop - not as huge as the first one -
at the cluster number 4. As the WCSS maintains a minimum
value starting from k = 4, we deduce an optimal value of
k = 4.

Unlikely to usual recommendation systems, our LDP-
recommendation system works on perturbed profiles instead
of the true users profiles. It is therefore necessary to adapt
the accuracy measurement for evaluating the ability of the
algorithm to group same-profile users into the same cluster. In
our case, in a first experience, Kmeans is applied over a set of
original (unperturbed) profiles, thus resulting in some cluster
labels, as classically done. In a second experience, Kmeans
is fed with profiles which have been first perturbed and then
decoded. The clustering results are recorded and then used in
a final step for comparing the clustering results with/without
perturbation and for measuring accuracy. The more matches
we get, the higher our accuracy.



Fig. 6. Accuracy of XGBoost and neural network, ε = 0.8, K = 4

VI. PERFORMANCE ANALYSIS OF THE DECODING AND
CLUSTERING ALGORITHMS

A. Decoding Algorithms Evaluation

As shown in Table III, neural network outperforms XGBoost
for both datasets with regard to the measured accuracy (for
K = 4 clusters). This result is confirmed in Table III for low
perturbation level (ε = 2) as well as high perturbation level
(ε = 0.80). It gives higher precision, recall and f1-score and
thus higher clustering success rates.

B. Clustering Evaluation

This subsection analyses the influence of different param-
eters on the clustering results, including the privacy budget
value ε, the Bloom filter size M and the number of hash
functions k.
• Bloom filter size. As expected in Figure 7, larger M

results in higher classification accuracy, as the Bloom
filter collision rate decreases. Yet, this comes at a cost
in memory since increasing M leads to larger Bloom
filter sizes. As shown, the benefit for high values of M
diminishes when M exceeds 144 for this experimental
setup. This observation is due to the hash collisions
starting to vanish. Next observations are thus considering
M = 144.

• Number of hash functions. Our experiment considers a
minimum value of hash functions of 3, which corresponds
to the optimal number of hash functions for M = 144,
according to the equation 7. As depicted in the figure,
the classification accuracy decreases when the number of
hash function increases. This stems from an increasing
number of hash collisions.

• Privacy budget. As expected in Figure 7, the clustering
accuracy is an increasing function of the privacy budget.
Indeed, the higher the privacy budget, the lower the
perturbation level, and the higher the accuracy. The
preference dataset achieves better clustering results. This
might be due to the dataset characteristics, the number of
categories, the number of classes per category...

VII. SECURITY ANALYSIS

This section is dedicated to the security analysis with regard
to the threat model defined in subsection IV-E.

[Bloom filter size for ε = 0.85, fp = 0.1 and k = 3]

[Hash functions for M = 144, ε = 0.85 and fp = 0.1]

[Privacy budget, M = 144, fp = 0.1, k=4]

Fig. 7. Impact of several parameters on the clustering results, K = 4

A. Plausible Deniability over one Preference

Referring to the game described in Section IV-E, given the
perturbed Bloom filter y sent by the challenger C and the
preference universe D, the strategy for the basic adversary
BA is to compute:

guess(y) = arg max
v∈D

Pr[v|y]

= arg max
v∈D

π(v).P r[φRAPPOR(v) = y)]∑
a∈D π(a)Pr[φRAPPOR(a) = y]

(15)

Where φRAPPOR denotes the perturbation mechanism, D
is the universe of the preferences to enter into a Bloom filter,
π(v) is the prior probability of v and is equal to 1

|D| for all
v ∈ D.



TABLE III
DECODING THE MOVIES CATEGORY WITH XGBOOST AND NEURAL NETWORKS. VALIDATION SET=40.000, fp = 0.10, K = 4

Metrics Precision Recall F1-score Support
Neural Network XGBoost Neural Network XGBoost Neural Network XGBoost Neural Network XGBoost
ε = 0.80 ε = 2 ε = 0.80 ε = 2 ε = 0.80 ε = 2 ε = 0.80 ε = 2 ε = 0.80 ε = 2 ε = 0.80 ε = 2 ε = 0.80 and ε = 2 ε = 0.80 and ε = 2

Action 0.95 0.94 0.82 0.90 0.93 0.99 0.81 0.88 0.94 0.96 0.81 0.89 8550 5751
Comedy 0.92 0.96 0.81 0.86 0.95 0.96 0.81 0.86 0.93 0.96 0.81 0.86 5693 5693
Drama 0.87 0.92 0.80 0.89 0.81 0.92 0.92 0.93 0.84 0.92 0.86 0.91 5691 8550
Fantasy 0.92 0.95 0.83 0.85 0.91 0.96 0.79 0.85 0.92 0.95 0.81 0.85 5751 5690
Horror 0.82 0.89 0.82 0.83 0.88 0.97 0.80 0.86 0.85 0.93 0.81 0.84 5721 5691

Romance 0.90 0.98 0.82 0.86 0.93 0.90 0.80 0.85 0.91 0.94 0.81 0.86 5690 5721
Thriller 0.94 0.96 0.89 0.87 0.91 0.81 0.71 0.74 0.92 0.88 0.79 0.80 2904 2904

For computing for each value v the probability that the per-
turbation mechanism outputs y, BA can refer to the following
probability expressed in Equation 16 [10].

Pr
[
B

′
[i] = φRAPPOR(B[i]) = 1

]
=


e

ε
2∆

e
ε

2∆ +1
if B[i] = 1

1

e
ε

2∆ +1
if B[i] = 0

(16)
Where 2∆ denotes how many positions can change in

neighboring vectors at most. In Bloom filter encoding, ∆ is
equal to k the size of the hash functions domain. B

′
represents

the perturbed version of B.
Experimental results for quantifying the chance of BA

of winning the game. The success rate of BA for winning the
game can directly be derived from the probability of Equation
(16) as the probability of getting B[i]=1. This probability
can be experimentally measured on our preference dataset,
according to ε and k values and gives the results depicted in
Figure 8. As expected, the lower ε and the higher k, the lower
the probability for winning the game is. For ε ranging from
[0.1, 0.85] value, the probability that the adversary wins the
game is in average below 0.22. Higher the k values, more
difficult it is for BA to win the game as the number of hash
collisions increases, thus leading to higher wrong guess.

As a conclusion, the success rate of BA can be low
according to the selected ε and k values. As such, a suitable
trade-off utility vs privacy, as detailed in Section VIII, needs
to be found.

B. Plausible Deniability over Multiple Preferences

The attack is managed by an advanced adversary AA as pre-
sented in Subsection IV-E. This section provides experimental
results, and an in-depth discussion, about the ε impact on the
success rate of the adversary. The experiment is conducted
over 10.000 samples and 20.000 samples given to AA for
training. Results are provided in two figures, Figure 9 for the
confusion matrices, and Table IV for the classification result
statistics which enables to evaluate the decoding ability of the
adversary. Table V gives the success rate of an AA adversary
to win the game.

Figure 9.a shows that for low privacy budget (ε = 0.1),
the adversary has mistaken the majority of the classes as the
values outside the diagonal are relatively high. His overall

Fig. 8. Success rate of the plausible deniability attack
over one preference by a Basic Adversary, the preference dataset

precision and recall are below 29 % as demonstrated by the
classification report in Table IV.

An increase of the privacy budget from ε = 0.1 to ε =
1.2, resp. ε = 2.4, improves the classification ability of the
adversary. Indeed, the precision and recall reach only 31 %,
resp. 49 % in average as depicted in Table IV. Thus the success
rate for winning the game by AA ε = 1.2, resp. ε = 2.4, is
equal to 33 %, resp. 52 % (see Table V). One can also notice
that for ε = 2.4, values inside the diagonal of the confusion
matrix in Figure 9.c are higher than for matrices in Figures
9.a and 9.b.

C. Averaging Attack

As described in Section IV-E, the adversary is provided with
a number of perturbed Bloom filters corresponding to the same
set of C’s preferences. The adversary is only able to compute
the first PRR output value B

′
which is the first-level perturbed

Bloom filter. As the same B
′

value is used from one session
to another (cf. Equation 10), the adversary is unable to find
out the original Bloom filter B. As such, he is not able to win
the averaging attack game.

VIII. PRIVACY VS UTILITY TRADE-OFF

This analysis measures the utility in terms of classification
accuracy, which is defined as the ability of the recommender to
perform correct classification of users, despite the perturbation
scheme. Privacy is measured as the success rate of an advanced
adversary for decoding the preferences.



TABLE IV
THE CLASSIFICATION REPORTS FOR DIFFERENT PRIVACY BUDGETS. TRAINING SET=20.000, TEST SET=10.000 SAMPLES

Metrics Precision Recall F1-score Support
ε = 0.10 ε = 1.2 ε = 2.4 ε = 0.10 ε = 1.2 ε = 2.4 ε = 0.10 ε = 1.2 ε = 2.4 ε = 0.10, 1.2, 2.4

Classical 0.24 0.32 0.51 0.29 0.33 0.54 0.26 0.33 0.52 1460
Country 0.27 0.24 0.45 0.08 0.14 0.31 0.12 0.18 0.37 716
Electro 0.25 0.32 0.51 0.34 0.37 0.57 0.29 0.35 0.54 1410

Jazz 0.26 0.34 0.55 0.29 0.41 0.50 0.27 0.37 0.52 1424
Pop 0.24 0.32 0.51 0.26 0.35 0.56 0.25 0.34 0.53 1396
Rap 0.23 0.29 0.43 0.04 0.14 0.32 0.07 0.19 0.37 717

Rock 0.26 0.36 0.49 0.28 0.37 0.52 0.27 0.36 0.50 1432
Techno 0.29 0.33 0.53 0.28 0.33 0.56 0.28 0.33 0.55 1445

TABLE V
SUCCESS RATE OF THE ATTACK

Privacy budget Success rate
0.1 29%
1.2 33 %
2.4 52 %

The experimental setup considers k = 15, 90.000 different
profiles, and K = 5 clusters. Figures 10.a and 10.b illustrate
the achieved trade-off for both datasets with specific param-
eters k = 15 and K = 5. As expected, the privacy is a
decreasing function of the privacy budget and the utility is
a rising function of the privacy budget. There is a privacy
vs utility trade-off (curves intersection) happening for 84% of
privacy level and 80% of utility for both datasets for a privacy
budget equal to 0.58. This point is a kind of optimum when
both utility and privacy are equally important.

IX. CONCLUSION

This paper proposes a privacy-preserving recommandation
system, which lets the user decide on the amount of preference
data he wants to communicate to a recommender, and the
amount of LDP noise he wants to introduce into his data.
Thus the user can decide how much privacy vs user experience
he wants to keep. Through our specific experiment conducted
over two datasets, our solution exhibits good performances in
terms of privacy and utility, i.e. a 90% clustering success rate,
resp. 80.3% for a value of LDP ε = 0.8, resp. ε = 2, and
it shows that a privacy vs utility trade-off can be found for
ε = 0.58, with 84% privacy level and 80% utility.
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