
Code Failure Prediction and Pattern Extraction
using LSTM Networks

Mahdi Hajiaghayi and Ehsan Vahedi∗

(c)Microsoft Corporation, Redmond, WA
E-mail: {mahajiag, ehvahedi}@microsoft.com

Abstract—In this paper, we use a well-known Deep Learning
technique called Long Short Term Memory (LSTM) recurrent
neural networks to find sessions that are prone to code failure
in applications that rely on telemetry data for system health
monitoring. We also use LSTM networks to extract telemetry
patterns that lead to a specific code failure. For code failure
prediction, we treat the telemetry events, sequence of telemetry
events and the outcome of each sequence as words, sentence and
sentiment in the context of sentiment analysis, respectively. Our
proposed method is able to process a large set of data and can
automatically handle edge cases in code failure prediction. We
take advantage of Bayesian optimization technique to find the
optimal hyper parameters as well as the type of LSTM cells that
leads to the best prediction performance. We then introduce the
Contributors and Blockers concepts. In this paper, contributors
are the set of events that casue a code failure, while blockers
are the set of events that each of them individually prevents a
code failure from happening, even in presence of one or multiple
contributor(s). Once the proposed LSTM model is trained, we
use a greedy approach to find the contributors and blockers.
To develop and test our proposed method, we use synthetic
(simulated) data in the first step. The synthetic data is generated
using a number of rules for code failures, as well as a number of
rules for preventing a code failure from happening. The trained
LSTM model shows over 99% accuracy for detecting code failures
in the synthetic data. The results from the proposed method
outperform the classical learning models such as Decision Tree
and Random Forest. Using the proposed greedy method, we are
able to find the contributors and blockers in the synthetic data
in more than 90% of the cases, with a performance better than
sequential rule and pattern mining algorithms. In the next step,
we train and test our proposed LSTM method on real data that
we collected from sequences of activities performed by millions
of Microsoft Office customers.

Keywords — Deep learning, LSTM, Bi-LSTM, bayesian op-
timization, sequential rule mining, random forest, telemetry
data, crash and code failure predication.

I. INTRODUCTION

Identifying the set of components and attributes that result
in (or contribute to) code failure is an important topic in any
application that relies on telemetry data for system health
monitoring. For example, in Microsoft Office products, test
engineers are interested in finding a generic pattern in the data

∗Mahdi Hajiaghayi is a Senior Machine Learning Scientist with the
AI+Research group at Microsoft, Ehsan Vahedi is a Senior Data Scientist with
Microsoft Office and an IEEE Senior Member. (c)2018 Microsoft Corporation.
All rights reserved. This document is provided ”as-is.” Information and views
expressed in this document, including URL and other Internet Web site
references (if any), may change without notice. You bear the risk of using it.
This document does not provide you with any legal rights to any intellectual
property in any Microsoft product.

that causes a code failure. Usually this is not an easy problem
to solve since a combination of many factors (such as user’s
activities, hardware architecture, operating system, other pro-
grams running in the background, add-ins, etc) can potentially
contribute in a code failure. Also part of this information may
not be fully captured by telemetry signal. Moreover, a code
failure may not be necessarily tied to the very last activity of
the user, but triggered by a sequence of activities with specific
order. Also depending on the architecture design, we might
capture or lose the very last batch of telemetry data if a major
failure such as crash happens.

In this paper, we are interested in finding the root-cause of
code failures as well as building a model to predict the code
failure. We use Long Short Term Memory (LSTM) which is
a type of recurrent neural networks for code failure prediction
and pattern extraction.

The novelty of this work can be summarized as follows:

• For code failure prediction, we propose an LSTM net-
work whose hyper-parameters and type of LSTM cells
are determined by Baysian optimization technique [1]. It
is usually not a trivial task to pick the LSTM architecture
that achieves the best performance [2]. Bayesian opti-
mization technique enables us to systematically find the
best LSTM architecture for our application. In this work,
we consider two types of LSTM networks: (a) standard,
and (b) Bidirectional network. These topics are covered
in Section III

• For code failure pattern extraction, we first introduce
the Contributors and Blockers concepts. In this paper,
contributors are the set of actions or events that indi-
vidually or together result(s) in a code failure, while
blockers are the set of actions or events that individually
or together prevent(s) a code failure from happening. We
then formulate the problem of finding contributors and
blockers as two optimization problems and propose an
algorithm that utilizes a trained LSTM-based prediction
model to extract contributors and blockers in sequential
data. Details of the proposed method are discussed in
Section IV.

• In Section V, we provide experimental results that show
the proposed method outperforms the existing algorithms
in achieving better pattern extraction and prediction per-
formance.

ar
X

iv
:1

81
2.

05
23

7v
1

 [
cs

.L
G

]
 1

3
D

ec
 2

01
8

II. RELATED WORKS

For sequential data analysis and prediction, conventional
machine learning algorithms such as SVM, Logistic Regres-
sion and Feed-Forward Neural Networks assume independence
between features and exhibit poor performance when the order
of components in a sequence is important. In the Bag of
Words, we lose the order of components in the sequences and
although we can capture the order indirectly by creating n-
grams and considering a sliding window, this type of solutions
are not quite useful in time series analysis. Hidden Markov
Models (HMM) and high order Markov chains can be another
option for representing time series and an alternative for
sequential modeling [3], [4], [5], [6]. However, the state space
grows exponentially with the size of the sequence, window
size and number of states, rendering markov models computa-
tionally impractical for modeling long-term dependencies [7].
Classic sequential pattern [8] [9] and rule mining methods [10]
[11] can help us gain insight about events that contribute to
code failures when the size of data is not very large and the
overall length of sequences or the window size is relatively
small. However, these methods fail to handle long sequences
and large datasets. The main drawback of these methods is the
number of patterns and rules they need to keep track of, similar
to Markov models growing exponentially with the length of
sequences. Also sequential rule mining solutions perform well
on sequences with no duplicate events, but this assumption
(having no duplicate) is not necessarily valid for code failures
we see during sessions conducted by Microsoft Office users
and we cannot eliminate the possibility of having duplicates
in the sequences of telemetry events.

The main advantage of Recurrent Neural Networks (RNN)
and in particular LSTM networks is that they are end-to-end
differentiable with respect to each of the parameters in the
model. Therefore, unlike the other models with combinatorial
nature, RNNs and LSTM networks can be trained using
gradient-based algorithms. In fact, the training complexity
of LSTM grows linearly with the number of weights in the
network [12], which makes LSTM networks very efficient for
this type of problems. Moreover, an RNN model can avoid
over-fitting using standard techniques such as drop-out and
weight decay.

In addition to Natural Language Processing (NLP), LSTM
networks have been used for many other applications including
but not limited to time-series anomaly detection [13], speech
recognition [14] and human action recognition [15]. Broader
architectural revisions of LSTM networks have also been
proposed in recent years. Bidirectional [16], multi-layer and
recursive tree-structures [17] are some examples of LSTM
revisions.

Code failure prediction in sequential telemetry data is one
of the areas that LSTM networks can offer an edge over
classical machine learning and data mining methods. Zhang et
al. recently used standard LSTM networks for system failure
prediction [18], however, the focus of their work is on failure
prediction and not identifying the root-cause of failures. We
are, on the other hand, more interested in identifying the root-
cause of code failures and extracting patterns that lead to code

failures, in addition to code failure prediction.
Interpretability is critical for some applications such as med-

ical diagnostic tools and self driving cars, where the reliance of
the model on the correct features needs to be guaranteed [19],
[20]. Recently there have been some efforts by researchers
to better understand the decision making process in recurrent
neural networks with applications in NLP [21] [22] [23] [24]
and Genomic Sequencing [25]. Karpathy et al. visualized
the neural generation models from an error-analysis point of
view, by analyzing predictions and errors of recurrent neural
networks [23]. The approach shows the intriguing dynamics
of hidden cells in LSTM networks, but is limited to a few
manually-inspected cases such as brace opening and closing.
Li et al. used the first-order derivative to examine the saliency
of input features [22], but they relied on the overly strong
assumption that the decision score is a linear combination of
input features. In another effort, Li et al. trained a separate
generator that extracts a subset of text which leads to a similar
decision as the one with the original input, and used it to
form an interpretable summary [21]. Lei et al. proposed a
learning process that generates rationales for a given text [24].
Rationales are subsets of words from the input text that are
sufficient for prediction, and can be used as a substitute of the
original text.

Our work is different from [24] in the sense that it extracts
a set of words that may not be coherent, and can consist of
words that are not necessarily in immediate sequences. The
emphasis of our work is on the importance of each individual
word in the sequence. Here the idea is to calculate the relative
change of score for a text when a word is removed from the
sequence. We utilize this approach to find the sequences of
actions that lead to a specific code failure.

III. PREDICTION METHOD

A. Network Architecture

Suppose a session consists of a sequence of events that
may or may not result in a code failure. Using a dataset of
such sequence data, we train an LSTM-based model to predict
the outcome of sequences (code failure vs no code failure).
Fig. 1 shows the high level architecture of our proposed
LSTM model. First, the sequence of events e1, · · · eT is fed
to the embedding layer where each event is encoded to an
n-dimensional real-valued vector xt. Here n is a parameter
which is determined based on the number of events and the
size of the input sequence. The output of the embedding layer
is passed through the LSTM layer followed by a dropout layer
to avoid over-fitting. In the end, we have a fully connected
(Dense) layer that generates a single output value. In this
setting, output 0 indicates “no code failure” while 1 indicates
“code failure”.

For training, we use the Cross-Entropy loss function [26].
Given the ground-truth vector of outcomes y = [y1, · · · , yN]
and the vector of outcomes predicted by our model ŷ =
[ŷ1, · · · , ŷN] for N sequences of data, the cross-entropy loss
function is calculated as

loss(y, ŷ) =
1

N

N∑
i=1

yi log(
1

ŷi
) + (1− yi) log(

1

1− ŷi
). (1)

Fig. 1: Proposed network architecture for code failure predic-
tion

B. Long Short Term Memory (LSTM)

Fig. 2: Components of a standard LSTM cell with correspond-
ing weights and biases. The picture is partially borrowed from
[27].

LSTM is a special type of RNNs, capable of learning both
long-term and short-term dependencies in data. An LSTM
network consists of multiple LSTM cells. Each LSTM cell has
three main components responsible for forgetting, remember-
ing and updating data [12]. These components are depicted in
Figure 2. For a time step t and at cell t, we have the following
input-output relationships:

ft = σ(Wf [ht−1,xt] + bf)

rt = σ(Wr[ht−1,xt] + br)

C̃t = tanh(Wu[ht−1,xt] + bu)

Ct = ft �Ct−1 + rt � C̃t

ot = σ(Wo[ht−1,xt] + bo)

ht = ot � tanh(Ct), (2)

where xt ∈ Rn is the vector representing input event at time
t and σ(.) stands for the sigmoid function. In this notation,
� denotes the element-wise product. ht and ht−1 ∈ Rl are
the output values of the hidden layers at time t and t − 1,
respectively. ht can also be viewed as the filtered version
of cell state Ct. While ft adjusts how much activation is
added to the internal state (forget gate), ot controls the effect
of the internal state on the next cell (output gate). rt � C̃t

is responsible for remembering and updating the input value
xt. The coefficients Wi ∈ Rl+n; i ∈ {f, r, o, u} and bias
factors bi ∈ Rl; i ∈ {f, r, o, u} are optimization parameters
shared among all cells. In total, there are 4(l + n) + 4l
parameters to optimize for a standard LSTM network. In this
paper, we also consider Bi-directional LSTM networks. Bi-
directional LSTM networks can be thought of as two attached
standard LSTMs with forward and backward directions. While
the forward direction effectively makes use of the past fea-
tures, the backward direction utilizes the forward features.
For such networks, the hidden layer at time t = 1 is given
by hT = [

−→
hT ,
←−
hT]. Subsequently, a bi-directional LSTM

network has twice as many variables as a standard LSTM.
These parameters are determined during the training process.
In addition to LSTM, we also tried other types of networks
such as GRU and simple RNN for this application, but LSTM
had better performance than GRU and RNN.

Feature engineering can be very challenging in some appli-
cations. An important advantage of using LSTM networks is
that they do not require any feature engineering. Moreover, it
needs no prior knowledge of the events that form a sequence
or session, and all important features are identified by the
algorithm itself.

C. Bayesian Optimization For Hyper-parameter Tunning
Any LSTM model has some hyper-parameters that need

to be set before the training process starts. These hyper-
parameters include the size of embedding layer (n), size of
hidden layer (|hT |), learning rate and the type of LSTM
network (standard vs. bi-directional). We use Bayesian op-
timization technique [1] to find the optimal values of hyper-
parameters for our model. It uses a probabilistic model for the
objective function, which is the performance of the learning
algorithm in this application, and based on the probabilistic
model determines the next point to evaluate the function. The
idea is to use all the available information to decide the next
point, as opposed to only relying on the last point in con-
ventional gradient methods. It is particularly appealing when
the objective function is hard or expensive to calculate, with
a good example being a deep neural network. This technique
finds a nice trade-off between exploration and exploitation,
and picks the hyper-parameters of the next iteration based
on minimizing an accusation function. In our application,
we used expected improvement (EI) [28] as the accusation
function. The F1-score in 5-fold cross-validation was set as the
objective function of the optimization algorithm. Our model’s
hyper-parameters include learning rate, embedding size, and
LSTM type (standard vs bi-directional cells). Using Bayesian
optimization technique, we found the following optimal val-
ues of parameters for our synthetic dataset: embedding size

(N) = 3, learning rate = 0.02, LSTM size= 6 and LSTM
type = bi-directional. We observed that most of the off-the-
shelf embedding layers with embedding size of 20 and more
would lead to over-fitting problem.

IV. PATTERN EXTRACTION

LSTM-based models are very good in predicting the out-
come of a given sequence, however, they are often hard to
interpret. In code failure prediction, it is important for the test
engineers to find the root-cause of failures. More specifically, it
is important to extract and identify patterns and combination of
events that either result in code failure (contributors) or prevent
a code failure from happening (blockers) during a session. For
a given sequence of events S = [e1, · · · , eT] that leads to a
code failure, the contributors C are formally derived from the
following optimization problem

min
C⊂S
|C|

s.t Pred(S) = 1

Pred(S \ ci) = 0, ∀ci ∈ C (3)

where S \ ci refers to removing event ci from S. Here, we
assume that a set of events collectively contribute to a code
failure and if one of these events is removed we will not see
the code failure.

Similarly, blockers B are identified by solving the optimiza-
tion problem below

min
B⊂S
|B|

s.t Pred(S) = 0

Pred(S \B) = 1, (4)

where S \ B refers to removing blocker B from S. This
notation is based on the assumption that each blocker by
itself can prevent the code failure from happening. Here, it is
assumed that sequence S ends with no code failure (executed
normally).

A naive approach to solve these two optimization problems
and find blockers and contributors is to use an exhaustive
search where all combinations of actions are examined to find
the one with the minimum length that satisfies the constraints.
However, the search space exponentially grows in this case,
rendering the exhaustive search infeasible. In what follows, we
propose a greedy approach that works well in identifying the
contributors and blockers. For a given sequence S, we start
from left to right and remove each event from the sequence.
After each removal, we evaluate the output of the prediction
model. If the prediction changes from 1 to 0, we keep the event
in the contributors list, and if the prediction changes from 0
to 1 we add it to the blockers list. Removing events can be
done in two ways. In the first approach which is called zero-
inserting, we replace the event under inspection with a default
“don’t care” event, for example 0. The second approach is
called void-inserting where we completely remove the event

under inspection and make the sequence shorter. As it was not
obvious which approach is better, we empirically examined
both approaches. Based on the results which will be discussed
in detail in the next section, we observed that void-inserting
approach outperforms zero-inserting method.

The approaches described above fail to detect the correct
contributors and blockers in a sequence with duplicates. For
example, consider S = [a, f, b, h, b, c, j, f] and assume that
we know actions [f, b, c] are the contributors. If we remove
any of the two b events, the predicted label still remains the
same due to the other event b in the sequence. To address this
problem, we need to remove the first and second b events
together, unless the first one has already been detected as
a contributor or blocker. With this modification, the whole
algorithm is described in 1.

Algorithm 1 Contributor and blocker extraction algorithm for
sequence S

1: Let Prob(S) = Confidence score for code failure likelihood
of sequence S

2: |S| = L
3: Contributors: C = {}, Blockers : B = {}
4: if Prob(S) > confth then
5: for k ← 1 to L do
6: M ← S
7: for j ← 1 to k do
8: if S[j] = S[k] and S[j] /∈ B ∪ C then
9: M ←M \ S[j]

10: diff = Prob(M)− Prob(S)
11: if |diff | > diffth then
12: if diff < 0 then
13: C.insert(S[k])
14: else
15: B.insert(S[k])

return B and C

Another approach to solve the code failure prediction prob-
lem is to use sequential rule mining and sequential pattern
mining techniques. Sequential rule mining algorithms [8] [9]
[29] discover rules in the form of X ⇒ Y in a sequence of
database such that X and Y are sequential patterns. Each rule
is given by its support, which is the frequency of sequences
that contain the rule, and confidence, which is the likelihood of
sequence Y appearing after X . The input of these algorithms
are often minsup (minimum support) or minconf (minimum
confidence) such that only rules whose support or confidence
are higher than these threshold values are returned. This
dependence on minsup and minconf thresholds could be a
drawback of sequential rule mining algorithms for applications
such as code failure prediction, since the threshold values are
not known a priori. Moreover, as we see in the experimental
section, while sequential rule mining methods can extract the
contributors in our application, they are not able to detect
blockers. Finally, the search space grows exponentially with
the size of the database and the number of distinct actions
in sequential rule mining algorithms. Based on the above,
sequential rule mining algorithms are not capable of solving

the code failure precition problem efficiently.

V. EXPERIMENTAL WORK

A. Code failure Prediction using Synthetic Data

In order to better understand how accurately and ef-
ficeintly our proposed LSTM model can solve the code
failure prediction problem, we first applied our LSTM
model on synthetic (simulated) data. The synthetic data
was generated by assuming that we have 20 distinct events
{a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t} and each ses-
sion can have any combination of these 20 events with a
fixed length of 15 events per session. The order of events are
important (for example, the sequence {a, b} is different from
the sequence {b, a}). We assumed that any session containing
the {f, b, c} sequence will lead to code failure unless event
{e} is seen in the sequence. For example, a session with
{a, b, b, f, b, c, j, d} sequence of events will result in code
failure but another session with {a, b, b, f, e, b, c, j, d} will not
result in any code failure. We randomly generated 30, 000
sequences using the above rule and split them 50/50 for
training and test sets. In addition to the proposed LSTM model,
we used Decision Tree and Random Forest algorithms and
compared the results from these three methods to see which
one can better predict a code failure based on the simple rules
we defined above.

B. Code Failure Detection using Real Data

In the next step, we trained our proposed LSTM model
using real data from Excel users, which consists of Microsoft
Office customers who paid to use our services. We removed
all the identifiers from data to proetct users privacy. To
make this dataset, we extracted all telemetry events recorded
from our Excel users during the sessions they used Excel.
We balanced the dataset to have one quarter with label 0
(code failure) and the rest with lable 1 (no code failure)
data. In the next step, we trained an LSTM model that can
detect and predict a specific type of code failure using the
following parameters: epochs: 1000, drop-out: 0.4, maximum
sequence length: 45, embedding size: 2, training-test ratio:
50/50, number of sessions: 90,000 number of distinct telemetry
events: 1067.

C. Results and Performance Comparison

Figure 3 shows the prediction performance of our bi-
directional LSTM model in terms of accuracy, precision and
recall over the number of epochs. In this model, we have
the following settings: embedding size: 3, LSTM cell: bi-
directional, batch-size: 512, learning rate: 0.02 and hidden
layer size: 6. Our proposed LSTM model achieves the highest
performance after 150 epochs for both training and validation
sets. Table I shows the performance comparison between
the proposed LSTM model at epoch 150, Random Forest
algorithm with maximum depth of 4 and 10 trees with bag of
words (BoW), and Random Forest algorithm with maximum
depth of 4 and 10 trees and with no feature engineering. As

can be seen in Table I, our proposed LSTM model outperforms
the other two in predicting code failures in our synthetic
data. The main reason behind the superior performance of the
LSTM model is that it can remember and learn both short-
term and long-term characteristics of a sequence, while the
other two methods cannot learn the short-term and long-term
dependencies. We also tried sequential rule mining method to
predict code failures in our synthetic data, but we observed the
sequential rule mining fails to fully learn the logic we used to
generate the synthetic data and cannot accurately predict the
sequences with code failure. This happens because the class
of sequential rule mining methods are capable of extracting
positive rules that result in an outcome (contributors in this
context), but they cannot learn and deduct negative rules that
prevents a specific outcome from happening (blockers in this
context). As a result, sequential rule mining methods generally
have poor performance in applications that we have a rule
which can override and negate the general rule.

Fig. 3: Performance of our proposed bi-directional LSTM
model on synthetic data for (a) validation and (b) training
sets

In Table II, we provide some examples to show how we can
find contributors and blockers using algorithm 1. As can be
seen in the table, our algorithm is capable of extracting both
contributors and extractors correctly for almost all sequences.
The only exception is case 7 where contributors are detected
incorrectly.

Sequential rule mining is another set of solutions that can be
used for the code failure pattern extraction. We tried a modified
version of the algorithm featured in [8] to extract the top rules
for our synthetic data. The top rules are listed in Table III.
Based on the results, this sequential rule mining technique
is able to identify the contributors as (f, b, c). However, it
fails to detect the blocker event (e). Moreover, this sequential
rule mining technique fails to work for our real Excel data
where the size of data is much larger and the number of
telemetry events is far more than the synthetic data. As another

TABLE I: Performance comparison of various code failure prediction algorithms on the synthetic test data

Metrics
Prediction Algorithms Precision Recall F1-measure

RandomForest (Depth=4, Trees =10), No FE 0.65 0.64 0.64
RandomForest (Depth=4, Trees =10), BoW 0.78 1.0 0.87

Bi-Directional LSTM (e=3, lstmSize=6) 1.0 1.0 1.0

TABLE II: Blocker and contributor extraction for a sample of sequences with different length

id Sequence Prediction True Label Confidence Score Comment
0 a f b c e f 0 0 1.0 Correct Extraction
1 c a f h f c e c k b f a b j e 0 0 1.0 Correct Extraction
2 a f b c a 1 1 .99 Correct Extraction
3 g b g a c a f b c k b c f c 1 1 1.0 Correct Extraction
4 g b d f g f i g b c 1 1 1.0 Correct Extraction
5 f h a d b d h f c g b j d 1 1 1.0 Correct Extraction
6 k f b c j b h f c f c b f c 1 1 1.0 Correct Extraction
7 h b j c a k c d c f b c i d 1 1 0.878 Wrong Extraction

8 f c d b l g l c i c b f a b 1 1 1.0 Correct Extraction

TABLE III: Top records of sequential rule mining algorithm
for the synthetic dataset

Rules Support,% Confidence,% Lift
f,b,c ⇒code failure 21.55 45.90 2.1304
b,c⇒code failure 21.55 29.176 1.3539
b,f⇒code failure 21.55 29.00 1.3461
c,f⇒code failure 21.55 28.802 1.3365
b⇒code failure 21.55 23.0186 1.0681
c⇒code failure 21.55 23.0137 1.0679

limitation, many recent sequential rule mining algorithms are
in fact partially sequential in the sense that in a rule X ⇒ Y ,
only Y is required to occur after X and the events in X are
unordered [9] [29].

Table IV shows the performance of our proposed algorithm
for zero inserting and void inserting approaches. Based on
the results, the void inserting approach outperforms the zero
inserting approach. The model is not able to make as accurate
predictions using the zero inserting method because there is no
sequence in our original dataset that contains 0 in the middle
of the sequence, which means the LSTM network does not
have the chance to learn this condition properly during the
training process.

Fig. 4 shows the performance of our LSTM model in terms
of accuracy, precision and recall during the training and test
process using the real Excel data. As can be inferred from the
plot, our trained LSTM model is capable of predicting code
failure with over 80% accuracy and more than 85% recall. In
order to find the root-cause of code failures, we need to focus
on sequences that our LSTM model predicts code failure for
them with high confidence. Therefore, we only consider the
sequences whose confidence score is above 90%. Confidence
score is the output of the Dense layer in Fig 2. As can be seen
in Fig. 5, our proposed LSTM model has a precision of 90%
and above for almost 30% of the sequences.

Fig. 4: Performance of our bi-directional LSTM model on
real data from Excel users for (a) validation and (b) training
processes

VI. PRACTICAL REMARKS: CODE FAILURE SIGNATURE
REMOVAL

We need to apply a number of preprocessing steps on the
real data before using the proposed LSTM model to predict
code failures and extract contributors and blockers. First, we
need to remove any event that indicates a signature of the
code failure or normal execution of the code. These events are
highly correlated with the outcome but do not hold any useful
information about the code failure. The easiest way to detect
such events is to first train our model without any filtering, and
extract the contributors and blockers. Then, by showing the
results to the subject experts, we can decide whether a specific
event is just a signature or it is a real contributor or blocker.
For example, in our case we initially identified an event as
a blocker which was only called when Excel was properly

TABLE IV: Performance of the proposed LSTM-based method in finding contributors and blockers in synthetic data

Extraction Accuracy vs. data size
Algorithms 15K 10K 5K

Bi-Dir. LSTM + Zero Inserting Contributors: Pr=%78, Rec=%99
Blockers: Pr=%80, Rec=%100

Contributors: Pr=%85, Rec=%83
Blockers: Pr=%98, Rec=%99

Contributors: Pr=%80, Rec= %80
Blockers: Pr=%89, Rec=%92

Bi-Dir. LSTM + Void Inserting Contributors: Pr=%99, Rec=%99
Blockers: Pr=%99, Rec=%97

Contributors: Pr=%97, Rec=%94
Blockers: Pr=%93, Rec=%100

Contributors: Pr=%89, Rec=%89
Blockers: Pr=%86, Rec=%100

closed with no code failure. This event was initially picked up
by the proposed LSTM model as a blocker, while in reality it
was a signature for proper termination of the application.

We also noticed that there are many identical sessions in our
real Excel data. In other words, we have many sessions with
the same sequence of events. We have two options to address
this issue. We can either remove the redundant sessions and
train the LSTM model with the reduced dataset, or, keep the
original dataset with all redundant data. It is clear that models
developed from these two approaches would be quite different.
To solve this delima, it is recommended to make sure that the
training data is a true representation of the real data and mimic
the real-world conditions as closely as possible. Therefore,
removing the redundant data points is not a good option in
our code failure prediction example.

VII. CONCLUSION

In this paper, we applied LSTM recurrent neural networks
to find sessions that are prone to code failure and to ex-
tract telemetry patterns that lead to a specific code failure.
Our method is designed to process a large set of data and
automatically handle edge cases in code failure prediction.
We took advantage of Bayesian optimization technique to
find the optimal hyper parameters. To extract the failue code
patterns, we first introduced the Contributors and Blockers
concepts and we used a greedy approach to find them. We used
both synthetic and real data to develop and test our proposed
LSTM model. Our trained LSTM model demonstrated over
99% accuracy for detecting code failures in the synthetic
data. Using the proposed greedy method, we detected the

Fig. 5: Precision-Recall plot for the proposed bi-directional
LSTM network based on real data from Excel users

contributors and blockers in the synthetic data in more than
90% of the cases, with a performance better than sequential
rule and pattern mining algorithms.

VIII. ACKNOWLEDGMENT

The author would like to thank Dr. Sandi Ganguli and
Wayne Roseberry for constructive discussion and providing
experimental data.

REFERENCES

[1] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in Advances in neural information
processing systems, 2012, pp. 2951–2959.

[2] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE transactions on neural
networks and learning systems, vol. 28, no. 10, pp. 2222–2232, 2017.

[3] J. S. Kinnebrew and G. Biswas, “Comparative action sequence analysis
with hidden markov models and sequence mining,” Knowledge Discov-
ery and Data (KDD), 2011.

[4] M. Scholz, “R package clickstream: Analalyzing clickstream data with
markov chains,” Journal of Statistical Software, vol. 74, no. 4, pp. 1–17,
2016.

[5] V. Melnykov, “ClickClust: An R package for model-based clustering of
categorical sequences,” Journal of Statistical Software, vol. 74, no. 9,
pp. 1–34, 2016.

[6] D. Jurafsky and J. H. Martin, “Hidden Markov Models,” in Speech and
Language Processing. 2nd Edition, 2018.

[7] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of
recurrent neural networks for sequence learning,” arXiv preprint
arXiv:1506.00019, 2015.

[8] M. J. Zaki, “SPADE: An efficient algorithm for mining frequent se-
quences,” Machine learning, vol. 42, no. 1-2, pp. 31–60, 2001.

[9] P. Fournier-Viger, A. Gomariz, M. Campos, and R. Thomas, “Fast
vertical mining of sequential patterns using co-occurrence information,”
in Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, 2014, pp. 40–52.

[10] D. Lo, S.-C. Khoo, and L. Wong, “Non-redundant sequential rulestheory
and algorithm,” Information Systems, vol. 34, no. 4-5, pp. 438–453,
2009.

[11] P. Fournier-Viger, C.-W. Wu, V. S. Tseng, L. Cao, and R. Nkam-
bou, “Mining partially-ordered sequential rules common to multiple
sequences,” IEEE Transactions on Knowledge and Data Engineering,
vol. 27, no. 8, pp. 2203–2216, 2015.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[13] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term
memory networks for anomaly detection in time series,” in Proceedings.
Presses universitaires de Louvain, 2015, p. 89.

[14] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Acoustics, speech and signal pro-
cessing (icassp), 2013 ieee international conference on. IEEE, 2013,
pp. 6645–6649.

[15] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt, “Se-
quential deep learning for human action recognition,” in International
Workshop on Human Behavior Understanding. Springer, 2011, pp.
29–39.

[16] A. Graves, N. Jaitly, and A.-r. Mohamed, “Hybrid speech recognition
with deep bidirectional lstm,” in Automatic Speech Recognition and
Understanding (ASRU), 2013 IEEE Workshop on. IEEE, 2013, pp.
273–278.

[17] R. Socher, “Recursive deep learning for natural language processing and
computer vision,” Ph.D. dissertation, Citeseer, 2014.

[18] K. Zhang, J. Xu, M. Renqiang Min, G. Jiang, K. Pelechrinis, and
H. Zhang, “Automated it system failure prediction: A deep learning
approach,” pp. 1291–1300, 12 2016.

[19] G. Montavon, W. Samek, and K.-R. Mller, “Methods for interpreting and
understanding deep neural networks,” Digital Signal Processing, 2018.

[20] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad,
“Intelligible models for healthcare: Predicting pneumonia risk and
hospital 30-day readmission,” knowledge discovery and data mining,
2015.

[21] J. Li, W. Monroe, and D. Jurafsky, “Understanding neural networks
through representation erasure,” arXiv preprint arXiv:1612.08220, 2016.

[22] J. Li, X. Chen, E. Hovy, and D. Jurafsky, “Visualizing and understanding
neural models in nlp,” arXiv preprint arXiv:1506.01066, 2015.

[23] A. Karpathy, J. Johnson, and L. Fei-Fei, “Visualizing and understanding
recurrent networks,” arXiv preprint arXiv:1506.02078, 2015.

[24] T. Lei, R. Barzilay, and T. Jaakkola, “Rationalizing neural predictions,”
arXiv preprint arXiv:1606.04155, 2016.

[25] J. Lanchantin, R. Singh, B. Wang, and Y. Qi, “Deep motif dashboard:
Visualizing and understanding genomic sequences using deep neural
networks,” in PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017.
World Scientific, 2017, pp. 254–265.

[26] P. M. Kevin, “Machine learning: a probabilistic perspective,” 2012.
[27] C. Olah, “Understanding LSTM networks,” 2015. [Online]. Available:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
[28] J. Mockus, V. Tiesis, and A. Zilinskas, “The application of bayesian

methods for seeking the extremum,” pp. 117–129, 09 2014.
[29] P. Fournier-Viger, R. Nkambou, and V. S.-M. Tseng, “Rulegrowth: min-

ing sequential rules common to several sequences by pattern-growth,” in
Proceedings of the 2011 ACM symposium on applied computing. ACM,
2011, pp. 956–961.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

	I Introduction
	II Related Works
	III Prediction Method
	III-A Network Architecture
	III-B Long Short Term Memory (LSTM)
	III-C Bayesian Optimization For Hyper-parameter Tunning

	IV Pattern Extraction
	V Experimental Work
	V-A Code failure Prediction using Synthetic Data
	V-B Code Failure Detection using Real Data
	V-C Results and Performance Comparison

	VI Practical Remarks: Code Failure Signature Removal
	VII Conclusion
	VIII Acknowledgment
	References

