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Abstract—Facial expressions of emotion are a major channel 

in our daily communications, and it has been subject of 

intense research in recent years. To automatically infer facial 
expressions, convolutional neural network based approaches 
has become widely adopted due to their proven applicability to 

Facial Expression Recognition (FER) task.On the other hand 
Virtual Reality (VR) has gained popularity as an immersive 
multimedia platform, where FER can provide enriched me- 

dia experiences. However, recognizing facial expression while 
wearing a head-mounted VR headset is a challenging task due 
to the upper half of the face being completely occluded. In 

this paper we attempt to overcome these issues and focus on 
facial expression recognition in presence of a severe occlusion 
where the user is wearing a head-mounted display in a VR 

setting. We propose a geometric model to simulate occlusion 
resulting from a Samsung Gear VR headset that can be 
applied to existing FER datasets. Then, we adopt a transfer 

learning approach, starting from two pretrained networks, 
namely VGG and ResNet. We further fine-tune the networks 
on FER+ and RAF-DB datasets. Experimental results show 

that our approach achieves comparable results to existing 
methods while training on three modified benchmark datasets 
that adhere to realistic occlusion resulting from wearing a 

commodity VR headset. Code for this paper is available at: 
https://github.com/bita-github/MRP-FER 
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I. INTRODUCTION 

Facial expressions of emotion are a major channel  in 

daily communications to transmit and enhance information 

not provided by speech [1]. In recent years, machine-based 

analysis of expressions from human faces has attracted 

increasing attention as it has broad applications in various 

areas such as healthcare, emotionally sensitive robots, driver 

fatigue monitoring, interactive game design and social mar- 

keting [2], [3], [4]. However, automatic Facial Expression 

Recognition (FER) in an unconstrained situation is still 

difficult. One of the major obstacles for accurate FER 

outside laboratory environments is partial occlusion in the 

face [5]. It is very likely that some parts of the face become 

obstructed by sunglasses, a hat, hands, hair, and the like. 

In addition, recent advances in technology, specifically in 

Virtual Reality (VR) has shifted the way we communicate 

and interact with each other and the environment. However, 

in a virtual reality setting a large part of the face is occluded 

by a head-mounted display which blocks facial expressions, 

there by restricting engagement [6]. Thus, for VR systems 

to provide rich social interaction, it is vital to be able to 

recognize and represent these expressions. 

Occlusion can substantially change the visual appearance 

of the face and severely decrease the performance of FER 

systems. The presence of occlusion increases the difficulty of 

extracting discriminative features from occluded facial parts 

due to inaccurate feature location, imprecise face alignment, 

or face registration error [7]. Types of partial occlusion can 

be divided into three main categories, temporary, systematic 

and hybrid [8], [9]. Temporary occlusion occurs when part 

of the face being obscured temporarily by self-occlusion 

(e.g., hand or head movement), other objects and change 

in environmental condition (e.g., illumination and lighting). 

Systematic occlusion can be caused by  the  existence  of 

one or  more  facial  components  (e.g.,  hair,  mustache,  or 

a scar), or by people using different accessories (e.g. VR 

headset, glasses, hat, or mask). These types of occlusions 

are potentially more damaging since they result in whole 

features of relevance to judging facial expression being 

obscured. Hybrid occlusion arise in the presence of both 

systematic and temporary occlusion at the same time. 

While lots of studies have been conducted on auto- 

matically inferring human expressions from images and 

video sequences, most of them focused on non-occluded 

situation and to our knowledge, few of them focused on 

user’s expression in virtual reality environments. Moreover, 

although the state-of-the-art techniques in FER systems are 

highly effective for controlled laboratory environments, the 

existing approaches do not achieve the same accuracy for 

applications like VR systems in which severe occlusions 

exist. Furthermore, recently deep learning methods such as 

Convolutional Neural Networks (CNNs) have outperformed 

statistical methods. FER performance improvements have 

been provided by these methods. However training a deep 

architecture from scratch  requires  a  lot  of  training  data 

to  ensure  proper  feature  learning,  and  has  the  difficulty 
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Figure 1.   Example of placing a VR patch on a detected face. 

 

 
of adjusting many system parameters. Moreover, it needs 

expensive computational capacity. Existing CNN models are 

less accurate when handling severe systematic occlusion like 

VR setting where features of the upper half of the face are 

completely invisible. 

In this paper we mainly focus on facial expression recog- 

nition in presence of a severe occlusion where the user is 

wearing a head-mounted display in a VR setting. A unique 

aspect of the systematic occlusion from arising from a VR 

headset is that it can be mathematically modeled. Since 

commodity VR headsets are of known size and shape, we 

can simulate the occlusion arising from these headsets, rather 

than trying to collect a new dataset of people wearing such 

headsets, thus saving significant man hours. In this way, 

we can employ transfer learning to utilize pre-trained FER 

networks while simulating occlusion from VR headsets. 

The rest of  the  paper  is  organized  as  follows  section 

II reviews related works, section III presents the proposed 

approach, including our geomtetric model  for simulating 

occlusion and transfer learning-based networks. Section IV 

describes the experiments. Finally, conclusions are drawn in 

section V. 

II. RELATED WORKS 

Since partial occlusions are a common problem in facial 

recognition systems and also very frequent in real appli- 

cations, we review the related approaches considering the 

similar task to ours which is facial analysis with occluded 

faces. 

Some approaches attempt to minimize occlusion impact 

by reconstructing occluded parts. Cornejo et al. [10] pro- 

posed a methodology which is robust to occlusions through 

the Weber Local Descriptor (WLD). They used RPCA 

technique for reconstructing occluded facial expressions over 

the training set and projected all testing images into the 

space created by RPCA. The WLD descriptor is applied 

over the entire facial expression image for extracting tex- 

tural features. For each feature vector they applied feature 

dimensionality reduction techniques, such as PCA and LDA 

sequentially and used SVM and K-NN for classification. 

Wang et al. [11] proposed a novel framework for  FER 

under occlusion by fusing the global and local features. In 

global aspect, information entropy is employed to locate the 

occluded region and principal Component Analysis (PCA) 

method is adopted to reconstruct the occlusion region of 

image. Then, the occluded region replaced with the cor- 

responding region of the best matched image in training 

set and Pyramid Weber Local Descriptor (PWLD) feature 

is extracted. At last, the outputs of SVM are fitted to the 

probabilities of the target class by using sigmoid function. 

For the local aspect, an overlapping block-based method is 

adopted to extract WLD features, and each block is weighted 

adaptively by information entropy, Chi-square distance and 

similar block summation methods are then applied to obtain 

the probabilities which emotion belongs to. Finally, fusion 

at the decision level is employed for the data fusion of the 

global and local features based on Dempster-Shafer theory 

of evidence. 

Deep Convolutional Neural Networks have been pushing 

the frontier of face recognition over past years. To address 

the occlusion issue, Li et al. [12] proposed end-to-end train- 

able Patch-Gated Convolution Neutral Network (PG-CNN), 

a CNN with attention mechanism which tries to focus on 

different regions of the facial image and weighs each region 

according to its unobstructed-ness. It decomposes the feature 

maps of the whole face to multiple sub-feature maps to 

obtain diverse local patches and encoded them as a weighed 

vector by a patch-gated unit using attention net considering 

its unobstructed-ness. Both local and global representations 

of facial features are concatenated to serve as a repre- 

sentation of the occluded face, which would alleviate the 

impact caused by the lack of local expression information. 

Another approach to improve the ability of classification 

in occluded condition is transferring features. Xu  et  al. 

[13] developed a hybrid model based on deep convolutional 

networks to increase the robustness of transfer features from 

deep models. They built a deep CNN composed of four 

convolutional layers with max-pooling to extract features, 

followed by a multi-class SVM for emotion classification. To 

increase robustness to occlusion further, they improve model 

by merging high-level features of two trained deep ConvNets 

with the same structure, one is trained on non-occluded 

images, and the other is trained on same database with 

additive occluded samples. Non-occluded facial expression 

classifier can be used as a guidance to facilitate the process 

of an occluded facial expression classifier. Pan et al. [14] 

built two deep convolutional neural networks with the same 

architecture, these two networks are first pretrained with the 

supervised multi-class cross entropy losses. After pretrain- 

ing, parameters of non-occluded network are fixed, and the 

occluded network is further fine-tuned under the guidance 

of non-occluded network. To incorporate guidance into the 

network during training, they introduce similarity constraint 

and loss. Also a mask learning strategy can be adapted to 

find and discard corrupted feature elements. Song et al. [15] 

designed a Pairwise Differential Siamese Network (PDSN) 

to establish a mask dictionary by exploiting the differences 

between the top convolutional features of occluded and non- 

occluded face pairs. Each item of this dictionary captures the 



 

 
 

Figure 2.   Custom VGG-Face network architecture 

 

 

correspondence between occluded facial areas and corrupted 

feature elements, which is named Feature Discarding Mask 

(FDM). When dealing with a face image with random partial 

occlusions, they generate its FDM by combining relevant 

dictionary items and multiply it with the original features 

to eliminate those corrupted feature elements from recog- 

nition.The framework proposed in [22] utilizes an efficient 

filtering method to reduce the search space of face retrieval 

to increase scalability while keeping representative occluded 

faces within the search space. 

To our knowledge just two studies focused on FER in 

VR setting. Georgescu and Ionescu [16] proposed a model 

for recognizing the facial expression of a person wearing a 

virtual reality (VR) headset which essentially occludes the 

upper part of the face. They trained VGG-f and VGG-face 

models, on modified training images in which the upper 

half of  the  face  is completely  occluded.  This  forces the 

neural networks to find discriminative clues in the lower 

half of the face. They proceed by fine-tuning the networks 

in two stages. In the first stage they fine-tune the CNN 

models on images with full faces. In the second they further 

fine-tune the models on images in which the upper half of 

the face is occluded. Hickson et al. [17] also considered 

facial expression recognition in VR setting. They proposed 

an algorithm to infer expressions by analyzing only the 

images of a person’s eyes captured from an eye-tracking 

enabled VR head-mounted display through an IR gaze- 

tracking camera. In terms of taking user’s face images, as 

not all VR headsets include eye-tracking sensors, we adopt 

similar approach to  [16], considering external  camera in 

VR system which is more generalizable and cost-effective. 

However, a key limitation in the approach in [16] is that they 

simply covered the upper half of the face without taking into 

consideration realistic occlusion arising from VR headsets, 

which we attempt to achieve in this work. 
 

III. METHODOLOGY 

A. Simulation of partial occlusion 

In a virtual reality setting, the upper half of the face is 

occluded by a VR headset. Since, there are no public stan- 

 

dard occlusion face images database containing systematic 

occlusion or persons wearing VR headset, we established 

VR-occluded images by masking upper region on the stan- 

dard facial expression images. To simulate the occlusion, 

face detection is applied on gray-scale images based on a 

modification to the standard Histogram of Oriented Gradi- 

ents and Linear SVM-based method for object detection. In 

order to estimate 68 coordinates of facial landmarks that 

map to facial structure, we followed the approach described 

in [18] trained on the iBUG 300-W face landmark dataset 

[19]. For applying VR patch, we initialize VR dimensions to 

207.1 × 98.6mm based on the Samsung Gear VR headset. 

Typically, a resized set of training images have faces filling 

various percentages of the image, and it is unlikely that a 

fixed-sized covering mask fits all the training images. To 

uniformly scale the VR patch on the training images, we 

use the distance between the two temporal bones of the 

facial landmarks as a reference length. Then, we generate 

the polygonal occluding patch by setting the midpoint of 

the line passing through eye centre points as the centre 

coordinate of the VR headset. Moreover, to account for face 

rotations, we align the resized patch with the axis running 

through eye centres to reflect accurate simulation of a VR 

headset on various situations. We obtain the angle of incline 

by determining the inverse tangent function of changes in y- 

coordinates to changes in x-coordinates of eye centre points, 

and then we utilize the rotation matrix to rotate corner 

points of the blocking patch about its central pivot point on 

the coordinate plane accordingly. Figure 1 demonstrates the 

occlusion simulation process. This geometric model provides 

a more realistic occlusion resulting from wearing a VR 

headset, rather than simply covering the upper half of the 

face, as done in [16]. 

B. Transfer Learning 

In CNNs, images from different datasets share similar 

low-level features after the convolution process. As it is 

costly to train a network from scratch, especially on a 

small-scale dataset, an alternative training strategy  for  a 

new dataset is utilizing  parameters transferred from  pre- 

trained models and fine-tuning them on the basis of the new 
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dataset. Thus, for classifying facial expressions under severe 

occlusion we choose two popular architectures, VGG and 

ResNet pre-trained on a face recognition task which is a 

closely related to ours. 

1) VGG-face: VGG-face [20] is a convolutional neural 

network, trained on the VGG-face dataset. It comprises of 

13 convolutional layers, each containing a linear operator 

followed by one or more non-linearities such as ReLU and 

max pooling. Last three blocks are fully connected followed 

by a softmax layer of 2622 units for classification. 

2) ResNet: The residual neural network [21] implements 

the identity shortcut connection concept or residual block 

that skips one or more layers. ResNet won the first place 

on the ILSVRC 2015 classification task. ResNet follows 

VGG’s convolutional layer design. The residual block has 

two 3 × 3 convolutional layers with the same number of 

output channels. Each convolutional layer is followed by a 

batch normalization layer and a ReLU activation function. 

Then, it skips these two convolution operations and add 

the input directly before the final ReLU activation function. 

Generally, the residual mapping is often easier to optimize 

in practice. 

we proceed our work by fine-tuning the models on oc- 

cluded images generated through applying our geometric 

simulation model as described before. The custom VGG-face 

has 13 convolutional and 4 max-pooling layers as VGG-face, 

interleaved with dropout layers. More specifically, starting 

from second block, after each convolutional layer, a dropout 

layer is added with rate starting from 0.1 to 0.55. The 

dropout layers are effective in avoiding the model to over fit. 

After all the convolution layers, 2 dense layers are added, 

each with 512 hidden nodes, followed by a 50% dropout 

layer. The final dense layer is followed with a soft-max layer 

consisting of 8 nodes to generate the output. In the ResNet- 

50 architecture, layers pre-trained on VGGFace dataset are 

transferred to our deep CNN model, followed by 2 dense 

layers with 512 hidden nodes and replacing the last 1000 

fully connected softmax layer by a 8 fully connected softmax 

layer. Figure 2 demonstrates the customized architechture of 

VGG-face. 

To evaluate our models, we use three popular facial 

expression datasets, FER+, RAF-DB, and AffectNet. These 

datasets cover different scales of face images and contain 

images with temporary occlusions. 

1) FER+: The FER+ dataset [23] is derived from 

FER2013 which  is  a  large-scale  and  real-world  dataset. 

It contains 8 emotional classes including anger,  disgust, 

fear, happiness, neutral, sadness, surprise and contempt. 

Comparing to FER2013, some of the original images are 

relabeled, while other images, e.g. not containing faces, are 

completely removed. All face images in the dataset are 

aligned and resized to 48 × 48. The dataset consists of 

28,709 training images, 3,589 validation images and 3,589 

test images. 

2) RAF-DB: Real-world Affective Faces Database [24] is 

an in-the-wild dataset which contains 30000 facial images 

posted in social networks and annotated by 40 annotators. 

The dataset includes 7 classes of basic emotions including 

surprised, fearful, disgusted, happy, sad, angry and neutral 

and 12 classes of compound emotions. In our experiment, 

only images with basic emotions were used, including 

12,271 images as training data and 3,068 images as test 

data. 

3) AffectNet: The AffectNet dataset [25] is one of the 

largest annotated datasets which contains more than one mil- 

lion images. It has 450000 manually annotated images with 

8 basic emotional classes as FER+ and 3 other categories 

related to the intensity of valence and arousal including 

none, uncertain and non-face. 

B. Training 

During training, the input to our CNNs is set to a fixed 

sized 224 × 224 image. We rescaled all training, valida- 

tion and test images to 224 × 224 pixels. All images are 

normalized by min-max normalization and the models are 

trained using data augmentation, which is based on including 

horizontally flipped images. The training is carried out by 

optimising the multinomial logistic regression objective us- 

ing mini-batch gradient descent based on back-propagation 

with momentum. The batch size is set to 64 and momentum 

is set to 0.9. The training was regularised by weight decay, 

the L2 penalty multiplier set to 5 × 10−4 and the ratio for 

dropout regularisation was set to 0.5. The learning rate was 

initially set to 10−2 , and then decreased by a factor of 10 

when the validation set accuracy stopped improving. In case 

of the ResNet50 architecture we also regularised training by 

setting max-norm kernel constraint. 

C. Results 

For each model, we train our network on each dataset 

separately with 5-fold cross-validation and report the accu- 

racy numbers in Table I. It can be seen from the table that 

Model Dataset Accuracy (%) 

VGG-Face (from scratch) FER+ 65.68 
ResNet50 (from scratch) FER+ 54.43 

VGG-Face (transfer learning) FER+ 79.98 
ResNet50 (transfer learning) FER+ 79.90 

VGG-Face [16] FER+ 82.28 
VGG-Face (transfer learning) AffectNet 50.13 
ResNet50 (transfer learning) AffectNet 47.35 

VGG-Face [16] AffectNet 49.23 
VGG-Face (transfer learning) RAF-DB 73.37 
ResNet50 (transfer learning) RAF-DB 74.76 

 



training models from scratch provides less accurate results 

in comparison with transfer-learning based approaches. The 

VGG-Face architecture pre-trained on VGG-Face dataset 

and fine-tuned on FER+ achieved accuracy of 79.98% which 

is the highest among the tested models in this paper. com- 

paring the results with the results reported in [16], we see 

that we provide slightly better accuracy on AffectNet and 

slightly worse on FER+. However, it is important to note 

that our geometric occlusion simulation model adheres to 

more realistic occlusion resulting from a commodity VR 

headset (Samsung Gear VR), while in [16] the occlusion was 

generated by simply covering the upper half of the face. So 

these results are not directly comparable, however it shows 

that a simulated occlusion with transfer learning can provide 

promising results by utilizing existing benchmark datasets. 

V. CONCLUSION 

In this paper, we propose a transfer learning-based method 

for addressing the facial expression recognition in presence 

of severe occlusion where the user is wearing a head- 

mounted display in a VR setting. We modified three existing 

benchmark datasets to mimic VR occlusion by utilizing a 

geometric simulation model based off of the Samsung Gear 

VR headset. We test two popular architectures, VGG and 

ResNet pretrained on the VGG-Face database and further 

fine-tune parameters of the models on the occluded images. 

We evaluate our method on FER+, AffectNet and RAF- 

DB datasets. Our method achieves performance comparable 

to the state-of-the art results. For future work,  we  will 

study how to integrate approaches using external cameras 

and methods utilizing internal cameras in VR system to 

improve the accuracy further and provide a rich engagement 

experience for virtual reality users. 
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