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Abstract— Dry-contact electrodes have paved the way for easy-
to-use electroencephalography (EEG) systems with minimal set-
up time, which are of particular interest in ambulatory as well as
real-life environments. However, the presence of motion artifacts
forms a major obstacle for such systems. In previous studies,
it has been shown that continuous electrode-tissue impedance
monitoring can be used to handle motion artifacts. In this paper,
we demonstrate that the in-phase and quadrature components
of the contact impedance provide complementary information
that can be used to improve the prediction of motion artifacts.
Furthermore, we demonstrate that the prediction of motion
artifacts at one electrode can be further improved by also
incorporating the impedance measurements at other electrodes.
With this, we propose a motion artifact reduction algorithm based
on a multi-channel linear prediction (MLP) filter. Although the
MLP filter is not able to completely remove motion artifacts, a
substantial reduction can indeed be achieved.

I. INTRODUCTION

Electroencephalography (EEG) is a non-invasive technique
to monitor electrical activity of the brain by measuring voltage
differences between electrodes that are attached to the scalp.
To obtain high-quality EEG signals, the contact impedance
between the skin and the electrodes should be sufficiently low.
Therefore, traditional EEG recordings typically require the use
of a conductive gel and proper skin preparation, which results
in a long set-up time. Furthermore, since the gel dries out after
a couple of hours, this approach is not suited for long-term
EEG monitoring.

Recent advances in the area of biopotential sensors have
lead to the development of so-called dry electrodes [1], which
neither require skin preparation nor a conductive gel. Such
electrodes drastically decrease the set-up time and improve the
user comfort, but they are faced with a decreased signal quality
compared to gel-based electrodes [2], [3]. Nevertheless, dry
electrodes form an important alternative, especially outside a
lab environment, e.g., for home-use, for long-term EEG mon-
itoring, or for emergency situations where a fast deployment
of an EEG system is required.

Motion artifacts are one of the most devastating disturbances
in EEG signals recorded with dry electrodes. The proper
handling of these motion artifacts is probably the most impor-
tant challenge to be addressed in long-term EEG monitoring
systems, where motion artifact detection and/or reduction will

have to rely on sophisticated signal processing algorithms.
Since motion artifacts are mainly caused by changes in the
contact between the skin and the electrode, a continuous
monitoring of the electrode-tissue contact impedance may help
to estimate the EEG signal quality, or even to reduce the
impact of the motion artifacts.

In [4], it was demonstrated that there is a significant corre-
lation between the contact impedance magnitude and the EEG
signal at a dry-contact electrode during specific movements.
This indicates that continuous impedance measurements can
indeed be used to detect and/or reduce motion artifacts. In
this paper, we investigate whether the use of both in-phase
and quadrature impedance components, rather than merely the
impedance magnitude, increases this correlation. Furthermore,
we demonstrate that the prediction of motion artifacts at
one electrode can be further improved by also incorporating
the impedance measurements at other electrodes. We then
apply a multi-channel linear prediction (MLP) filter to these
impedance measurements to predict motion artifact compo-
nents and subtract these predictions from the corresponding
EEG signals. We validate this MLP-based motion artifact
reduction algorithm for multiple types of movements.

II. METHODS

A. Evaluation setup

The wireless EEG prototype system used for the experi-
ments in this paper consists of a rigid headset (see Fig. 1)
with an integrated EEG signal acquisition system that allows
to continuously measure the EEG signal and the contact
impedance [5] at six Ag/AgCl dry electrodes with pins (Biopac
EL120). Four electrodes are positioned at C3, C4, Cz, and Pz,
and the remaining two electrodes are positioned at the left and
the right mastoid, which are used as ground and as reference,
respectively. Both the in-phase (zi) and the quadrature (zq)
component of the contact impedance (z = zi + jzq) are
measured at the electrodes C3, C4, Cz, and Pz, using a current
of 20nA which is modulated with a square wave at 1024Hz.
The EEG signal and the (demodulated) impedance signal are
both sampled at 1024Hz with a resolution of 12 bits.



Fig. 1. 4-channel wireless EEG headset (imec) & dry electrodes (Biopac)

B. Evaluation protocol

We included 6 test subjects (5 male and 1 female) in the
evaluation. All participants signed an informed consent form
before the start of the experiment. The EEG headset was
mounted on the participant’s head, and the signal quality was
assessed by the experimenter based on a visual inspection
using the EEG application software. In case a large impedance
was observed and/or the EEG signal was too small, the headset
was repositioned to overcome these unwanted effects. The
experiment consisted of 5 sessions, each corresponding to a
different types of movement:

1) Head movement in sagittal plane (‘Nodding’): the sub-
ject was asked to slowly move his/her head up and down
repeatedly during 1 minute while sitting on a chair.

2) Head movement in coronal plane (‘Shaking’): the sub-
ject was asked to slowly tilt his/her head first to the left
and then to the right repeatedly during 1 minute while
sitting on a chair.

3) Standing up and sitting down (‘Stand up/sit down’): the
subject was asked to stand up from the chair and sit
down again repeatedly during 1 minute.

4) Walking on the spot (‘Walking’): the subject was asked
to walk on the spot continuously for 1 minute.

5) Jumping on the spot (‘Jumping’): the subject was asked
to jump on the spot from a standing position during
1 minute. Every jump was followed by a period of
approximately 2s without any movement.

Each session is recorded two times: once with eyes open,
and once with eyes closed. The latter is performed to induce
significant α-wave activity, such that this EEG phenomenon
is more pronounced in the recordings. Each recording takes 3
minutes: one minute during which the subject was asked not
to move, followed by one minute during which the subject
was asked to perform one of the 5 movement types from the
list above, again followed by one minute without movement.

C. Preprocessing

The same preprocessing steps were applied to each of the
different signal types, i.e., the EEG signal and 3 impedance
signals (zi, zq and |z|). All signals were first downsampled to
128Hz using a proper anti-aliasing filter, after which they were
high-pass filtered with a 600 tap linear-phase finite impulse
response (FIR) filter with a cut-off frequency at 0.5Hz. A
notch filter at 50Hz has been applied to remove power-line
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Fig. 2. Power spectrum of the EEG signal before (left) and after (right)
MLP-based artifact reduction.

interference. From each recording, two ‘artifact-free’ signal
segments of 55 seconds were extracted (one at the beginning
and one at the end of the signal). The remaining signal segment
of 70 seconds in the middle of the recording is from now on
referred to as the ‘artifact segment’. In total, 6× 5× 2 = 60
of such artifact segments are obtained (6 subjects, 5 sessions,
with two recordings per session).

III. CORRELATION ANALYSIS

The left plot in Fig. 2 shows the power spectrum of one EEG
signal during different movements (here with eyes closed).
The ‘artifact-free’ condition also shows the standard deviations
computed from the power spectra of the 10 artifact-free signal
segments of the particular subject. It is observed that most of
the artifact energy is present in the low frequencies (<5Hz).

To investigate to what extent the motion artifacts are
reflected in the skin-electrode contact impedance signals, a
canonical correlation analysis (CCA) has been applied [6].
Rather than examining the correlation between two individual
signals, CCA allows to compute a correlation coefficient
between two sets of signals, say, set A and set B. Specifi-
cally, CCA computes the correlation coefficient between two
optimally chosen linear combinations of the signals in set A
and of the signals in set B, respectively (we refer to [6] for
further details).

Let dk denote the EEG signal at electrode k, and let zik,
zqk and |zk| denote the in-phase component, the quadrature
component and the magnitude of the impedance signal at
electrode k, respectively (assume k = 1 . . .K, where K = 4
in our setup). We define the 3-dimensional local impedance
signal at electrode k as

zk = [zik zqk |zk|]
T (1)

where T denotes the matrix/vector transpose operator. We also
define the stacked 3K-dimensional signal that contains the
impedance signals of all electrodes:

z = [zT1 zT2 . . . zTK ]T . (2)

For the analysis in this paper, set A always consists of the
EEG signal dk at electrode k, whereas set B consists of one
or more impedance signals:

• Set B1 contains the signal |zk|. This is the same setup as
used in the correlation study presented in [4].

• Set B2 contains the 2 signals in [zik zqk]
T .
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Fig. 3. Box plots of canonical correlation coefficients for different settings

• Set B3 contains the 3 signals in zk.
• Set B4 contains the 12 signals z.

For each of the 5 movement types, we have performed a
separate CCA on the 12 available artifact segments (6 subjects,
with 2 recordings each, i.e., one with eyes open and one with
eyes closed), resulting in 12 canonical correlation coefficients.
The distribution of these coefficients is visualized by means
of a box plot1 (for the different B-sets) in Fig. 3. Based on
this figure, we can draw several conclusions:

• B1 vs. B2: Combining zik and zqk into a single magnitude
signal |zk| is suboptimal, i.e., the correlation improves if
both zik and zqk are used separately in the linear model.

• B2 vs. B3: Although the addition of |zk| in principle
does not add extra information, it does improve the
correlation. This is due to the fact that |zk| is a non-linear
combination of zik and zqk. Since correlation only captures
linear relationships, the addition of |zk| introduces an
extra degree of freedom in the linear model, which will
allow for a better modeling of motion artifacts.

• B3 vs. B4: The addition of the impedance signals of
other electrodes substantially increases the correlation.
This may be due to the fact that the electrodes are
mounted in a rigid head set, and therefore the movement
will influence all of the EEG and impedance signals
in a similar fashion. Furthermore, there is a common
motion artifact component between the different EEG
signals induced by impedance changes at the reference
electrode. Impedance signals that are well-correlated to
this common component, can then help in modelling
motion artifacts at other electrodes.

It should be noted that there is a large variation between the
subjects, as demonstrated by the box plots in Fig. 3. This
means that, for some subjects, there is not much correlation
between the impedance signals and the EEG signals. This is
probably due to the fact that the EEG headset does not fit
equally well on each head. Furthermore, also the speed with
which the movement is performed has an influence, i.e., fast
movements typically show less correlation.

1The box plots were generated with the built-in Matlab command boxplot.
The red cross-shaped markers represent outliers.

IV. MLP-BASED MOTION ARTIFACT REDUCTION

In the sequel, we assume an additive artifact model, i.e., the
EEG signal at electrode k can be written as

dk = EEGk +mk (3)

where mk is the (motion) artifact due to a change in contact
impedance, and where EEGk is the EEG signal that would
be observed with an ideal electrode with low and constant
contact impedance. In the previous section, it has been demon-
strated that there is often a significant correlation between the
impedance signals and mk. This motivates the use of an MLP
filter to predict mk from the impedance signals.

We define the 3L-dimensional signal yk[t], which consists
of L time lags of zk[t], i.e.,

yk[t] = [zk[t]
T zk[t− 1]T . . . zk[t− L+ 1]T ]T (4)

where we use the notation s[t] to denote the sample of signal
s collected at sampling time t. We also define the stacked
3KL-dimensional signal

y[t] = [y1[t]
T y2[t]

T . . . yK [t]T ]T . (5)

The MLP filter is then defined as the multi-channel filter w
that minimizes the mean squared error

min
w

E{|mk −wTy|2} (6)

where E{·} denotes the expected value operator, and wTy
is the linear prediction of mk. Note that mk is an unknown
signal, but since EEGk is independent from both y and mk,
we can replace mk by dk in (6). The solution that minimizes
(6) (with mk replaced with dk) is given by [7]

w = R−1
yy rydk

(7)

where Ryy = E{yyT } and rydk
= E{ydk}, which can be

estimated by temporal averaging over J samples, i.e.,

Ryy ≈
1

J

J−1∑
j=0

y[t− j]y[t− j]T (8)

rydk
≈ 1

J

J−1∑
j=0

y[t− j]dk[t− j] . (9)

Note that the widely-used least mean squares (LMS) and
recursive least squares (RLS) adaptive filters [7], are adaptive
implementations of the (M)LP filter described by (7)-(9).

In the experiments in this paper, we set L = 25, which
provides a good balance between computational complexity
and prediction performance (note that L depends on the
sampling rate of the signals). We define dk = dk−wTy as the
cleaned-up EEG output signal. The right plot in Fig. 2 shows
the power spectrum of dk for the different movement types
(for one subject). It is observed that the MLP filter preserves
most of the EEG activity (this can be seen in the α-wave band
around 10Hz). The prediction of the motion artifact by the
MLP filter is depicted in the center plot in Fig. 4 for the ‘stand
up/sit down’ movement type. The resulting cleaned-up EEG
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Fig. 4. Prediction of the motion artifact by the MLP filter during ‘stand
up/sit down’ movement with eyes closed.

signal dk is depicted in the bottom plot. It is noted that this
is a well-chosen recording for which the MLP-based motion
artifact reduction was relatively successful. To visualize the
general performance over all subjects/movement types, we use
two performance measures:

• The signal-to-artifact ratio (SAR), i.e., the variance σ2
eeg

of the artifact-free EEG signal, divided by the variance
σ2

art of the (residual) motion artifact. The former is
estimated from dk during the two artifact-free segments,
and the latter is estimated by subtracting σ2

eeg from the
variance of the artifact segment of the same recording.

• The ‘D-score’, defined as the maximal distance between
the empirical cumulative distribution function (ecdf) of
the samples during the artifact-free segments and during
the artifact segment, respectively. This is the test metric
used in the so-called Kolmogorov-Smirnov test to deter-
mine whether two sample sets are generated by the same
probability distribution.

Note that the higher the SAR, and the lower the D-score, the
smaller the (residual) motion artifact component. The SARs
and the D-scores are visualized by box plots in Fig. 5 and
Fig. 6, respectively. We consider three different cases: (A) the
original EEG signal dk, (B) the cleaned-up EEG signal dk
using a 3-channel MLP filter on yk (only electrode-specific
impedance signals), and (C) the cleaned-up EEG signal using
a 12-channel MLP filter based on y (all impedance signals).

We observe that including all impedance signals from all
electrodes is beneficial for the motion artifact reduction. This is
consistent with the correlation analysis in Section III, and can
be explained by a similar discussion. We also again observe
a large variance in the results, i.e., the performance of MLP-
based motion artifact reduction is highly subject-dependent.

V. CONCLUSIONS AND FUTURE WORK

We have investigated the reduction of motion artifacts in
EEG signals using continuous contact impedance monitoring.
We have used CCA and MLP filtering to demonstrate that
incorporating all three contact impedance signals (in-phase,
quadrature and magnitude) substantially improves the pre-
diction performance. Furthermore, the performance improves
even more by incorporating all impedance signals from all
electrodes. However, a significant residual artifact remains, as
the MLP only captures linear dependencies. In future work,
we will investigate the use of non-linear filtering techniques
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Fig. 5. SAR before motion artifact reduction (A), and after motion artifact
reduction with 3-channel MLP (B) and full 12-channel MLP (C).
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Fig. 6. D-scores before motion artifact reduction (A), and after motion
artifact reduction with 3-channel MLP (B) and full 12-channel MLP (C).

to further improve the motion artifact prediction, as well as
the use of adaptive filtering to allow for on-line processing.
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