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Summary

Predicting brain maturity using noninvasive magnetic resonance images (MRI) can distinguish
different age groups and help to assess neurodevelopmental disorders. However, group-wise
differences are often less informative for assessing features of individuals. Here, we propose a
simple method to predict the age of an individual subject solely based on structural connectivity
data from diffusion tensor imaging (DTI). Our simple predictor computed a weighted sum of the
strength of all connections of an individual. The weight consists of the fiber strength, given by the
number of streamlines following tract tracing, multiplied by the importance of that connection
for an observed feature—age in this case. We tested this approach using DTI data from 121
healthy subjects aged 4 to 85 years. After determining importance in a training dataset, our
predicted ages in the test dataset showed a strong correlation (ρ = 0.77) with real age deviating
by, on average, only 10 years.
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1 Introduction

The study of how different components of the brain, may they be neurons or brain regions, are
connected has become an emerging field within the neurosciences [1, 2, 3]. Structural connec-
tivity observes the physical wiring of neural circuits, while functional connectivity links brain
regions with similar activity over time. Magnetic Resonance Imaging (MRI) facilitates human
studies since it enables us to construct such networks noninvasively. At the macro scale where
network nodes represent brain regions, Diffusion Tensor Imaging (DTI) allows us to quantify
the number of streamlines after tract tracing as a proxy of connection strength between two
regions. Analyzing brain networks can be a tool to understand the interaction between nodes
and has already shown a strong correlation between cognitive functioning and global information
integration for functional networks [4]. Predicting brain maturity from MR images is beneficial
to assess neurodevelopmental disorders. As pediatric disorders including ADHD have delays in
brain maturity [5], investigating structural normality of pediatric brains can be a good screen-
ing strategy. Also in the elderly, it is beneficial to distinguish cognitive disorders from normal
ageing. Taking advantage of the network analysis framework, classifying structural connectivity
networks to distinguish different age ranges has previously been performed by looking at small
sets of nodes, network motifs [6], or by sets of features for individual nodes, single-node motifs
[7, 8]. Also network topological changes over age were investigated in structural connectivity
[9, 10]. Whereas these studies use aggregate features of the network, we used only raw data about
individual edges, as given by the number of streamlines following tract tracing of DTI data, to
inform predictions of the age of a subject. While a link between functional connectivity and brain
maturity was reported earlier [11], it remains unclear whether structural connections alone can
be a comparatively suitable predictor as functional and structural connectivity are often related
[12]. Here, we tested a simple prediction model for the age of a subject using information about
structural connectivity based on diffusion tensor imaging. Our predictor computed a weighted
sum of the structural connectivity matrix for each subject as a raw score, where the weight of
each connection was predefined as the correlation coefficient between connection strength of that
connection with age over all subjects in the training group. Then, we transformed the raw score
to a predicted age with linear regression. We then evaluated our method over a test group,
computing the correlation between predicted ages and the real ages in the test group.

2 Methods

2.1 DTI database

We made use of a public DTI-database (http://fcon 1000.-projects.nitrc.org/indi/pro/nki.html)
provided by the Nathan Kline Institute (NKI) [13]. DTI-data were obtained with a 3 Tesla
scanner (Siemens MAGNETOM TrioTim syngo, Erlangen, Germany). T1 weighted MRI data
were obtained with 1mm isovoxel, FoV 256mm, TR=2500ms, and TE=3.5ms. DTI data were
recorded with 2mm isovoxel, FoV=256mm, TR=10000ms, TE=91ms, and 64 diffusion directions
with b-factor of 1000 s mm−2 and 12 b0 images. We included 121 participants between 4
and 85 years. We used Freesurfer to obtain surface meshes of the boundary between gray
and white matter from T1 anatomical brain images (http://surfer.nmr.-mgh.harvard.edu), see
Figure 1. After registering surface meshes into the DTI space, we generated volume regions of
interest (ROIs) based on GM-voxels. Freesurfer provides parcellation of 34 cortical regions based
on the Desikan atlas [16] and 7 subcortical regions (Nucleus accumbens, Amygdala, Caudate,
Hippocampus, Pallidum, Putamen, and Thalamus) [17] for each hemisphere, thus leading to
82 ROIs in total. To quantify the connection strength from DTI, we performed eddy-current
correction (FSL), and the Fiber Assignment by Continuous Tracking (FACT) algorithm [14] with
35 degrees angular threshold using Diffusion Toolkit along with TrackVis [15]. We then counted
the number of streamlines between all pairs of defined regions of interest as connection strength
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using the UCLA Multimodal Connectivity Package (http://ccn.ucla.edu/wiki/index.php). This
led to an undirected weighted connectivity matrix S of size N ×N with N(N −1)/2 connections
per subject, where N is 82. We also defined L as a N × N ×M matrix with the connectivity
matrices Sk of M = 121 subjects, where k is the subject index.

Figure 1: DTI network inference.

2.2 Age prediction

Numerous machine-learning approaches could be applied for predicting features such as age.
Instead, we focused on simple predictions that look at the correlation between the strength of
each fiber tract, as measured by the number of streamlines and age. The correlation, ranging
from -1 to 1, gives us a weight measure of how important each connection is for a feature
leading to the group correlation matrix C. The stronger a connection, given by the number of
streamlines, the larger the impact on the predicted feature. Correlation matrix C is defined as
Cij = cov(Lij , A)/(σLσA) , where Lij is the vector of connection strength between node i and
j for all subjects, A is the vector of ages ordered according to the M subjects, and cov and σ
stands for covariance and variance respectively.

In order to predict age, a predictor value P is then given by the sum over all edges of the
individual product between the correlation matrix C and the subject’s matrix S as follows;

Pk =
1

2

N∑
i=1

N∑
j=1

Sij × Cij . (1)

To compute predictor P , we divided our dataset in two groups; a training matrix LR and a test
matrix LT , where the former was used to compute C and the latter to compute P . Using the
training data set, P was then translated and re-scaled to map the age variable. Additionally,
we tested different ways of normalizing the group matrices LR and LT ; 1) No normalization, L,
2) normalization between subjects, L′, 3) normalization within subjects, L′′. The last two are
defined as

L′ijk =
Lijk

1
M

∑M
i=j Lijk

, (2)

L′′ijk =
Lijk

1
2

∑N
i=1

∑N
j=1 Lijk

. (3)
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Notice that in the previous equations M is the number of subjects in each of the groups, and
normalization is applied separately to LR and LT .

2.3 Simulations

To test our age prediction, we used a bootstrapping approach. Testing LT and training LR ma-
trices were created by randomly dividing the population matrix L at 50% (half of the population
for training or test), and then correlation matrix C and prediction vector P for each division
were computed. We used 100 divisions to obtain extreme and average performances of our age
prediction.

3 Results

Figure 2 showed the results for age prediction experiments. For these, the entire database
was divided in two matrices: training (60 subjects) and testing (61 subjects) matrices whose
subjects were chosen randomly 100 times. For each of the 100 prediction iterations an age-edge
correlation matrix C and predictor vector P were computed. Figure 2A showed the correlation
coefficient distribution between the predicted ages and the real ages for the 100 experiments;
the median was ρ = 0.774 (see also Table 1) with ρ = 0.68 and ρ = 0.81 as worst and best-case
predictions, respectively. Figure 2B showed the best case prediction from the 100 experiments
and the translation/re-scaling mapping equation of predictor vector P for age.

Figure 2: Age prediction results. A) Correlation box plot of 100 prediction experiments by
randomly dividing the population matrix in training and test datasets. B) Best case from
the 100 experiments where correlation between predicted and real ages is ρ = 0.81, with 95%
confidence interval shown as shades. C) Highest 1% of the edges with positive correlation with
age. D) Lowest 1% of the edges with negative correlation with age. Correlated edges were
visualized with BrainNet Viewer (http://www.nitrc.org/projects/bnv/).

Prediction results for the three normalization methods tested were shown in Table 1. The
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Table 1: Performance of age prediction. The best performance was obtained by non-
normalization of the connectivity matrix. The table shows the first, second, and third quartiles
from the correlation distribution of 100 prediction experiments for each normalization method.

Normalization Q1 Q2 Q3

L 0.7603 0.774 0.7878
L′ 0.5604 0.599 0.6289
L′′ 0.6496 0.678 0.7095

best performance was obtained without normalization, followed by normalization within subjects
L′′.

To infer which brain edges were most correlated with age prediction, the 100 estimated
correlation matrices C were averaged and the most important edges with positive and negative
correlations were extracted. Figure 2C showed the 1% edges with the highest correlation with
age. Similarly, Figure 2D showed the 1% of the network edges with lowest negative correlation
with age. These edges and their averaged correlations were listed in Table 2.

4 Discussion

Our simple predictor estimated age of a subject given structural connectivity data with fair
performance. The predicted age was highly correlated with the real age (best ρ = 0.81). The top
edges correlated with age included the previously reported areas: Regional efficiency, capturing
regional information integration, was correlated with age positively in temporal and frontal
regions and negatively in parietal and occipital regions previously [9]. Though it was hard to
compare directly due to different atlases and different modalities, they also found superior and
inferior temporal gyri, and superior frontal gyri as we did. The edges with negative correlations
were partially matched with white matter integrity (Fractional Anisotropy, FA) changes over
age in a voxel based DTI study [18]: notably, both superior frontal gyri, superior temporal gyri,
anterior and posterior cingulate cortices. We note that to match ours with their results, more
extensive investigation is required, because we only showed the top 1% of edges.

Our method is quite simple but connected with machine learning concepts. The concept
behind our method is the basic artificial neural networks, especially a radial basis function
(RBF) network. Each RBF responded to a corresponding edge, and its learnable weight is
a correlation coefficient we computed, capturing its influence on age. Statistically, this idea
can be connected with the partial least square (PLS) regression [19]. PLS projects the original
predictors (edges) into a lower dimensional space, using colinearity of each predictor variable with
the feature variable (age) to be fitted. In our method, a simple Pearson correlation coefficient,
that represents fitting quality of linear regression, captured colinearity. Then, a weighted sum of
a subject’s connection strength represented projection of the subject into the predicting score P ,
where the vector of correlation coefficients was projection mapping, while PLS combines them
in a statistically meaningful way.

We observed that non-normalization performed best in general, while between-subject nor-
malization deteriorated its performance. First of all, we noted that this normalization was not
standardization with the mean and standard deviation of each edge, but regularization of magni-
tudes to minimize effects of variability in edges’ magnitudes. The vector of correlation coefficients
captured the pattern of edges correlated with age. Because correlation coefficients captured the
fitting quality (a clear relationship), not the magnitude of influence itself, we worried that a
few edges whose overall magnitude is relatively larger than for other edges dominantly affected
the prediction. So, we regularized edges with large average magnitudes by dividing the group
mean of the edge (between-group normalization), and the individual sum of edges (within-group
normalization). Though the between-group normalization does not affect correlation coefficients,
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Table 2: List of strongest top 1% connections correlated with age

Edge ρ̄

Positive correlations
L. Thalamus -R. Thalamus. 0.3562
L. Superior temporal - L. Inferior temporal 0.3534

gyrus.
L. Thalamus - R. Caudate Nucleus. 0.3135
L. Thalamus - R. Putamen. 0.3018
L. Thalamus - R. Pallidum. 0.2872
R. Superior temporal - R. Inferior temporal 0.2902

gyrus.
Negative correlations ρ̄
L. Posterior cingulate cortex - L. Paracentral -0.5905

gyrus.
L. Superior frontal - L. Caudal anterior -0.5613

cingulate cortex.
R. Superior temporal - R. Middle temporal gyrus.-0.5340
L. Superior temporal - L. Middle temporal gyrus. -0.5204
R. Posterior cingulate cortex - R. Paracentral -0.4797

gyrus.
R. Superior frontal - R. Caudal anterior -0.4791

cingulate cortex.
R. Parso percularis - R. Precentral gyrus. -0.4518
R. Rostral anterior cingulate - R. Superior -0.4373

frontal gyrus.
R. Postcentral gyrus - R. Supramarginal gyrus. -0.4324

it performed worse than the within-group normalization, which deteriorated correlation. Thus,
we believed that not only the clear relationship captured by the correlation coefficients, but
also the magnitude of the edge was important. In other words, edges with larger magnitudes
(preponderantly larger variance) had greater roles in predicting brain maturity than edges with
smaller magnitudes.

Reducing the number of features is crucial in machine learning literature, including recursive
feature elimination (RFE) [20]. Though we did not remove any edges, when its correlation coeffi-
cient is near zero, the edge can be considered as a removed feature. Using correlation coefficients
for feature elimination was common [11, 22]. Dosenbach et al. [11] selected connections with
200 largest absolute values of correlation coefficients to predict age, which survived after Bon-
ferroni correction. We note that such a selection with Bonferroni did not work for our dataset;
we may employ a (less conservative) cluster-based correction method for correlation coefficients
[21]. A notably similar work with DTI and lifespan age prediction [20] used various white matter
parameters including white matter integrity of voxels and support vector regression with RFE.
Though the model showed slightly stronger correlation between the predicted age and the real
age (ρ ≈ 0.89), our method has the advantage of providing direct linkages between regions, which
are useful to understand dynamic changes of brain connectivity during development.

The method can be improved in various ways. First, the use of nonlinear fitting may help. A
potential limitation is the use of a linear fit for converting the raw prediction measure P to the
age prediction, P ′. While a linear fit yielded good results, exponential, logarithmic or other fits
might be more suitable. For example, we noticed an underestimation of age for subjects older
than 50 years which links with earlier studies that found nonlinear trends during development
for brain volume [23, 24], white matter integrity [23, 24, 20], and functional connectivity [11].
Second, we may use partial correlation coefficients [22] to adjust group biases, or Spearman
correlation coefficient to handle non-normality of connection strengths. Third, separating males
and females may improve the performance as they may follow different developmental trajectories
[9, 25].
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5 Conclusion

Using a simple predictor based on the influence of each fiber tract connection on a feature of
interest, we were able to predict age of a subject given structural connectivity data with fair
performance. This indicates that predicting other cognitive and general features (e.g. gender)
might be derived from diffusion tensor imaging data of a subject. Also the proposed method
is applicable to networks with other modalities including functional connectivity. We note that
it can be improved in various ways still, including nonlinear mapping between a raw prediction
score P and a predicted age P ′, and the use of partial correlation coefficients.

Besides the clinical and basic scientific applications, our results also raise an ethical issue. If
anonymized DTI data of a subject and the metadata table of name, IQ, and age of all subjects
is available, one might identify the name of the subject by finding table entries that match the
predicted IQ and age. In other words, even without a key (identifier) that links entries of the
MRI database with those of the clinical scores/metadata database, anonymized data could be
linked to a specific person.
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