A Hardware Approach to Protein Identification

Gea Bianchi, Fabiola Casasopra, Gianluca C. Durelli, Marco D. Santambrogio
Politecnico di Milano, Italy
Dipartimento di Elettronica Informazione e Bioingegneria
{gea.bianchi, fabiola.casasopra} @mail.polimi.it {gianlucacarlo.durelli, marco.santambrogio } @ polimi.it

Abstract—At the basis of proteins identification we have a
string matching algorithm, which has a computational complexity
that scales with the length of both the searched and the reference
string. This complexity, as well as the fact that to match a single
protein we need multiple search of different string in the whole
database, makes the protein identification a computational inten-
sive task taking tens of seconds to complete. When performing
this task with General Purpose Processors (GPPs), as it might be
in a large scale installation (such as medical or research centers),
this long execution time translates into a high energy requirement
which greatly impacts the scalability and maintenance cost of
the system. This paper illustrates a possible way to exploit
Field Programmable Gate Arrays (FPGAs) to implement a string
matching algorithm with an higher energy efficiency, up to 6 times
better, than a standard GPP; such solution can be a building
block for large-scale installations aimed at improving protein
identification.

I. INTRODUCTION

The ability to quickly identify proteins is a major concern
in many medical applications such as cancer monitoring and
recognition and pharmaceutical research. Due to the fast incre-
ment of data available thanks to technological improvements,
we need to take proteins identification a step further, improving
its identification speed to match the growth of both proteomics
and genomics databases. Because of the fast data growth
inside both proteomic and genomic databases, protein iden-
tification requires an increasing amount of computation. Many
researches will benefit from accurate protein identification and
the ability to produce more accurate results at faster rates.
For instance, disciplines, such as detecting biomarkers within
diagnostic field, in order to recognize and monitor cancer
disease with serum proteomic [1], bacterial identification, and
pharmaceutical research will take advantage of this possibility.

The problem of identifying a protein is similar to the string
matching problem, i.e. the problem of finding a substring in
another string; in particular in this case the problem consists in
matching a string identifying a peptide of an unknown protein,
against a string identifying a whole well known protein. After
all the peptides of the unknown protein have been searched a
score can be assigned to the proteins in the database to find the
one that best matches the unknown protein we are trying to
identify. Unfortunately the computational complexity of this
problem grows as Ly, X L., if we identify the length of
the peptide as L., and the length of the protein as L.
Furthermore as we have to search for all the unknown peptides
forming the protein, U in the whole database composed of P
proteins we have a worst case computational complexity of

U X Lyre X P X Ly

978-1-4799-7234-0/15/$31.00 ©2015 IEEE

This complexity refers to a single protein identification, and
obviously another multiplication factor has to be added to
the formula to take in consideration the scenario of multiple
proteins identification.

Because of this computational complexity the problem
might take long time to be solved for large databases. In this
paper we propose an implementation of the string matching
algorithm targeting a Field Programmable Gate Array (FPGA)
device, and we will show how reconfigurable hardware tech-
nology can fit in the proteins identification problem both
at small- and large-scale. In our work! we focused on the
implementation of the well-known Knuth Morris Pratt (KMP)
algorithms and we targeted real world data targeting the
recognition of the Ki-67 protein, which is described as one of
the biomarkers currently used to monitor gastric cancer [3],
against the isoform proteomic FASTA database, provided by
Universal Protein Resource [4].

The remainder of the paper analyzes the current state of
the art (Section II), describes the solution proposed in this
work (Section III, and presents the result obtained on the
target device (Section IV). Finally Section V concludes the
discussion and illustrates possible future works stemming from
the topic discussed in this paper.

II. RELATED WORK

Hardware accelerators have been used with benefit in dif-
ferent applications, including in the pattern matching scenario,
tackled by this work. As an example an implementation of
three different Field Programmable Gate Arrays (FPGAs) for
the regular expression matching problem has been proposed
in [5]; this solution was able to obtain improvements over the
SW implementation in all the tested scenarios. The work in
[6] developed a custom algorithm, named Orthogonal Parabix,
adapting the Parabix algorithm to its specific needs. This
work compares the Orthogonal Parabix to other approaches
available in literature (Rabin Karp [7], Boyer Moore [§],
Parabix [9]) and illustrates how such algorithm can achieve
faster results, enough for real time protein identification, for
their specific problem. Other researches over the last few years
show how, in the proteins identification problem, the usage of
FPGA devices leads to good improvements. For instance, in
[10] the authors illustrated how a HW/SW codesign approach
can help by allowing both the flexibility of the SW as well as
the speed of the HW architecture. Another work [11] proposes
an automatic implementation of an exact string matching
algorithm, i.e. Aho Corasick [12], that optimizes the string
length of the peptides used in the searching process. Finally

I'Source code and other resources related to the paper are available at [2]

[13] realized a HW implementation of Aho Corasick that
aims at optimizing the utilized area on the device, while
maintaining good performance, by partitioning the Finite State
Machine (FSM) that performs the string matching analyzing
a small number of peptides in parallel. Although it has been
demonstrated how Aho Corasick is the fastest string matching
algorithm, it suffers from a great limitation for what concern
HW implementation. It relies on the creation of an ad-hoc
HW component to match a single peptide, which causes the
need to synthesize different HW components for each possible
peptide. Given the huge time needed to synthesize an HW
component (few hours when the design is not too complex) this
approach does not seem the best solution in term of flexibility.
In this paper we instead focus on more general string matching
algorithms and we show how they can benefit from a FPGA
implementation. The algorithms we take into consideration can
be used for all kinds of proteins and peptides we want to
compare, allowing to use the solution even for future updates
of the proteomic database and for new sets of peptides.

III. IMPLEMENTATION

As stated above, the computational complexity of string
matching grows with the lenght of the strings involved (i.e.
the peptide and the protein), in a different way depending on
the selected algorithm: from the product between the strings in
a naive approach, down to their sum for the Knuth Morris Pratt
(KMP) [14] algorithm. This algorithm puts sentinel values at
the end of both the peptide and the protein under analysis and,
thanks to a preprocessing of the peptide, is able to construct a
map that allows it to jump to the next candidate match string
when a previous match failed. Faster approaches are available,
as cited in Section II, such as the Aho Corasick algorithm
based on building trie for the peptides to match. However
this approach is not suitable for Field Programmable Gate
Array (FPGA) device since it needs to go through the long
synthesis, map, and place and route steps required to derive
the description of the circuit in form of a bitstream capable
of configuring the device. For this reason we focused on the
KMP algorithm which can be used to check any peptide the
user desires. The rest of the description will focus on the HW
core and its integration with the entire system, illustrating the
key points of the design.

The solution we propose is an HW/SW combined approach
to the string matching problem exploiting the KMP algorithm.
The HW core uses local BRAM for effective computation
and the overall string matching problem against a proteomic
database is split in smaller instances. In the current implemen-
tation we analyzed the possibility to perform the comparison
between a single protein and a peptide. The HW will then
receive the input data one at the time and will then find all the
position at which the peptide is contained in the protein (more
than one if it is the case) and then it sends the results back
to the host processor. The host processor is then responsible
of merging the obtained data and compute scores to find out
which is the most suitable match in the database (note that all
the functions we left in SW have a linear complexity and do
not greatly impact on the overall execution time).

The HW architecture we target, as final device, is an ARM
based chip using an AXI/AMBA as communication bus that
transfers 32bits at a time. This detail, although it is a low

level detail decoupled from core functionality, it is important to
understand an important implementation detail. An important
thing of our design is the fact that we exploit the possibility
to send 32bit at the time to a HW device to copy all the
input strings without the need of adapting the input before
sending the data. Instead of sending everything as an array
of characters (8 bits) we use the whole bus-width sending 4
characters at the time, which are then unpacked by the HW
core in an array of characters representing the input strings.
This solution allows us to use the whole bus bandwidth during
transmission and to not lose any time to convert data in the
format wanted by the HW accelerator. Considering in fact that
the KMP method complexity increases almost linearly with
the size of the strings, the process of reshaping data (which is
generally linear itself) will not permit the HW core to reach
any speedup with respect to the SW solution, since reshaping
data will take as much time as computation.

The computational part of the core itself adhere with the
original KMP algorithm and it has been implemented using
the Vivado High Level System (HLS) tool [15]. We pose
particular attention during the design of the core on how the
data is exchanged between the host and the HW core. At
first we implemented the core such that it uses AXI stream
interfaces that allows to stream data into the HW core, and to
connect both input and output to a DMA component to move
data from and to host memory. This solution is by far the
most efficient since moving one character at the time writing
the value on the bus will incur in a massive overhead. At
the same time we optimized the data movement treating the
array of characters representing the proteins and peptides to be
managed and transferred as an array of 32 bits data. In this way
each transfer over the bus, which is 32 bits wide, utilizes the
whole data path and we can use less transfers to move all the
data. Starting from this, we need to split back data in the HW
core upon the reception of 32 bits data to obtain 4 different 8
bits value representing the characters that has to be used for the
string matching. Finally we implemented two versions of the
algorithm that interact with the host processor in two different
ways. The first solution acts as the standard KMP algorithm
for a General Purpose Processor (GPP) processor: in this case
at each comparison between a protein and a peptide, both of
them are sent to the accelerator. The second solution instead
tries to reduce the amount of data transfer caching the protein
on core local BRAM for whole time it is needed. This means
that with this second solution the protein, which is the longer
string, is sent to the HW core only upon the comparison with
the first peptide and then it is retained in local BRAMs. For the
comparison with all the other peptides no information about
the protein is send, and only peptides are moved from the host
processor to the HW core.

[KM POCore]:[DMA
[KMPfore]:[DMA
[KM chore]:[DMA
+ External
_E= DDR
[KMPSCore]:[DMA ’:

Complete system layout, realized with Vivado [15]

|
-

ARM
Cortex-A9

TR

Fig. 1.

After realizing the HW core by mean of HLS, we integrated
it in our target embedded system in order to enhance the
processing capability of the platform. The reference target plat-
form for this work is the AVNET Zedboard development board,
which features an ARM dual core processor and programmable
logic. We realized a system that exploits multiple copies
of HW cores to process different proteins and peptides in
parallel. In particular our device provides 4 high performance
memory access ports that a Direct Memory Access (DMA)
component can use to exchange data in an efficient way with
the programmable logic and our HW cores. Figure 1 reports
the high level view of the system we designed. This hardware
design allows to optimize both the HW core, customizing it to
the computation that has to be done by means of HLS tools,
and the overall system allowing to distribute the computation
across different units to speedup the execution.

IV. RESULTS

The HW core has been implemented using the Xilinx
toolchain and we used the ZedBoard as a target device. The
HW accelerator uses only stream interfaces as input and output
meaning that it computes upon the reception of a given amount
of data. The SW processor can offload computation to the HW
core by issuing data transfers controlling the Direct Memory
Access (DMA) connected to the core. Through the Vivado
HLS tool we converted the initial C code, adapted to the C-
like description supported by the tool itself, into VHDL by
means of an High Level System (HLS) process. We focused
on the optimization at data transfer level and no finer tuning
in the algorithm itself had been explored. The core so design
has been integrated into a full embedded system comprised
of an ARM Cortex-A9 dual core processor following the
structure depicted in Figure 1, where 4 copies of our core
(that can work in parallel) have been integrated. Figure 2
illustrates how the system we designed has been mapped on the
target device. The red blocks are the one related to the ARM
processor and the AXI/AMBA bus; the blue cells represent one
instance of the HW accelerator for string matching; while the
green part highlights the other three accelerators. For a more
straightforward illustration of resource usage, Table I illustrates
the resource usage across different resources for both the HW
core itself and the full system.

The ZedBoard platform can run Linux on top of the ARM
cores, and we compiled a kernel starting from the one released
from Xilinx adding the DMA drivers we developed. On top
of these drivers further user space libraries can be devised to
allow a general user to control the HW cores. These libraries
might take as input the proteins and peptides to compare,
manages the transmission of data to the core, and collects the
results. All the complexity of the HW core management and
data transfer management is then hidden from the final user
which does not have to be involved with any stage of the HW
design process. The ability to run Linux, and the support for
C++, allowed us to run develop the application on our laptops
for debug and tests and then simply cross-compile the same
application for the ARM processor. In this way we are sure
that a fair comparison can be drawn since the code executed
is exactly the same.

We tested our solution using, as input for identification, the
results obtained from the virtual digestion of a protein (Ki-67)

TABLE 1. RESOURCE UTILIZATION BREAKDOWN ACROSS DIFFERENT

RESOURCES FOR OUR IMPLEMENTATION. UTILIZATION FOR BOTH SINGLE

CORE (AFTER THE SYNTHESIS) AND THE WHOLE SYSTEM (AFTER PLACE
AND ROUTE) ARE REPORTED.

BRAM 18K Flip Flop LUTs
HW accelerator 34 (12%) 987 (1%) 1958 (3%)
Full System 152 (54%) 19000 (18%) 15467 (29%)

obtained with the tool ExPASy [16], simulating the digestive
process by means of the tripsina enzyme (one of the most
common enzymes used for the Tandem mass spectrometry).
The system is tested with a real case scenario trying to identify
a unknown protein (i.e. set of peptides) obtained through
the previous process against a reference database of human
proteins that stores the information of 62573 proteins. We
perform the test on 4 different systems:

e i7:a 273 GHz Intel Core i7 processor;

o ARM: an ARM Cortex A9 processor (the one mounted
on the Zedboard);

e HW: the first implementation of our solution, which
needs to be provided each time with one protein and
one peptide;

e HW2: the second version that receives the protein one
time for every unknown peptides.

Figure 3 illustrates the results obtained for the execution
of the Knuth Morris Pratt (KMP) algorithm in these four
scenarios. The plot shows the performance in terms of number
of proteins in the database analyzed per second, and it shows
that if we focus only on performance the i7 implementation is
the best solution when compared to any of the implementation
we carried out on the Zedbord. Focusing on the Zedboard we
can see how W2 can obtain faster results than HW especially
for shorter proteins; while both of the HW solutions perform
better than the ARM implementation.

We then compared the energy efficiency of the solution we
devised using reference Thermal Design Power (TDP) for the
i7 taken from Intel specification, which is 37 W, and values
obtained using Vivado power report tool for the Zedboard (we
executed the tool with default parameters). The power report

Fig. 2. FPGA resource mapping after place and route phase for the ZedBoard.

Architecture

ARM
1000 -

HW
HW2
i7

100-

Performance [Proteins/s]

0 2000 4000 6000
Protein Length

Fig. 3. Performance of the different KMP implementations

on Vivado assigned a total power (static and dynamic) of 1.883
W for the entire board, where 1.716 are due to the ARM
subsystem and device static power. For HW and HW2 we used
1.883 W as power consumption value, while we used 1.716 W
for the ARM solution. A plot of the energy efficiency of the
different solutions (measured as proteins analyzed per joule) is
reported in Figure 5. As we can see in this case the results are
flipped and i7, even if is the fastest solution, it is not the most
energy efficient. If we look at the figure we see that all the
implementations on the Zedboard have an energy efficiency
which is higher than the i7 one for every possible protein
length with an energy efficiency gain ranging from 5x to 10x.
This increase in energy efficiency ends up in the possibility to
perform a comparison between the unknown reference protein
and the whole database consuming less energy. Figure 4 reports
the total energy needed for a comparison of the unknown
protein with the whole database, estimated as the total time
needed multiplied by the power consumption of each solution.
As the figure shows the most efficient of our solutions (HW2)
can perform a full scan over the database consuming less then
6.27 times less energy than the i7.

V. CONCLUSION

In this work we presented a hardware implementation for
the protein matching problem based on the Knuth Morris Pratt
(KMP) algorithm targeting the Zedboard development board.
The HW implementation has been focused at optimizing the
data transfer overhead between the host processor and the
reconfigurable logic. Tests using the human proteomic database
[4] has been executed on both the Zedboard and an Intel
processor and performance and energy efficiency results have
been collected. The analysis of such results shows how the
devised solution can improve the increase the energy efficiency
of a 6.27 factor with respect to the i7 implementation, making
it a viable solution for larger scale systems.

Future works will investigate the possibility to implement

274.67

n

00 -
200.7 Architecture
ARM
HW

HW2
i7

Energy [J]

=)
S

4376
ARM HW HW2
Architecture

Fig. 4. Total energy needed matching one unknown protein against all the
database for the different KMP implementations

Architecture
ARM
HW
HW2
i7

3
3

Energy Efficiency [Proteins/J]

4000
Protein Length

Fig. 5. Energy efficiency of the different KMP implementations

a larger scale solution starting from either a cluster of lower
end Field Programmable Gate Arrays (FPGAs), such as the
Zedboard we used, or a cluster of high end boards, such as
the Virtex 7, connected to PCI express to standard desktop
and server processors as the i7 we used as comparison in this
work.

REFERENCES

[1] W. Liu, Q. Yang, B. Liu, and Z. Zhu, “Serum proteomics for gastric
cancer,” Clinica Chimica Acta, vol. 431, pp. 179-184, 2014.

[2] [Online]. Available:
paper

[3] M. Calik, E. Demirci, E. Altun, . Calik, O. B. Gundo?du, N. Gursan,
B. Gundo?du, and M. Albayrak, “Clinicopathological importance of Ki-
67, p27, and p53 expression in gastric cancer,” Turk J Med Sci, vol. 45,
no. 1, pp. 118-128, 2015.

[4] [Online]. Available: http://www.uniprot.org/UniProt

https://bitbucket.org/necst/proteinidentification-

[5] I. Bonesana, M. Paolieri, and M. Santambrogio, “An adaptable fpga-
based system for regular expression matching,” in Design, Automation
and Test in Europe, 2008. DATE ’08, March 2008, pp. 1262-1267.

[6] R. J. Peace, “String matching and online retention time prediction
for real-time information-driven mass spectrometry,” Ph.D. dissertation,
Carleton University Ottawa, 2011.

[71 R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching
algorithms,” IBM Journal of Research and Development, vol. 31, no. 2,
pp. 249-260, 1987.

[8] R. S. Boyer and J. S. Moore, “Integrating decision procedures into
heuristic theorem provers: A case study of linear arithmetic,” in Machine
intelligence. Citeseer, 1985.

[9] R. D. Cameron, K. S. Herdy, and D. Lin, “High performance xml
parsing using parallel bit stream technology,” in Proceedings of the
2008 conference of the center for advanced studies on collaborative
research: meeting of minds. ACM, 2008, p. 17.

[10] S. M. Vidanagamachchi, S. D. Dewasurendra, and R. G. Ragel, “Hard-
ware software co-design of the aho-corasick algorithm: Scalable for
protein identification?”” CoRR, vol. abs/1403.1317, 2014.

[11] S. Vidanagamachchi, S. Dewasurendra, R. Ragel, and M. Niranjan, “Tile
optimization for area in fpga based hardware acceleration of peptide
identification,” in Industrial and Information Systems (ICIIS), 2011 6th
IEEE International Conference on, Aug 2011, pp. 140-145.

[12] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to
bibliographic search,” Communications of the ACM, vol. 18, no. 6, pp.
333-340, 1975.

[13] Y. S. Dandass, S. C. Burgess, M. Lawrence, and S. M. Bridges,
“Accelerating string set matching in fpga hardware for bioinformatics
research,” BMC bioinformatics, vol. 9, no. 1, p. 197, 2008.

[14] D. E. Knuth, J. Morris, and V. R. Pratt, “Fast pattern matching in
strings,” SIAM Journal of Computing, vol. 6, no. 2, pp. 323-350, 1977.

[15] T. Feist, “Vivado design suite,” White Paper, 2012.

[16] [Online]. Available: http://web.expasy.org

[17] R.J. Peace, H. A. Mahmoud, and J. R. Green, “Exact string matching
for ms/ms protein identification using the cell broadband engine,”

Journal of Medical and Biological Engineering, vol. 31, no. 2, pp.
99-104, 2011.

