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Abstract—Homeostatic plasticity is a stabilizing mechanism
that allows neural systems to maintain their activity around a
functional operating point. This is an extremely useful mechanism
for neuromorphic computing systems, as it can be used to
compensate for chronic shifts, for example due to changes in the
network structure. However, it is important that this plasticity
mechanism operates on time scales that are much longer than
conventional synaptic plasticity ones, in order to not interfere with
the learning process. In this paper we present a novel ultra-low
leakage cell and an automatic gain control scheme that can adapt
the gain of analog log-domain synapse circuits over extremely long
time scales. To validate the proposed scheme, we implemented
the ultra-low leakage cell in a standard 180 nm Complementary
Metal-Oxide-Semiconductor (CMOS) process, and integrated it in
an array of dynamic synapses connected to an adaptive integrate
and fire neuron. We describe the circuit and demonstrate how
it can be configured to scale the gain of all synapses afferent to
the silicon neuron in a way to keep the neuron’s average firing
rate constant around a set operating point. The circuit occupies
a silicon area of 84µm×22µm and consumes approximately
10.8 nW with a 1.8V supply voltage. It exhibits time constants
of up to 25 kilo-seconds, thanks to a controllable leakage current
that can be scaled down to 1.2 atto-Amps (7.5 electrons/s).

I. Introduction
One of the most remarkable properties of nervous systems

is their ability of changing and adapting to the environment, in
order to achieve and maintain robust computation. To this effect,
a wide variety of plasticity mechanisms have been observed
in neural circuits, optimized to attain specific goals: short-
term plasticity over short temporal scales (e.g. of milliseconds)
can mediate the selectivity to transient stimuli and contrast
adaptation [1]; over longer time scales (e.g., tens to hundreds
of milliseconds), spike-based synaptic plasticity mechanisms,
such as Spike-Timing Dependent Plasticity (STDP), have been
shown to mediate learning processes [2]; finally, over very
long time scales (e.g., minutes, to hours, or more) it has been
shown that intrinsic and homeostatic plasticity mechanisms
are useful for adapting the system to long-lasting changes,
maintaining the overall activity of neurons within functional

boundaries [3]. Homeostatic plasticity comprises a variety
of mechanisms acting at different levels, ranging from the
tuning of the neuron excitability to modulating their activity
by acting on the relative gain of the synapses connected to the
neuron [4]. Synaptic scaling is a homeostatic mechanism that
uniformly scales the efficacy of all the synapses impinging on
the same neuron using a multiplicative effect which preserves
the different ratios of synaptic weights among the synapses
without disrupting the effect of activity dependent learning. This
mechanism is crucial to adapt the activity of neural networks to
compensate for changes in external conditions, such as increases
in the input activity levels, or temperature drifts, or internal
malfunctions of parts of the network. Homeostasis is therefore a
particularly useful engineering strategy for the design of robust
computational architectures in artificial neural networks that
can automatically change their internal parameters to account
for long-lasting changes in their operating conditions. However,
despite being extremely important for the design of large scale
neuromorphic computing platforms, only few works addressed
the implementation of homeostasis in silicon neural networks,
mainly because of the technical difficulty in obtaining the
necessary extremely long time constants with the intrinsically
fast CMOS circuital elements. Existing approaches focus on
the use of floating gate transistors [5], [6], or propose to use
off-chip methods, that require external memory and digital
circuits [7]. Here we propose a novel auto-gain synaptic scaling
circuit that exploits the features of an ultra-low leakage cell
implemented using standard CMOS technology able to achieve
extremely long time constant [8]–[10]. The design proposed
here represents an improvement over a previous attempt [8]
that could not achieve the same time scales, and that was more
difficult to control. The synaptic scaling effect is obtained by
making use of Differential Pair Integrator (DPI) synapse [11],
[12] circuits, which have two independent parameters that can be
used to set the global synaptic scaling term (via the homeostatic
circuit), and the local individual synaptic weight terms (e.g.,
via spike-based learning circuits). In the next Sections we
describe the circuits that implement the homeostatic automatic
gain control loop and the ultra-low leakage CMOS cell, and
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Fig. 1. Block diagram of proposed homeostatic AGC loop. The output current
of the DPI block Isyn is scaled automatically over long time scales, by up-
or down-regulating the VT HR control voltage.

present experimental results obtained from the measurements
of a fabricated test circuit.

II. The Homeostatic Automatic Gain Control Loop
Typical neuromorphic computing architectures comprise ar-

rays of silicon neurons each receiving input from a large number
of input synapses [12], [13]. In these systems, it is possible to
maintain neuron’s overall spiking activity within given operating
boundaries, without interfering with the network’s signal
processing and learning mechanisms, by adopting automatic
gain control mechanisms with very long time constants for
globally scaling the synaptic weights of the synapse circuits
afferent to their corresponding neuron. A circuit that allows
independent control of the synapse scaling gain and its synaptic
weight is the DPI [11]. This circuit is a current-mode log domain
integrator circuit. If all the synapses afferent to the neuron share
the same temporal dynamics, it is possible to use one single
integrator circuit per neuron and use the temporal superposition
principle to combine the output of multiple synapses (see the
multiple Iwi currents in Fig. 1). The circuit has the following
transfer function (see [12] for a more thorough analysis using
the translinear principle, and [11] for a time-domain linear
system’s analysis):

τs
d

dt
Isyn + Isyn = IwIgain

Iτ
(1)

where the term τs is (CDPIUT )/(κIτ ), with UT representing
the thermal voltage, and κ the sub-threshold slope coefficient.
At equilibrium, the steady-state value of Isyn is Isyn =
IwIgain/Iτ . The current Iτ is a bias current that needs to be
tuned to properly set the integrator time constant. The current Iw
corresponds to the sum of the individual synapse input currents
Iw =

∑
i Iwi, set by their corresponding synaptic weight bias

voltages Vwi. The current Igain on the other hand represents
an extra independent term that can be set by additional control
circuits. This current is defined as

Igain = I0e
κ(VTHR−Vdd)

UT (2)

Fig. 2. Circuit implementation of the LLC used in the AGC loop.

It represents a virtual P-type subthreshold current that is not tied
to any p-FET in the circuit of Fig. 1. By adjusting VTHR, Igain
can be tuned so as to increase or decrease Isyn, independent
from changes of Iw (e.g., due to the regular learning process). A
copy of the DPI output current Isyn is eventually injected into
the neuron, which will then produce a firing rate proportional
to its amplitude. Figure 1 shows how the AGC homeostatic
control block is used to modulate the voltage VTHR in order to
maintain the current Isyn around a set reference current IREF :
the Isyn current is fed into a high-gain voltage comparator that
checks which of the voltages that set the Isyn and Iref currents
is greater than the other. Depending on the outcome of this
comparison, the digital output voltage SW of this comparator
is set to either ground or VDD. This digital signal is then used
to gate the control signals of a Low Leakage Cell (LLC) circuit
which slowly adjusts VTHR to up-regulate or down-regulate
Isyn accordingly.

III. The ultra-low leakage cell
To achieve long biological realistic time-scales, it is neces-

sary to develop circuits with time constants that range from
milliseconds to hours. Since these stringent specifications need
to be met while keeping the circuit’s capacitance to a minimum
(e.g. in order to integrate many of these circuits on a single die),
these circuits are required to produce extremely small currents.
An example of such a circuit is the ultra-low leakage cell shown
in Fig. 2. This circuit increases or decreases its output voltage
VTHR by controlling the direction of a very small current
across the channel an LLC p-FET to slowly charge or discharge
the capacitor CF . As in our LLC circuit implementation the
capacitance CF is set to 1 pF, the currents required to achieve
kilo-second time constants have to be of the order of 1 fA,
which is usually hundred times smaller than channel off-state
leakage current of transistors, for the standard 180 nm CMOS
process used. Ultra-low ranges of currents can be obtained
by minimizing the leakage currents across LLC p-FET [9].
In particular, the leakage current IDB can be minimized by
biasing VDB to be zero; this condition can be met by using
a feedback Operational Transconductance Amplifier (OTA)
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with large enough gain (see OTA2 in Fig.2). In order to get
ultra-small leakage current from node D of the LLC p-FET, it
is necessary to minimize the gate leakage currents IDG and
IDG2: gate leakage current density normally is exponentially
related to the thickness of gate oxide and strongly depends
on gate bias [14]. For a standard 180 nm process with a gate
oxide thickness of 4.6 nm, it is reasonable to assume the gate
leakage current density with gate bias of 0.5V to be smaller
than 10−8 A/m2. To minimize these currents we designed the
low leakage transistor with a W/L ratio of 0.5µm/1µm and
the p-FET input transistor of the OTA2 with a W/L ratio of
8µm/1µm. Therefore the total gate leakage current is estimated
to be smaller than 0.1 aA. While the OTA2 amplifier is used
to implement a high-gain negative feedback loop to keep the
potential of VD as close as possible to VREF _M , the OTA1
amplifier is used to clamp the voltage VS of the LLC p-FET
to one of the two VREF _L, VREF _H reference voltages. The
detailed circuit schematic diagram of the OTA1 and OTA2
amplifiers are shown in the top-left inset of Fig. 2. To ensure
high-gain and rail-to-rail output range, while minimizing power,
we adopted a two stage pseudo-cascode split-transistor sub-
threshold technique [15].

Given these small currents, at the beginning of an experiment
it is necessary to initialize the AGC control loop to a proper
initial condition, such as VTHR = VD = VREF _M . This can
be done by enabling the digital control signal RST to high, and
resetting it to ground shortly after. At this point the direction
of the current across the LLC p-FET of Fig. 2 will be set by
the digital control signal SW, produced by the comparator of
Fig. 1. If SW is high, then the VDS of the LLC p-FET will
correspond to VREF _M −VREF _L, otherwise it will correspond
to VREF _M−VREF _H . By appropriately setting these reference
voltages such that VREF _L < VREF _M < VREF _H , and by
properly tuning the LLC p-FET’s gate voltage VG, it is possible
to precisely control both direction and amplitude of the LLC
p-FET IDS current.
During normal operation, if the total synaptic drive Isyn

increases above the reference current IREF , the comparator will
set the digital signal SW to high. Since this enables the signal
VREF _L as input to the OTA1 amplifier, the current will slowly
discharge CF and cause an increase in VTHR. This will in turn
downscale the value of Igain of eq. (2), effectively reducing the
synaptic current Isyn injected into neuron, and compensating
for the initial change. Conversely, as Isyn decreases below
IREF , the comparator will enable VREF _H as input to OTA1.
This will cause the LLC p-FET current to slowly charge the
CF capacitor, thereby decreasing VTHR and increasing Igain.
This will counteract the source of the disturbance that caused
the initial decrease of Isyn, and increase it back, until it reaches
again the reference level IREF .

IV. Experimental results
To characterize the response properties of the proposed

circuits, we designed a prototype test chip in standard 180 nm
CMOS process comprising a small array of neurons and
synapses with embedded synaptic scaling circuits. Figure 3
shows the die-photo of the fabricated chip, with the synaptic
scaling circuits highlighted in the Neuron/Synapse Array #1.

Fig. 3. Die photo of test chip implemented using a standard 180 nm CMOS
process. The proposed DPI-based very long time scale automatic gain control
synaptic scaling circuits are embedded in the Neuron/Synapse Array #1, and
circled in blue. The whole chip occupies an area of 3.96mm×2.29mm, and
the synaptic scaling circuits occupy an area of 84µm×22µm.

Fig. 4. Synaptic homeostasis measurements in response to step changes of
the DPI input current. (Top): the voltage traces VT HR and VSY N ; (Middle):
the comparator output digital signal SW; (Bottom): neuron’s instantaneous
firing rate and its input DC current.

In Fig. 4 we show the response of the circuit to a DC change
in the input current IDC applied as synaptic weight input
current into the circuit’s DPI block (see also Fig. 1).

In this experiment we set IDC to start at 0.3 nA, the reference
current IREF to be 20 nA, and the parameters of the silicon
neuron (e.g. gain, time constant and refectory period) in a way
to obtain a firing rate of approximately 100Hz. By properly
setting the VG bias voltage of Fig. 2, we tuned the time constant
of the homeostatic control circuit to be around 60 seconds. In
these conditions, the AGC loop of Fig. 1 clamps VTHR to a
value around 1.46V, and VSY N around 1.4V, thus maintaining
the neuron’s firing rate stable at its initial value. After 20
seconds we made IDC change from 0.3 to 0.6 nA. As expected,
this increased the DPI output current Isyn, decreased the VSY N
voltage accordingly, and increased the neuron’s firing rate from
100 to about 180Hz. The synaptic scaling homeostatic circuits
now start having an effect and slowly scale down the total
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Fig. 5. Neuron’s firing rate modulated by the homeostatic mechanism, tuned
to respond with different time scales. The bottom red curve represents the
DPI’s input current IDC .

synaptic current Isyn being injected in the neuron, which in
turn starts to slowly decrease its output firing rate. This is
done by slowly increasing the VTHR signal, which is shared
by all input synapses afferent to the same neuron, and which
modulated the Igain current. After approximately 60 seconds
Isyn and the firing rate of the neuron are both restored to their
initial values. At around t = 120 s we change the IDC current
back from 0.6 to 0.3 nA. In this case, the neuron’s firing rate
drops below its original value and the AGC loop is activated
such that after about 60 seconds, the neuron’s firing rate is
restored back to its original value. Due to the bang-bang nature
of the the AGC control loop, when the neuron’s firing rate
is close to the reference (see “locked” regions in Fig. 4) the
homeostatic circuits keep on alternating the SW signal from
high to low, in order to keep the Isyn current around the IREF
reference current.

In Fig. 5 we show how we can tune the homeostatic circuits
to work with different leakage rates. These can be achieved by
changing the VG bias voltage of LLC p-FET, which sets the
amplitude of the IDS current on Fig. 2, and by modulating
the difference between VREF _M , and VREF _L/VREF _H , which
control the voltage drop across the LLC p-FET channel.

In each condition the AGC succeeds in restoring the neuron’s
firing rate to its original 100Hz rate. Although the longest time
scale we measured in this experiment is around 9k seconds,
we verified, with further tests that the same experimental setup
could achieve time scales of about than 25k seconds. In these
test the voltage on the 1 pF CF capacitor of Fig. 2 changed
of approximately 30mV (similar to what happens in the top
trace of Fig. 4) with a slope of 1.2µV/s. Therefore the leakage
current used to discharge the capacitor is approximately 1.2 aA
(7.5 Electrons/second).

A summary of the key figures of the homeostatic synaptic
scaling circuit is shown in Table I.

V. Conclusion
We presented a compact low-power ultra-low leakage synap-

tic scaling circuit for implementing homeostatic plasticity
mechanism with biologically realistic time constants in standard
CMOS processes. We showed how the DPI-based automatic

TABLE I. Homeostatic plasticity circuit key figures.

Process Technology AMS 180 nm 1P6M CMOS
Silicon Area of DPI 84µm × 22µm
Size of LLC (W/L) 0.5µm / 1µm
Power Consumption 10.8 nW
Temporal Constant 25 k seconds
Leakage Slope (1pF) 1.2µV/s
Controllable Leakage Current 1.2 aA (7.5 Electrons/sec)

gain control circuit can properly tune the gain of DPI for
appropriately scaling the circuit’s output current. We designed,
fabricated and tested an ultra-low leakage cell that allowed
us to obtain extremely long time constants in a controllable
way. We measured the low leakage currents obtained from
well-biased signal p-FET device and demonstrated how, with a
1 pF capacitor, it is possible to reach time scales as large as 25 k
seconds, and leakage currents as small as 1.2 aA. The proposed
circuits occupies an area of 84µm×22µm in a standard 180 nm
process, and consumes 10.8 nW with 1.8V supply power during
normal operation. In comparison to previously proposed designs,
this circuit does not require additional floating gate devices
or off-chip methods. This makes it suitable for being easily
integrated with other low-power neuromorphic circuits on the
same device.
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