
Vocal Pain Expression Augmentation to Improve Interaction Accuracy
in Virtual Robopatient

Namnueng Protpagorn1, Leone Costi1, Thilina Dulantha Lalitharatne1,2, Ilana Nisky1,3 and Fumiya Iida1

Abstract— Palpation is a method use by physicians to phys-
ically examine patients using fingers or hands to diagnose
any disease or illness. Vocal pain expressions of the patient
during palpation are considered as important feedback to
assess the conditions. Although recent technological advances
has enabled development of medical simulators for physician
to train the palpation procedures, incorporating vocal pain
expressions to these simulators has been understudied. In this
paper, we present a vocal pain expression augmentation for
a robopatient to be used in abdominal palpation training.
Our virtual robopatient builds upon a virtual abdomen and
a face which can render facial pain expressions together with
vocal pain expressions. In a user study (N=26), we test the
vocal pain augmented virtual robopatient against a system
without vocal pain expressions in a palpation task to estimate
the maximum pain point within the virtual abdomen. We
demonstrate that the vocal pain augmented virtual robopatient
leads to statistically significant improvements in localizing the
maximum pain without compromising the position estimation
time.

I. INTRODUCTION

Medical errors cost up to 98,000 lives in the United States
of America [1] and more than £98 million to the NHS Eng-
land every year [2]. The number of accidents can be reduced
through improvement in training of medical professionals
by diversifying training methods and increasing the training
frequency [3], [4]. Among the skills that need to be trained
by medical professionals, physical examination is a crucial
one that could take years to train [5]. Physical examination is
composed of four phases: inspection, palpation, auscultation,
and percussion [6]. Among them, palpation has been widely
studied in simulation [7] and in real life [8], [9] due to the
intrinsically dexterous and sensitive nature of the task.

Palpation is part of physical examination using fingers or
hands to diagnose disease or illness. Palpation is an examina-
tion method based on multisensory feedback: facial expres-
sion, haptic and auditory feedback. Traditional methods used
to train palpation skills include live demonstrations followed
by students practising these skills under supervision. In
the students’ own time, they can continue to train these
skills using physical mannequins or tissue phantoms [10].
Students can also practice their physical examination skills
on standardised patients (SPs) who are professionally trained
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Fig. 1: Implemented virtual Robopatient interface A shows
a participant performing a trial in front of the laptop while
wearing a headphone. B shows the developed virtual robotic
patient interface. The participants explore the virtual ab-
domen to find the face with highest pain expression while
listening to the pain vocal expressions.

actors acting as patients. Training on SPs is effective [11] but
this method is time-consuming because of SP training and
SPs skills maintenance.

Medical training simulators can provide a safe and con-
trolled environment for medical students to practice their
physical examination skills. Feedbacks for palpation training
setups range from haptic to visual. Haptic feedback setups
range from modelling tumours using granular jamming [12]
to physical systems using interchangeable organs [13]. Visual
feedback includes visualising colours and texture of tumours
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Fig. 2: Overview of the virtual Robopatient interface. It
consists of a position to pain intensity map, a pain intensity to
vocal pain expression map, a facial pain expression generator
and a vocal pain expression generator. The interface takes the
user mouse cursor position as the input and generates pain
facial and vocal expressions as outputs.

[14] or rendering facial expressions [15]. On the other hand,
audio feedback has been identified by doctors as important
feedback during palpation [16]. Despite this, there is only a
limited number of medical simulators with audio feedback
capabilities. SimMan 3G [17] and Pediatric HAL [18] are
examples of successful commercialised medical simulators
with audio feedback. SimMan 3G [17] is a patient simulator
from Laerdal Medical for training rapid assessment of trauma
emergencies. On the other hand, the Pediatric HAL [18] is
a pediatric patient simulator that can render dynamic facial
expressions, movement, and speech.

Some evidence shows hearing someone’s voice allows you
to more accurately detect the emotion compared to looking at
the facial expressions [19]. Many researchers have confirmed
that humans react faster to sound compared to light and
touch. The mean auditory reaction time is 140–160 ms,
the mean visual reaction time is 180–200 ms and the mean
tactile reaction time is 155 ms [20]. This could be because
it takes 8 − 10 ms for auditory stimulus to reach the brain
while approximately 20–40 ms for visual stimulus. Research
has also shown that the reaction time to combined stimulus
events is 20 − 40 ms shorter than to visual events alone
[21]. These findings together with the scarcity of medical
simulators with audio feedback suggest the importance of
adding pain sounds to the existing palpation simulators.

This paper present a vocal pain expression augmentation
for a robopatient to be used in abdominal palpation training.
The implemented virtual robotpatient interface is presented
in Fig. 1 and an overview on how the virtual robotpatient
interface is built is shown in Fig. 2. The virtual robopatient
consists of a position to pain intensity map, a pain intensity to
vocal pain expression map, a facial pain expression generator
and a vocal pain expression generator. In a user study (N =
26), we tested the vocal pain augmented virtual robopatient
against a robopatient without vocal pain expressions in a
palpation task where the participants are asked to estimate

the maximum pain point located with a virtual abdomen. We
demonstrate that the vocal pain augmented virtual robopa-
tient leads to statistically significant improvements in local-
izing the maximum pain without compromising the position
estimation time.

The rest of the paper is organized as follows: Section II
discusses the experimental setup together with a detailed
explanation on each subsystem of the virtual robopatient.
Experiments and results are presented in Section III. Finally
in Section IV, important conclusions are made, while sug-
gesting possible future directions.

II. METHODS

A. Experimental Setup

The overview of the virtual robopatient interface is sum-
marised in in Fig. 2. It mainly consists of a position to pain
intensity map, a pain intensity to vocal pain expression map,
a facial pain expression generator and a vocal pain expression
generator. The interface takes the user mouse cursor position
as the input and generates pain facial and vocal expressions
as outputs. Total virtual robopatient interface is implemented
on MATLAB R2021b. The system consists of a 400 px ×
400 px virtual abdomen in the left pane of Fig. 1B and the
simulated series of facial pain expressions in the right pane
of Fig. 1B, generated using Makehuman software, that reacts
to the user mouse position in the right pane. A PC mouse,
a Beats Solo3 On-Ear Headphone and a full 15 inch screen
of a laptop are provided with the participants to conduct
the experiment in a quiet and distraction-free environment.
The entire virtual robopatient interface was implemented in a
laptop with Intel Core i7-10750H with 16GB RAM operating
on Windows 10 Pro.

B. Pilot Study: Choosing 5 pain sounds

Selecting proper human pain sounds is important for
realising the virtual robopatient with vocal pain expression
augmentation. Therefore, as the first step, we choose 5
pain sounds using a pilot study. A group of 6 participants
which consists of 3 STEM background and 3 humanities
background was given 35 pain sounds from a database once
and rated the painfulness of the audio pain expression on a 0
to 10 scale, where 10 is the maximum pain. The experiment
was done in a quiet and distraction-free environment. All
the participants were given the same headphones that plays
the same volume of the pain sounds in the same order.
Each response is normalised and the mean of the ratings
is calculated to show the average painfulness of each pain
sound. The variances of the ratings are calculated and five
sounds with the lowest variances are selected to signify the
majority agreement. Only pain sounds with ratings 2,3,4,5,6
were chosen because the pain sounds with ratings of 6 or
above were too unrealistic for palpation application since
the pain level of the patient during palpation should be just
above the discomfort level [22], [23].
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C. Position to pain intensity map

The (xt, yt) coordinate of the tumour or the maximum
pain point is randomised in the 300 px × 300 px virtual
force sensor platform using the 300*rand(1) function on
MATLAB.

The pain map is determined from the location of the
tumour using a 2D Gaussian equation:

Pain =
k

σ
√
2π

e−
(x−xt)

2+(y−yt)
2

2σ2 (1)

Where constant k is calibrated so that the pain values lie
between 0 and 100, (x, y) is the coordinate of the user click
on the abdominal phantom and the standard deviation σ is
0.0005. The distribution of pain around the maximum pain
point is assumed to be Gaussian due to the fact that most
biological data is normally distributed. Examples of such
biological data include the height [24] and mean arterial
blood pressure in healthy adults. Similarly, acute pain such
as bruises and cuts is concentrated at the site of the damage
and decreases as the distance from the damage site increases.
This mimics the behaviour of a Gaussian distribution.

D. Pain intensity to vocal pain expression map and vocal
pain expression generator

The virtual robopatient will make the pain sounds corre-
sponding to the pain level in the pain intensity map and the
pain intensity to vocal pain expression map. The pain level
in the pain intensity map is divided into six segments: 0 - 50
(no sound), 50 - 65 (pain sound 1), 65 - 80 (pain sound 2),
80 - 90 (pain sound 3), 90-95 (pain sound 4), 95 - 100 (pain
sound 5). If the pain level is lower than the pain threshold
of 50, no pain sound is played and the state remains at the
starting state. If the pain value is greater than the threshold
of each level, then a pain sound of that level is played. After
the sound is played, the audio system returns to its starting
state, but the facial expression remains at the current state
until the next click. If the participants click closer to the
maximum pain point, the virtual robopatient will play more
painful sounds according to higher pain levels. This pain to
sound mapping method is demonstrated in Algorithm 1. As
an example, if the user was to click on the virtual abdomen
which resulted in the pain intensity of 66, the face of the
virtual robopatient would change to match the intensity of
the pain. The face remains the same until the next point is
clicked but pain sound 2 is played once. In the next attempt,
if the participant clicks closer to the maximum pain point
with the pain intensity of 85, the facial expression becomes
more painful and remains constant within attempts but pain
sound 4 is played once.

This algorithm maps continuous 2D-Gaussian pain values
to 5 discrete pain sounds. This is because when humans
are experiencing acute pain, they make sudden and sharp
noises for themselves and others to react instinctively from
the surprise [25]. Since the sounds they make are discrete,
it allows us to map the continuous pain values to discrete
levels of sound.

Algorithm 1 Pain to sound mapping

Require: 0 ≤ pain ≤ 100
0: sound← off
0: if 50 < pain ≤ 65 then
0: sound← painsound1
0: else
0: if 65 < pain ≤ 80 then
0: sound← painsound2
0: else
0: if 80 < pain ≤ 90 then
0: sound← painsound3
0: else
0: if 90 < pain ≤ 95 then
0: sound← painsound4
0: else
0: if 95 < pain ≤ 100 then
0: sound← painsound5
0: end if
0: end if
0: end if
0: end if
0: end if=0

E. Facial pain expression generator

The pain level in the pain intensity map lie between 0 and
100 according to the pain mapping function in Equation 1.
Therefore, 100 images of a white male face with facial pain
expressions based on 4 facial action units (AUs): AU4 (Brow
Lowerer, AU7 (Lid Tight- ener), AU9 (Nose Wrinkler) and
AU10 (Upper Lip Raiser) are rendered (using Makehuman
software) and are directly matched with the pain intensity
according to [26].

III. EXPERIMENT AND RESULTS

26 participants were recruited for the experiment. Partici-
pants were undergraduate and postgraduate students from the
University of Cambridge. The average age of the participants
is 23.5 with standard deviation of 3.5. The minimum age is
21 and the maximum age is 34. Participants had no visual
impairment or hearing difficulties and no experience in med-
ical simulation. 18 out of 26 participants were engineering
students. 16 out of 26 were self-identified as male and 4 as
female. All participants signed a consent form that indicates
the purpose of the experiment, what the experiment involves
and how the data is handled.

The experiment starts with a detailed instruction of the
tasks. Participants will click on the left pane to palpate the
abdomen, starting from a random point, and simultaneously
analyse the facial expression or both facial expression and au-
dio pain expression to determine the pain level. Participants’
clicking motion imitates the pressing gesture during palpa-
tion and the maximum pain point mimics a sign of tumours
in the abdomen. After the explanation, the instructor did one
attempt of the experiment until the maximum pain point is
found as an example for the participant. The participant will
start the experiment when the example is over.
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Fig. 3: Example performed trajectory by one of the partici-
pant under A sound condition and B no sound condition.

The experiment consists of 20 palpation trials per partici-
pant. The first group of participants performed 20 palpation
trials without sound. The first group of the participants was
the control group which consists of 10 participants. The
reason for having a control group was to isolate the effect
of sound independently from the natural learning of the task
over time. The second group of participants performed the
first 10 trials without sound and the next 10 trials with
sound. There were 16 participants in the second group. In
each trial, participants had a maximum of 20 clicks to find
the maximum pain point since previous experiments suggest
that participants could find the maximum points in less than
20 attempts. The experiment was done in one sitting. The
average distance between the participants and the laptop
screen was approximately 45 cm.

Fig. 3 shows an example of a trajectory map for one trial
without sound and one trial with sound for one participant
which includes the click location, palpation trajectory and
the location of the tumour. Comparing Fig. 3A and 3B, it
is clear that the trial with sound achieved higher accuracy
and require less number of clicks to find the maximum
pain point. Initially, there was no visual or audio feedback
because the participant was far from the maximum pain
point. The participant searched without any information and
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Fig. 4: A Palpation proximity, or the distance between click
and the maximum pain point against the trial completion per-
centage for all participants. The trial completion percentage
is measured by the ratio of number of clicks at the current
attempt against the total number of clicks per trial. B The
mean absolute distance between clicks against the percentage
trial completion is measured by number of users click for all
participants.

took a random approach in order to gain more information
about the location of the maximum pain point. During
the random search period, the distances between clicks are
relatively high because the only information the participant
had is that the maximum pain point is not close to their
recent click. When the participant received some information
from the feedback in the 10th click, the participant knows
that the maximum pain point is nearby and so the search
strategy changes. The mean distance between clicks becomes
smaller and the search pattern is less geometric as the
trial completion percentage reaches 100%. Although Fig.
3 shows a trajectory of one participant, this observation is
supported by the graphs Fig. 4B. Fig. 4A shows that as the
trial completion percentage increases to 100%, the palpation
proximity decreases as expected. Comparing Fig. 4A and Fig.
4B, there is a correlation between the decrease in palpation
proximity and the decrease in the distance between clicks
against time, suggesting that the change in strategy leading
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Fig. 5: The paired plot for the distribution of median localiza-
tion error together with individual participant’s performance
scatter plot. A The participants carried out the experiment
with only visual feedback for all 20 trials B The participants
carried out the experiment first with only visual feedback for
the first 1-10 trials and then with visual and audio feedback
for the second 11-20 trials

to shorter movements could be due to the higher presence of
pain-related information.

Fig. 5A left shows the paired plot for the distribution of
median localization error of only visual feedback method
for all participants. This is the control group and 6 out of
10 participants made larger errors in finding the maximum
pain point in the second 10 trials compared to the first 10
trials. There is no statistical significance for the difference
in the accuracy between the first 10 trials and the second
10 trials from Fig. 5A right (t(9) = 0.235, p = 0.819).
The result of the control group proves that the effect of
learning is not strong enough to produce a significant change
in performance.

Fig. 5B left shows the paired plot for the distribution
of median localization error of two feedback methods for
all participants. 11 out of 16 participants found the max-
imum pain points with smaller median localization error
(Hedges′g = [0.12, 1.47]), or larger accuracy of identifying
the maximum pain point, when the system is integrated with
sound.

Using the Anderson-Darling test, the results from this
experiment is from a population with a normal distribution.
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Fig. 6: The paired plot for the distribution of median number
of clicks together with all the data presented as a scatter
plot. A The participants carried out the experiment with only
visual feedback for all 20 trials B The participants carried
out the experiment first with only visual feedback for the
first 1-10 trials and then with visual and audio feedback for
the second 11-20 trials

A one sample t-test applied to differences of accuracy
between the two methods showed statistically significant
higher accuracy (t(15) = −3.43, p = 0.004) when adding
audio pain expression to the facial feedback (Fig. 5A right).

The results show that there is a synergistic effect when
sound is added to the virtual robopatient. It is clear that this
effect comes from the addition sound, rather than participants
improving through learning, because the control experiment
in Fig. 5A does not demonstrate comparable results. The
impact of learning on the experiment is not significant.

Fig. 6A left shows the paired plot for the distribution of
number of clicks of only visual feedback method for all
participants. 9 out of 10 found the maximum pain point in
less number of clicks. This is because participants familiarise
themselves with the facial expression feedback in the second
10 trials and were able to find maximum pain point in a
smaller number of clicks with statistical significance(t(9) =
2.70, p = 0.025) and with a similar localization accuracy as
the first 10 trials.

Fig. 6B left shows the paired plot for the distribution
of number of clicks of two feedback methods for all par-
ticipants. 13 out of 16 Participants found the maximum
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pain point in less number of clicks when the system is
integrated with sound in Fig. 6. The number of clicks
indicates the time and the confidence of the participants in
finding the maximum pain point. Though this may suggest
that participants are able to find the maximum pain point in
less time, this result is not statistically significant (t(15) =
2.12, p = 0.051). We believe that the statistically significant
reduction in number of clicks in Fig. 6A is due to partici-
pants familiarising with the base setup. On the other hand,
participants performing the second 10 trials with additional
audio feedback need to adapt to a new system. Thus, there
is no significance between the first 10 trials and the last 10
trials. Therefore, the result of this experiment demonstrates
that when the system is integrated with sound the accuracy
of locating the maximum pain point will increase without
compromising on the time taken.

Informal post experiment discussions with the participants
revealed that “adding sound definitely helps with locating
maximum pain”, supporting both results in Fig. 5 and 6.
A possible reason for such an increase in performance
could be due to the fact that, every second, human body
sends 11,000,000 bits of information to the brain but the
conscious mind can only process 120 bits of information
[27]. We believe that the reason why using multisensory
signals enables faster response could be because human
brain requires more processing time to compress 10,000,000
bits of visual information [28] compared to 100,000 bits of
auditory information [29] per second. Around the maximum
pain point, 1 bit additional of auditory information would
provide more information compared to 1 additional bit of
visual information and hence the accuracy of maximum
pain localization increases when audio pain expressions are
added to the virtual robopatient. Additionally, the continuous
nature of the facial expression output makes visual feedback
more difficult to distinguish near the maximum pain point.
Given the participants had time to learn the simulation
with only visual feedback, adding discrete audio feedback
that correlates with the initial stimulus creates a synergistic
effect. The hybrid audio-visual feedback allows participants
to notice more features from the visual feedback which
confirms and clarify the location of the maximum pain
point. Hence, participants are able to find a more accurate
maximum pain point overall.

IV. CONCLUSIONS

In this study, we presented a vocal pain expression
augmentation for a Robopatient to be used in abdominal
palpation training. 26 participants, of which 10 participants
were the control group and 10 participants were the test
group, conducted an experiment to find the maximum pain
point using the virtual robopatient only with facial pain
expressions and using the vocal pain expression augmented
virtual robopatient. From the result of the experiment, of
the 16 participants belonging to the test group 11 were
able to find a more accurate maximum pain point when the
virtual robopatient is integrated with vocal pain expressions.
We demonstrated that the vocal pain augmented virtual

robopatient leads to statistically significant improvements
in localizing the maximum pain without compromising the
position estimation time. There is a synergistic effect when
vocal pain expressions is added to the virtual robopatient and
therefore this could be considered a valid complementary
feedback mode for abdominal palpation on virtual robopa-
tients. Despite these advantages in the virtual robopatient
interface, the current implementation has limitations. For
example in the current approach, when a participant clicks a
position to mimic the palpation, only a pre-determined force
value is considered to be applied to the abdomen of the
virtual robopatient. In reality however, physicians can apply
enough force and/or vary his/her palpation force diagnosis a
patient. Additionally, in this experiment the number of user
clicks was used as a proxy for time because participants only
received information after clicking and they were instructed
to solve the task within a limited amount of clicks rather than
time. To address this, we endorse future studies investigating
the relationship between number of explored points and the
overall experiment time. Future studies will also aim to
incorporate sound into a physical robopatient [15] to realise
and optimise the responses for medical training and remote
palpation applications [30].
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