
Visual Cleaning of Genotype Data

Jessie Kennedy1, Martin Graham2
Edinburgh Napier University, UK

Trevor Paterson3, Andy Law4
The Roslin Institute, University of Edinburgh, UK

ABSTRACT
While some data cleaning tasks can be performed automatically,
many more require expert human guidance to steer the cleaning
process, especially if erroneous or unclean data is a product of
relationships between entities. An example is pedigree genotype
data: inheritance hierarchies in which the correctness of genotype
data for any individual is judged on comparison to their relations’
genotypes, as individuals should inherit DNA from their assumed
ancestors. Thus, cleaning this data must consider the relationships
between individuals; sometimes this means more data must be
cleaned than first assumed, while in other situations it means
errors across many individuals can be remedied by cleaning the
data of a shared relation. Such judgements require a domain
expert to hypothesise the effect changing particular data has on
the wider data set.

Using a visualization tool with the ability to undertake what-if
interactions can assist a user in correctly cleaning such data. We
achieve this by closely coupling an existing pedigree visualisation
technique, VIPER, with a genotype cleaning algorithm, and then
develop necessary extensions to the visualization to allow
interactive data cleaning. A comparative user evaluation with
biologists shows the advantages of this visualisation design over
an existing cleaning tool and we discuss the challenges in the
design of visual cleaning tools in which errors may be transitive.

Keywords: Pedigree, genotypes, data cleaning, user evaluation.

Index Terms: Applied computing~Population genetics; Human-
centred computing~Visual Analytics.

1 INTRODUCTION
Data cleaning is a vital step in improving data accuracy and
usability, with visual data cleaning being the use of visualisation
tools to support data cleaning activity.

Pedigree genotypes are one example where clean data is
particularly vital as analysis tools for these data sets break down
when fed with erroneous data. A pedigree genotype is an animal
breeding graph where each animal has up to two known parents
and zero or more known children. On top of this graph is layered
multivariate information, specifically genetic markers. In the most
common scenario, these markers come in the form of SNPs
(Single Nucleotide Polymorphisms) represented as a pair of letters
from the (A, C, G, T) base alphabet. Mendelian inheritance states
that each individual's value for a SNP marker should inherit one
letter each from its parents' values for that marker. If that doesn't
happen then there is an inconsistency, indicating either an error in

the data set or, rarely, a mutation in the individual.
Additionally, there is frequently missing genotype information

for some individuals, though this may be imputed to a limited,
discrete number of choices. Due to this missing data, the cause
and effect of an error may occur at different points, and thus
fixing the manifestation does not always fix the cause of an error.
One error may cause multiple difficulties further down the graph,
and in turn many apparently separate errors can be solved by
changing a shared, inherited piece of information.

In this paper, we begin by describing related work into visual
data cleaning and the specific problem of transitive data masking.
We then take an existing visualization tool, VIPER [1], with
which biologists can view errors within pedigree genotype data,
and fully integrate it with a genotype checking algorithm. We
extend the VIPER interface with visual cleaning functionality for
removal of suspect genotypes, markers and individuals, and for
breaking troublesome pedigree relationships, so that it becomes an
interactive data cleaning application rather than merely an error-
viewing interface. We then describe and discuss a comparative
user study with a group of biology professionals between this
extended tool and an existing cleaning tool, GenotypeChecker [2].
Finally, we reflect on the conclusions we draw from this work.

2 RELATED WORK
The work described in this paper intersects two main areas of
visualisation research. Firstly, primarily as a visual data cleaning
tool it has commonalities with the recent direction in visualisation
research towards data wrangling [3]. This is the visually-aided
process of transforming raw or problematic data into a more
usable form, which includes data cleaning. Past work in this field
has tackled the problems from one of two directions, either as a
generalisable process on a datatype or, secondly, through a
specifically targeted tool for a particular domain. As an example
of the former approach, the Wrangler application [4] is a general
framework that allows users to visually specify transformations on
tabular data sets to improve data quality, which has various
advantages over manual cleaning such as re-use of scripts and
speed of operation. Of the latter approach, [5] developed a more
specific application to clean and disambiguate data in social
networks i.e. to merge instances that referred to the same person
(e.g. "j.smith" vs. "John Smith") or on the other hand to mark
similar names as distinct entities.

Our work fits the latter approach as we have a well-specified
data domain with a central over-arching task: remove the errors
from the pedigree genotype data structure. In their further work,
[3] outlines a number of directions in which data wrangling can be
applied, and amongst these are visualising raw data, removal of
errors, and visualization of missing data, all of which apply to our
situation. There is no requirement for any structural data
transformation, as in our case the output data necessarily has to be
in the same format as the input data.

The second area of visualisation research our work touches on
is the representation of missing and erroneous data. From our
perspective, the concepts of missing and erroneous data, though
collected under the umbrella term of 'uncertainty data' and in turn
'uncertainty visualization' [6], can be seen as having somewhat

1 e-mail: j.kennedy@napier.ac.uk
2 e-mail: m.graham@napier.ac.uk
3 e-mail: trevor.paterson@roslin.ed.ac.uk
4 e-mail: andy.law@roslin.ed.ac.uk

105

IEEE Symposium on Biological Data Visualization 2013
October 13 - 14, Atlanta, Georgia, USA
978-1-4799-1659-7/13/$31.00 ©2013 IEEE

opposing attributes. Erroneous data is present and definitely
wrong, whereas missing data is absent and therefore we cannot
know if it is wrong or not (or if any data exists). In our particular
case we try to remove error data at the cost of introducing the
lesser evil of missing data.

The challenge of visualizing missing data is not as troublesome
here as it is for many other applications for two reasons: one
relating to the data type and another to the layout technique.
Firstly, our missing data, unlike in many other data sets, can be
imputed to a limited and discrete number of choices. As an
individual's values are inherited from their parents, we know the
possible range that those values should take. Even with no
ancestral data to work on, we know the values will be limited to a
pairing of the (A,C,G,T) alphabet. Secondly, as [7] recognised,
visualizations like scatterplots or graphs have difficulties with
missing data as the data values are encoded in the layout's spatial
attributes; as such missing data often translates directly to
misleading or missing representations (e.g. replacing missing
values in parallel coordinates with zero or minus one gives the
impression the missing value still has a definite place on the
coordinate, the alternative is to leave gaps in the representation).
In our prototype though the missing data is layered on top of an
existing visual representation. The pedigree visualization and
table views described later always have placeholders for the
individuals in the pedigree and coding for missing data can simply
be overlaid on top.

Visualising erroneous data is not a topic that has been explored
extensively in the visualization literature. There has been research
into specific techniques for uncertainty visualization [8] and what
uncertainty itself entails [9], but it tends to concentrate on how to
communicate uncertainty parameters and data provenance rather
than looking at how to communicate data that is clearly wrong.
However, visualisations often act as ad-hoc data quality tools
through serendipitous error discovery: Sánchez et al [10] discuss
starfield (scatterplot) visualisations that uncover data quality
issues by revealing erroneous outliers, and visualization
researchers routinely discover errors in data during the course of
application development, but the default state for the vast majority
of visualisations is to assume that the data is correct. Often the
only visualisations to explicitly expect incorrect data are those
built for the purpose of cleaning it or those designed to assess data
validity. An early example here is Visage [11] which allowed a
user to purge a dataset of erroneous outliers after viewing. More
recently, [12] explored how correlating data graphically in a table
could reveal data quality issues, though they didn't include a
method to then edit such data.

2.1 VIPER

Table 1. A simple matrix of individuals by markers. Some cells
(genotypes) are coloured to indicate inheritance error.

M1 M2 M3 M4 M5 Ind Errors

Ind 1

1
Ind 2

3

Ind 3

1
Ind 4

1

Ind 5

0
Marker
Errors

1 1 3 0 1 6

Table 1 is a small example of individuals plotted against

markers so each cell displays the error state of an individual
genotype. Totalling the errors by column and row gives the errors
per individual and per marker. While this tabular representation

gives a useful overview for some tasks (here it reveals Individual
3 and Marker 3 both have a high proportion of errors), it doesn’t
show a) the pedigree structure of the individuals, necessary for
determining the source of errors, or b) a visually compact
representation of the scale of marker sets present in real-world
data. The biologists on this project initially envisaged data sets of
up to 10,000 markers - however this figure then leapt to 250,000
and will only rise as technology advances. Similarly, node-link
representations are useful for showing simple pedigree structures,
as exampled by one of the figures in this paper, but edge crossings
proliferate if we look above a small number of relationships,
making the view increasingly intractable for users [13].

In a previous response to these difficulties, a novel Java-based
visualisation for representing errors in pedigree genotype data was
developed - VIPER [14], upon which we build extensions for data
masking. It combined a number of elements in a multiple view
display, including histograms, tables and a novel pedigree
representation. VIPER displays successive inter-generation
relationships as in Figure 1: offspring are displayed as a layer of
hexagonal glyphs sandwiched between layers of male and female
parents (thus termed a 'sandwich' view). Within each glyph,
triangles act as stylised up and down arrows to communicate the
degree of errors to father (sire) and mother (dam) and the
rectangle in-between shows errors that cannot be traced to either
(novel alleles). A colour hue is used to convey the presence of
erroneous data points, with the colour intensity representing the
degree of error, thus large marker sets can be accommodated.
Typically, grouping each sandwich by its male parents reduces
clutter and as females rarely reproduce with multiple sires per
generation, the dam glyphs only need repeating rarely.

A pair of tables gave detailed error information for every
individual and marker in the data set, split into errors with sire,
dam, and novel alleles, along with a total error count column. The
tables and sandwich view were linked for reciprocal highlighting
of selected individuals, whilst selecting a marker from its table put
the application into single marker view, showing only errors for
that marker. Two histograms were also used to show error
distributions in the data set (termed 'errorgrams'): one showing
error distribution for markers and one for individuals. This
allowed users to see an overview of errors in the data and revealed
high-level trends. In general, uncleaned pedigree data tended to
have a) some individuals with lots of errors, suggesting a problem
with those individuals, and b) some markers with lots of errors,
again suggesting a problem with those markers. The challenge
was then to further develop VIPER from an error visualisation
into a data-cleaning tool.

3 PEDIGREE GENOTYPE CLEANING
The goal of cleaning error-ridden data sets is to remove errors.
However to actually correct errors is usually an intractable task;

Figure 1. In VIPER, offspring are represented by hexagonal
glyphs, coloured by error count: top triangle = no allele
inherited from sire, central rectangle = novel alleles detected
(present in neither parent), bottom triangle = no allele inherited
from dam.

106

we might know which values have errors, but we do not know
what the correct value should be. This is exacerbated in pedigree
genotypes by the presence of missing data which shift the
reporting of errors by genotype-checking algorithms away from
their source in the pedigree. In fact, consistency checking of non-
trivial pedigrees has proven to be NP-complete [15].

Removing errors within this domain is thus achieved by
masking errors; manipulating the data by marking certain data
points as having unknown values so explicit discrepancies
between parents and offspring are removed. In short, we say "we
don't know what it is, but it's definitely not that". The genotype-
checking algorithm then treats these user-defined unknowns
identically to missing values in the raw data: it infers the complete
set of acceptable possible values based on analyzing the closest
individuals in the pedigree that have present and correct values for
the same marker. Thus, as well as discovering where errors occur,
the algorithm uses structural information to help fill in the blanks.
This is distinct from statistically-based methods that fill in gaps in
multivariate data sets [16, 17], yet achieves the same ends.

In this particular problem domain, this is an acceptable solution,
as downstream analysis tools can cope with missing data by
inferring possible values based on Mendelian inheritance but are
broken by incorrect data, or worse, process the incorrect data to
produce incorrect findings that may be damaging further down the
line. The effect of such bad data has previously been recognised in
animal conservation [18] and human health research [19].

3.1 Fundamental Cleaning Operations
The original visualization [14] had two errorgrams that supported
some simple filtering operations. One allowed removal of markers
above a given error count, and another supported a visual filtering
on individuals (greying out individuals with less than a given error
count). While this provided opportunities to study basic error
patterns, cleaning the data requires a more involved set of
interactions, necessitating an iterative communication with the
underlying data cleaning algorithm rather than just relying on an
initial supply of error count information.

Investigating with the biologists the most effective way to
remove errors revealed that they would first remove markers with
many errors, then mask the most erroneous individuals and then
iteratively work through the remaining errors, leading to a set of
three fundamental cleaning operations:

1. Mask a marker
2. Mask an individual
3. Mask a genotype (pairing of marker and individual)

3.2 Cleaning Bad Markers
Markers are independent of each other, such that removing one

marker does not affect the error state of other markers, making it
cognitively the easiest operation and a natural starting point for
cleaning. Therefore our first interactive cleaning task was to
support the masking of bad markers, which required hooking up
the existing errorgram slider to the genotype checking algorithm
through an existing API (as would all subsequent masking tasks.)

This proved to be an effective technique for the biologists who
then asked to visually exclude markers with only a few errors as
they were unimportant in the overall cleaning process. It was
initially proposed to replace the errorgram slider with a range
slider to set two values (low & high), however the biologists
stated that ignoring these markers for the time being was
conceptually different from masking the most erroneous markers
and therefore another errorgram was added to allow them to
control the display of low-error markers. This new errorgram was
also filtered so that the high-error markers masked in the first

errorgram were not shown, making it a zoomed view of the first
errorgram, as shown in Figure 2.

We also set both marker errorgrams to always reflect the data as
it was upon loading. This gelled with the biologists' approach to
cleaning the data: masking the worst markers first, and then
tackling the more involved and smaller units of data such as
individuals and genotypes, so revisiting the marker errorgram was
not envisaged as necessary.

3.3 The Transitive Error Problem
The expectation was that, as with the markers, we could use an
errorgram to mask the most error-prone individuals. However, this
proved naïve as it did not account for the major problem with
errors in pedigree genotype data sets – namely their transitive

nature due to the relationships of individuals within the pedigree.
Figure 3 demonstrates a simple example of this effect. Figure

3a) shows a small single-marker pedigree with errors shown in
red. Figure 3b) shows the result of naively masking the two
individuals in error highest up in the pedigree. Here, due to
masking a female (now labeled '??' in blue), errors in two of its
children are removed, however another child (GT - circled) now

AG GT

AG CG GT CAGAGC CC

CC GG GT GG GC

CA AC

GC CC

CC GCa b

dc

AG ??

AG CG GT CAGAGC CC

CC GG GT GG GC

?? AC

GC CC

CC GC

AG ??

AG CG ?? CAGAGC CC

CC GG GT GG GC

?? AC

GC CC

CC GC

AG GT

AG CG GT CAGAGC CC

CC GG GT GG GC

?? AC

GC CC

CC GC

Figure 3. The transitive effect of masking an individual genotype.
Given the errors shown in red in part a) we mask the two error
reporting individuals in the second generation in b). This removes
many errors but also produces a new transitive error (circled). In
part c) we mask this new error but it is just pushed down the
pedigree (again circled). In part d) we alternatively break one of the
pedigree relationships at the top (the dashed line), removing many
existing errors and, crucially, we don’t introduce new errors.

Male In Error

Female Masked

Figure 2. The second marker errorgram is an expanded view of
the unfiltered portion of the first errorgram. In this new
errorgram markers are visually excluded with the slider but not
excised from the data set, unlike the first errorgram.

107

cannot match its 'T' allele with either parent. With its mother now
masked, it tries to reconcile with its maternal grandparents (the
two individuals in the top generation) but neither carry the 'T'
allele as well and thus it now reports an error. When in turn this
individual is masked in Figure 3c) the problem is just pushed
down again to the next generation with another circled individual
containing a ‘T’ allele now reporting an error.

The underlying error in Figure 3 was between the first and
second generations i.e. the lack of a T allele, but trying to mask
the problem pushed the error down the pedigree and another
subsequent masking just pushed it even further down. This is in
fact the essential problem of transitive errors in pedigree
structures: errors may be chased blindly down to the bottom of the
pedigree, masking otherwise useful data along the way, and
moving further from the source of the error at the same time.

Therefore we realised the necessity for an operation that, rather
than masking individuals or genotypes, masked the relationship
between a child and parent. In terms of seeing the pedigree as a
graph, this is like masking an edge between two nodes rather than
masking information carried in the node itself. The effect of this is
shown in Figure 3d) where the relationship from the erroneous
individual in a) to its parents is removed instead of the individual
being masked, which results in no new errors being caused. One
of its offspring still remains in error, but this can be directly
masked itself. This results in a fourth fundamental masking
operation for cleaning the data set:

1. Mask a marker
2. Mask an individual
3. Mask a genotype (pairing of marker and individual)
4. Break a child/parent relationship in the pedigree.

Of the four operators, 1 and 4 cannot add further errors into the
data, but 2 and 3 do introduce this possibility.

3.4 Cleaning Bad Individuals & Genotypes
On a practical note, transitive errors meant error totals for related
individuals would increase or decrease when other individuals
were masked, making an errorgram and slider mechanism for
masking individuals inelegant as individuals would sometimes
jump from one side of the slider ’cut-off’ to the other, and the
shape of the histogram would also markedly change during the
process. It would also change the shape of the marker histograms
if we populated them with the current error counts, which formed
part of our reasoning to set the marker histograms to show only
the initial state.

To therefore support cleaning operations beyond the broad
filtering of the marker errorgram, extra functionality was
incorporated into the existing visualization. In both the sandwich
view and the individual table we added a right-click context menu
to individuals which gave a selection of masking operations. E.g.
in the full marker mode, bringing up the menu on an individual
would show the option to mask or unmask that particular
individual - the second operation in our list of four. In single
marker mode (where errors related to only one particular marker
are shown), it would offer the choice to mask or unmask the
genotype for that individual - the third of the four operations.

There are also options to break or restore the pedigree
relationships of an individual to its parents (the fourth basic
masking operation). In the sandwich view the additional option to
mask all individuals in an entire family is provided as a shortcut to
doing the same masking operation on each individual. Again, in
the single marker mode, the same action is available but instead of
masking individuals it masks sets of genotypes. To allow markers

Figure 4. The extended VIPER interface with newly introduced data cleaning elements highlighted. Filterable errorgrams (A) (with the
bottom errorgram being a zoomed view of the top errorgram), expanded individual and marker tables showing incomplete and masked data
points, along with individual marker masking (B), context menus for masking in the sandwich display (C) and a history tree for reversing
masking decisions (D) - all connected to an underlying genotype checking algorithm. Masked data (in blue) is represented in various ways:
masked pedigree relationships are indicated by solid triangles within glyphs (E), masked individuals and genotypes are indicated by
stippling across an individuals' glyph (F). Masked individuals’ details are also accessible in an extra table (G).

D

C

B

E F

G

A

108

to be removed singly, or be removed independently of the
errorgram filtering, a column of checkboxes was added to the
marker table to allow masking or inclusion on a marker-by-
marker basis. This proved to be invaluable when dealing with sex-
linked marker problems. Lastly, an extra table that lists all current
individual-level maskings (masking operations 2 & 4) was
provided to give users a place to undo such operations. Figure 4
shows these additions in the interface, along with examples of
individuals having undergone various aspects of masking.

The biologists stated that with these fine-grained maskings they
wanted control of when the checking algorithm ran, so that the
effect of several logically-related maskings could be tried
together. This approach also aided the application’s
responsiveness as recalculating the errors is CPU-intensive, and
also helped when masking pedigree relationships, as re-layouts of
individuals under dummy parents would not happen until users
were prepared to view the effects of recalculation. So, automatic
recalculation was kept only for marker errorgram interactions
which rarely involve small numbers of maskings in any case.

3.5 Masking Representations
Initially, masking simply called the error checking algorithm

for recalculation and redisplayed the new error output in the
visualisation. However, the biologists stressed the importance of
keeping track of what data they had masked during the cleaning
process, and so a visual indication of masking was deemed
necessary. As discussed, masking of errors is equivalent to setting
values to unknown, therefore for visual consistency we decided to
show masked data in the same hue as used for indicating missing
data. Unknown data can therefore be thought of as divided into
incomplete - missing from the initial data set - and masked - data
deliberately hidden by the user to remove errors.

Accordingly, this data was added to the marker and individual
tables as two separate columns, masked and incomplete, and
within the sandwich display deliberately masked individuals and
genotypes were indicated with a stippled infill of the individual
with the current "missing" hue - missing data was already
indicated with a border of the same colour around the individual,
so infilling served to distinguish the two conditions.

Broken pedigree relationships were displayed as solid infills of
either the up or down triangles in an individual’s glyph, indicating
in which direction(s) the pedigree relationships had been broken.

Figure 5 shows examples of how masking is conveyed within
the sandwich view, both genotype and complete individual masks
and the breaking of pedigree relationships between individuals.

3.6 Visual History
With such an explorative method of error removal, it is imperative
that users can undo masking operations and then restart
exploration from a prior position. Such a facility beyond a simple
single undo/redo is known as a history function, and in this
particular case a branching history function. After any user
interaction that changes the set of masked markers, individuals or
genotypes, a new history state composed of the current states of
these values is saved and appended to this history.

The history tree's visualization is shown at the bottom of Figure
4, similar to that in [20], with each history state being represented
by a node showing the overall error counts and different maskings
applied at each state. The details in each node are kept as textual,
rather than visual, representations to keep to a design choice that
the only colour in the interface should represent the current state
of erroneous and missing data. The path from the start of the
cleaning process to the current error state is highlighted in the tree
structure, and conversely, the greyed-out nodes represent masking
attempts by the user that were then revoked, and act as a visual
memory aid for hypotheses that have been tried and rejected.

To return to a particular state the user simply clicks on the
corresponding item in the history tree, and the saved maskings are
reapplied to the data set. Without such a facility the onus falls on
the user to remember what actions must be redone, not ideal when
they are focusing on a challenging problem with the data. Indeed,
the information-seeking mantra [21] includes the idea of history
explicitly.

The inclusion of an interactive history is designed to encourage
an explorative approach to masking data, as users have the option
to undo the maskings reflected in the interface to a previous state.
Users can form hypotheses as to what actions would clean certain
portions of the data set, carry out the actions to put those
hypotheses into practice, and safely return to a previous known
state if the presupposed effect on the error count did not occur.

4 USER STUDY
With the extended version of VIPER now incorporating data
cleaning functionality it was decided to run a comparative
empirical evaluation against an existing data cleaning tool for
pedigree genotypes: GenotypeChecker (GC) [2]. The aim was to
find out what objective and subjective differences occurred when
both applications were used by expert biologists, and which of the
features of VIPER, both the existing sandwich representation
developed in [14] and the new cleaning interactions outlined in
this paper, differed in respect to GC.

GC is a Java application that shows a table-based display of
markers (columns) by individuals (rows) in which genotypes that
cannot be the product of an individual's assumed parents are
coloured, as shown in Figure 6. As with VIPER, individuals,
markers and genotypes can be masked and the effect on the
remaining errors then recalculated. Rows (individuals) can be
sorted on the basis of error count, gender, name or generation

a)

b)

Figure 5. How masked data is represented in the visualisation. a) A
full individual masking on G722 stipples the whole hexagon blue,
and a single genotype masking on G558 stipples a lighter blue over
the remaining errors shown in red. b) Masked relationships (G727
& G730) are shown as solid blue triangles pointing in the direction
of the parent gender they have disassociated from, and they are
realigned with new, separate “unknown sire” (or dam) parents
elements. The presence of originally incomplete data is shown as a
blue border around individuals.

109

whereas the column ordering is fixed. However, beyond a simple
ability to list the children and parents of a given individual, it
cannot represent or explore the relationships in a pedigree, which
is seen as a drawback to finding, understanding and fixing errors.
As GC's underlying checking algorithm is the same as VIPER's,
any differences in performance or preference should be due solely
to the different interfaces.

4.1 Part icipants
Eleven biology professionals from The Roslin Institute,
unconnected with this work, volunteered to take part in the
evaluation for which we offered a prize draw of a £50 voucher.
All were qualified to degree level, eight had PhDs and four had at
least 25 years experience in their field. They variously described
themselves as geneticists, bioinformaticians or biologists.

All but one stated they used pedigree data in the course of their
work, though that individual stated they understood Mendelian
inheritance. Three stated they had infrequent experience of
previously using GC when they needed to clean pedigree data, but
for most work used pedigree data they assumed was consistent.
Three others stated they had seen some form of visually
represented pedigree data, and the other five said they'd never
used any application that showed a pedigree visually.

To explain the lack of visualisation exposure, raw pedigree data
is often just simple "sire-dam-child-gender" format CSV files that

are typically loaded into the de facto data manipulation tool of
these biologists: Microsoft Excel. One of the developers of GC
stated the reason that tool was so strongly based on a table-based
representation was due to the biologists' familiarity with Excel.

4.2 Test Procedure
The experiment was a within-subject test where each participant
was faced with 12 questions categorised into two principal tasks,
one that posed questions about the interface and its
representations, and another that asked them to perform cleaning
on the data; the rationale being that before masking can be
performed on any data, the representation of that data must be
understandable. The participants tackled these questions using
both the GC and VIPER interfaces, with the order flipped between
successive participants to counter learning effects across the user
group. Before they answered the questions on each interface they
were given a demonstration and allowed to experiment and clarify
issues regarding the interface.

The twelve questions (listed in Table 2, along with the correct
results per question) in the two tasks were a mixture of
finding/masking data that did not require any pedigree exploration
and those that would require a user to analyse individuals in the
context of their family members - e.g. a question such as 'which
individual has the most errors overall' required no pedigree
exploration, whereas another question such as 'Marker-32 has 5
errors - remove the three errors that occur in the same family'
would require the user to relate the genotypes to the pedigree. Of
the twelve questions, 5-8 inclusive were considered not to need
pedigree exploration.

The questions in the masking task in particular were organized
such that it resembled a typical cleaning scenario: bad markers
would be removed first, followed by the masking of problematic
individuals. After that, sex-linked markers and genotypes would
be targeted for masking.

The tests were scored with each question receiving a Boolean
right/wrong mark according to whether the correct answer was
found, giving each user a total out of 12 for the tasks on each
interface. Further, after the users completed the tasks on both
interfaces an attitude scale with 12 items was used to elicit user
preferences between the two interfaces for given operations.

The data set used was a relatively small clean dataset of 131
animals measured across 59 markers, making for a total of 7,729
genotype data points, into which errors of varying types had been
introduced for the participants to discover and clean. The tests
were performed at the Roslin Institute on a laptop with a 19-inch
widescreen display and each user was scheduled to take

Task 1 – Interface Representation GC VP
1. How many sires are there in the original generation? 5 10
2. What is the biggest family in the pedigree? 2 5
3. How many full siblings does Individual 39 have? 10 7
4. How many different dams does the sire Individual 203 produce offspring with? 4 8
5. Which individual has the most errors overall? 9 9
6. Which marker has the most errors overall? 10 10
Task 2 – Data Cleaning (Masking)
7. Mask all markers that have more than 30 errors. 9 8
8. Mask the individual that reports the most remaining errors. 6 5
9. One of the three markers 5, 10 and 50 is sex-linked and contains only errors to sires and novel alleles. Find it

3 10

10. Marker-4 has 10 errors. Remove these errors by masking as few individual genotypes as possible. 5 4
11. Marker-32 has 5 errors. Remove the three errors that occur in the same family. 6 9
12. The offspring of one of sire 203’s families has many errors to 203 across all markers. Identify this family and
mask the offspring in the family.

2 2

Table 2. Task questions, and correct answers per question by interface. VP = Viper, GC = Genotype Checker.

Figure 6. The GenotypeChecker interface.

110

approximately one hour overall to complete.

4.3 Results (Performance)
The results per user, shown in Table 3, revealed that when all the
answers were considered there was no significant difference
between the interfaces (two-tailed t-test, p=0.12). However, when
only the eight questions that required users to explore within the
pedigree were analysed, a significant effect came to light (two-
tailed t-test, p=0.03) showing that users obtained more correct
answers using VIPER than with GC for these questions.

Table 3. Correct answers per user by interface, and by subset of
pedigree-biased questions.

 All Q's, correct answers per user
VP 7 11 8 6 6 9 7 4 11 10 8
GC 7 10 2 6 3 6 8 8 11 6 4
 Q1-4 & 9-12, correct answers per user
VP 5 7 5 3 4 6 4 2 7 6 6
GC 4 6 1 2 2 2 5 4 7 2 2

There was no significant correlation between the time taken and

correctness for either tool, and nor was there a significant
difference in time taken by users between the two tools.

4.4 Results (Preference)
From the post-test questionnaire we obtained the results shown in
Table 4. They showed a strong subjective preference for VIPER
overall; all median values across the set of items were either a
preference for VIPER or ‘No Preference’. Performing a Wilcoxon
signed rank test on the summative values in the questionnaire
showed a statistical preference (p<0.05, two-tailed) for VIPER
compared to the 'No Preference' rating on the scale. The same test
on the questions individually showed the same preference for
VIPER in questions 1-3, 6-9 & 11, with no significant preference
in the remaining questions.

4.5 Observations
In qualitative terms it was clear to see where users were led astray
at some points in VIPER, the most common was an inability to
remember being in the single marker view, and when asked to
judge families on errors across the full marker set they would give
an answer based on one marker's errors. This led to a particularly
poor performance by all users with question 12 (though it was
relatively no worse than the answers achieved with GC).

Furthermore, the fact that roughly a third or more of questions
were either skipped or answered incorrectly with both VIPER
(45/132) and GC (61/132) reflects that cleaning flawed pedigree
data is a difficult and skilful process; even though our 11 test
subjects were professional biologists with an understanding of
pedigrees most of them had not attempted any previous cleaning
of pedigree data.

What was interesting to note was how conditioned some users
were to a spreadsheet mode of working. Even though the
‘sandwich’ visualisation was explained and demonstrated, took up
the majority of VIPER's screen space, and is decidedly table-
esque (it is essentially a nested table) itself compared to most
other pedigree visualisations, the first instinct of some users was
to head over to the tables of marker and individual error
information and try and answer the questions from there. Only
when this proved fruitless did they investigate the sandwich view.
Some users stated GC’s "mask row/column" functionality for
individuals and markers was something they were accustomed to
from using Excel. This 'table-centredness' has been the case with
other groups we have worked with, such as taxonomists, who
replicated tree structures within a spreadsheet. Sairaya et al [22]
also report that the bioinformaticians they studied performed
extensive data pre-processing and cleaning in Excel before they
used further visualisation tools on the data, so this attachment is
not just unique to our users (and also indicates that when users
visualize data, they expect it to be error-free.)

5 CONCLUSION
We have extended an existing pedigree genotype visualization

tool, VIPER, with interactive cleaning capabilities, and then
evaluated it against a table-based pedigree genotype cleaning
application. Our evaluation revealed a significant subjective
preference for VIPER's family-centred visualization as opposed to
GC’s table-based display, and reflected a common finding [23,
24] with visualization evaluations in that subjective user
preference for interfaces tends to be more strongly pronounced
than the effect found in objective task performance.

 Another major influence on users' performance with interfaces
is the similarity to other tools they commonly use, with one tree
browsing evaluation [25] showing users performed better with the
most familiar widget. Sedlmair et al [26] in their discussion of
testing InfoVis applications in large companies also note the
effects of users' attachment to conventional tools. It may be no
performance difference was found in this study as while
GenotypeChecker reflected the biologists’ familiarity with

Table 4. Frequency distribution of user preference answers - (1 = Strongly Prefer Viper, 2 = Slightly Prefer VIPER, 3 = No Preference, 4 =
Slightly Prefer GenotypeChecker, 5 = Strongly Prefer GenotypeChecker). Medians asterisked and shown in bold italics.

Preference Item 1 2 3 4 5
1. Finding structural information on a pedigree *7 1 2 1 0
2. Finding descendents of an individual *8 2 0 1 0
3. Finding ancestors of an individual *7 3 1 0 0
4. Finding error information on a single individual 4 1 *1 4 1
5. Finding error information on a single marker 3 *3 2 3 0
6. Distinguishing between different types of error *7 2 2 0 0
7. Tracing errors to a shared parent *8 0 2 1 0
8. Finding error information on a single family *7 1 2 1 0
9. Comparing errors between related families (one shared parent) *8 1 1 1 0
10. Masking errors 1 2 *4 3 1
11. Overall understanding of errors 5 *1 4 1 0
12. Overall ease of use 5 *2 3 0 1

111

spreadsheets it was at the cost of not representing the underlying
pedigree structure, whereas VIPER represented the structure of
the underlying data more faithfully but users were less
accustomed to its visual style. Both these points, along with the
fact that pedigree cleaning is a cognitively tasking operation,
perhaps explain why roughly 30% of the questions in both
conditions were answered incorrectly, showing that there is still
room for further research into pedigree cleaning interfaces.

During the course of this work, it has become clear that it is
crucial to understand the nature of the errors that are to be
cleaned. In the case of pedigree genotypes the error is a function
of the relation between two entities (i.e. incompatible genotypes),
rather than of a particular entity in isolation. In such situations,
removal of existing errors can cause new errors to appear, or
remove other related errors at the same time. Interfaces for
cleaning data where such transitive effects occur must be designed
so that, optimally, these dependencies are clear to the users, and at
the very least do not confuse the users. For instance, when
cleaning involves structural alterations to data, as with the
relationship masking operation here, the consequent re-layouts of
the data often need to be delayed until the user is ready to view
the result. Similarly, a history function is vital to a hypothesizing
and exploratory cleaning of such data. When the underlying cause
of error is not known, often due to the propagating effects of error
and missing data, then the ability to undo and return to previous
states is crucial. These points are of relevance not just to animal
pedigree data but to a larger family of ontological data sets where
entity properties are inherited from other entities, or when an
object’s correctness can only be judged in comparison to other
related entities.

ACKNOWLEDGEMENTS
We would like to acknowledge the BBSRC (Biotechnology and
Biological Sciences Research Council) for funding this project
(project refs: BB/H023879/1 & BB/H023909/1), and the
biologists at the Roslin Institute for their valuable time in
contributing to the evaluation. Software is available for download
at http://www.bioinformatics.roslin.ed.ac.uk/viper/.

REFERENCES
[1] T. Paterson, M. Graham, J. Kennedy, and A. Law, "Evaluating the

VIPER pedigree visualisation: detecting inheritance inconsistencies
in genotyped pedigrees," Proc. 1st IEEE Symposium on Biological
Data Visualization, pp. 119-126, 2011.

[2] T. Paterson and A. Law, "GenotypeChecker: An interactive tool for
checking the inheritance consistency of genotyped pedigrees.,"
Animal Genetics, 42(5):560-562, 2011.

[3] S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. van Ham, N. Henry-
Riche, C. Weaver, B. Lee, D. Brodbeck, and P. Buono, "Research
directions in data wrangling: Visualizations and transformations for
usable and credible data," Information Visualization, 10(4):271-288,
October 2011.

[4] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer, "Wrangler:
Interactive Visual Specification of Data Transformation Scripts,"
Proc. ACM Human Factors in Computing Systems, pp. 3363-3372,
2011.

[5] M. Bilgic, L. Licamele, L. Getoor, and B. Shneiderman, "D-Dupe:
An Interactive Tool for Entity Resolution in Social Networks," Proc.
IEEE Symposium on Visual Analytics Science and Technology, pp.
43-50, 2006.

[6] H. Griethe and H. Schumann, "The Visualization of Uncertain Data:
Methods and Problems," Proc. Simulation und Visualisierung 2006
pp. 143-156, 2006.

[7] C. Eaton, C. Plaisant, and T. Drizd, "Visualizing Missing Data:
Classification and Empirical Study," Proc. IFIP International
Conference on Human-Computer Interaction, pp. 861-872, 2005.

[8] J. Sanyal, S. Zhang, G. Bhattacharya, P. Amburn, and R. J.
Moorhead, "A User Study to Compare Four Uncertainty
Visualization Methods for 1D and 2D Datasets," IEEE Transactions
on Visualization and Computer Graphics, 15(6):1209-1218,
November 2009.

[9] M. Skeels, B. Lee, G. Smith, and G. G. Robertson, "Revealing
uncertainty for information visualization," Information Visualization,
9(1):70-81, 2010.

[10] J. A. Sánchez, M. B. Twidale, D. M. Nichols, and N. N. Silva,
"Experiences with starfield visualizations for analysis of library
collections," Proc. SPIE Visualisation and Data Analysis, pp. 215-
225, 2005.

[11] M. Derthick, J. Kolojejchick, and S. F. Roth, "An Interactive
Visualization Environment for Data Exploration," Proc. Third
International Conference on Knowledge Discovery and Data Mining,
pp. 2-9, 1997.

[12] W. A. Malik, A. Unwin, and A. Gribov, "An Interactive Graphical
System for Visualizing Data Quality - Tableplot Graphics," Proc.
11th IFCS Biennial Conference - Classification as a Tool for
Research, pp. 331-339, 2009.

[13] H. C. Purchase, R. F. Cohen, and M. James, "Validating Graph
Drawing Aesthetics," Proc. Graph Drawing, pp. 435-446, 1995.

[14] M. Graham, J. Kennedy, T. Paterson, and A. Law, "Visualising
Errors in Animal Pedigree Genotype Data," Computer Graphics
Forum, 30(3):1011-1020, June 2011.

[15] L. Aceto, J. A. Hansen, A. Ingólfsdóttir, J. Johnsen, and J. Knudsen,
"The Complexity of Checking Consistency of Pedigree Information
and Related Problems," Journal of Computer Science and
Technology, 19(1):42-50, January 2004.

[16] J. L. Schafer, Analysis of Incomplete Multivariate Data. Chapman &
Hall:London, UK, 1st ed, 1997.

[17] M. Ward, Z. Xie, D. Yang, and E. Rundensteiner, "Quality-aware
visual data analysis," Computational Statistics, 26(4):567-584,
December 2011.

[18] P. A. Oliehoek and P. Bijma, "Effects of pedigree errors on the
efficiency of conservation decisions," Genetics Selection Evolution,
41, 14 January 2009.

[19] G. Brush and L. Almasy, "Pedigree and genotype errors in the
Framingham Heart Study," BMC Genetics, 4(Suppl 1), December
2003.

[20] M. Derthick and S. F. Roth, "Enhancing data exploration with a
branching history of user operations," Knowledge-Based Systems,
14(1-2):65-74, March 2001.

[21] B. Shneiderman, "The Eyes Have It: A Task by Data Type
Taxonomy for Information Visualizations," Proc. IEEE Visual
Languages Symposium, pp. 336-343, 1996.

[22] P. Saraiya, C. North, V. Lam, and K. A. Duca, "An Insight-Based
Longitudinal Study of Visual Analytics," IEEE Transactions on
Visualization and Computer Graphics, 12(6):1511-1522, Nov/Dec
2006.

[23] K. Andrews and J. Kasanicka, "A Comparative Study of Four
Hierarchy Browsers using the Hierarchical Visualisation Testing
Environment (HVTE)," Proc. IEEE IV Conference, pp. 81-86, 2007.

[24] C.-A. Julien, J. E. Leide, and F. Bouthillier, "Controlled User
Evaluations of Information Visualization Interfaces for Text
Retrieval: Literature Review and Meta-Analysis," Journal of the
American Society for Information Science and Technology,
59(6):1012-1024, April 2008.

[25] A. Kobsa, "User Experiments with Tree Visualization Systems,"
Proc. IEEE InfoVis, pp. 9-16, 2004.

[26] M. Sedlmair, P. Isenberg, D. Baur, and A. Butz, "Information
Visualization Evaluation in Large Companies: Challenges,
Experiences and Recommendations," Information Visualization,
10(3):248-266, 20 July 2011.

112

