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ABSTRACT 
While some data cleaning tasks can be performed automatically, 
many more require expert human guidance to steer the cleaning 
process, especially if erroneous or unclean data is a product of 
relationships between entities. An example is pedigree genotype 
data: inheritance hierarchies in which the correctness of genotype 
data for any individual is judged on comparison to their relations’ 
genotypes, as individuals should inherit DNA from their assumed 
ancestors. Thus, cleaning this data must consider the relationships 
between individuals; sometimes this means more data must be 
cleaned than first assumed, while in other situations it means 
errors across many individuals can be remedied by cleaning the 
data of a shared relation. Such judgements require a domain 
expert to hypothesise the effect changing particular data has on 
the wider data set. 

Using a visualization tool with the ability to undertake what-if 
interactions can assist a user in correctly cleaning such data. We 
achieve this by closely coupling an existing pedigree visualisation 
technique, VIPER, with a genotype cleaning algorithm, and then 
develop necessary extensions to the visualization to allow 
interactive data cleaning. A comparative user evaluation with 
biologists shows the advantages of this visualisation design over 
an existing cleaning tool and we discuss the challenges in the 
design of visual cleaning tools in which errors may be transitive. 

Keywords: Pedigree, genotypes, data cleaning, user evaluation. 
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1 INTRODUCTION 
Data cleaning is a vital step in improving data accuracy and 
usability, with visual data cleaning being the use of visualisation 
tools to support data cleaning activity.  

Pedigree genotypes are one example where clean data is 
particularly vital as analysis tools for these data sets break down 
when fed with erroneous data. A pedigree genotype is an animal 
breeding graph where each animal has up to two known parents 
and zero or more known children. On top of this graph is layered 
multivariate information, specifically genetic markers. In the most 
common scenario, these markers come in the form of SNPs 
(Single Nucleotide Polymorphisms) represented as a pair of letters 
from the (A, C, G, T) base alphabet. Mendelian inheritance states 
that each individual's value for a SNP marker should inherit one 
letter each from its parents' values for that marker. If that doesn't 
happen then there is an inconsistency, indicating either an error in 

the data set or, rarely, a mutation in the individual. 
Additionally, there is frequently missing genotype information 

for some individuals, though this may be imputed to a limited, 
discrete number of choices. Due to this missing data, the cause 
and effect of an error may occur at different points, and thus 
fixing the manifestation does not always fix the cause of an error. 
One error may cause multiple difficulties further down the graph, 
and in turn many apparently separate errors can be solved by 
changing a shared, inherited piece of information. 

In this paper, we begin by describing related work into visual 
data cleaning and the specific problem of transitive data masking. 
We then take an existing visualization tool, VIPER [1], with 
which biologists can view errors within pedigree genotype data, 
and fully integrate it with a genotype checking algorithm. We 
extend the VIPER interface with visual cleaning functionality for 
removal of suspect genotypes, markers and individuals, and for 
breaking troublesome pedigree relationships, so that it becomes an 
interactive data cleaning application rather than merely an error-
viewing interface. We then describe and discuss a comparative 
user study with a group of biology professionals between this 
extended tool and an existing cleaning tool, GenotypeChecker [2]. 
Finally, we reflect on the conclusions we draw from this work. 

2 RELATED WORK 
The work described in this paper intersects two main areas of 
visualisation research. Firstly, primarily as a visual data cleaning 
tool it has commonalities with the recent direction in visualisation 
research towards data wrangling [3]. This is the visually-aided 
process of transforming raw or problematic data into a more 
usable form, which includes data cleaning. Past work in this field 
has tackled the problems from one of two directions, either as a 
generalisable process on a datatype or, secondly, through a 
specifically targeted tool for a particular domain. As an example 
of the former approach, the Wrangler application [4] is a general 
framework that allows users to visually specify transformations on 
tabular data sets to improve data quality, which has various 
advantages over manual cleaning such as re-use of scripts and 
speed of operation. Of the latter approach, [5] developed a more 
specific application to clean and disambiguate data in social 
networks i.e. to merge instances that referred to the same person 
(e.g. "j.smith" vs. "John Smith") or on the other hand to mark 
similar names as distinct entities. 

Our work fits the latter approach as we have a well-specified 
data domain with a central over-arching task: remove the errors 
from the pedigree genotype data structure. In their further work, 
[3] outlines a number of directions in which data wrangling can be 
applied, and amongst these are visualising raw data, removal of 
errors, and visualization of missing data, all of which apply to our 
situation. There is no requirement for any structural data 
transformation, as in our case the output data necessarily has to be 
in the same format as the input data. 

The second area of visualisation research our work touches on 
is the representation of missing and erroneous data. From our 
perspective, the concepts of missing and erroneous data, though 
collected under the umbrella term of 'uncertainty data' and in turn 
'uncertainty visualization' [6], can be seen as having somewhat 
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opposing attributes. Erroneous data is present and definitely 
wrong, whereas missing data is absent and therefore we cannot 
know if it is wrong or not (or if any data exists). In our particular 
case we try to remove error data at the cost of introducing the 
lesser evil of missing data. 

The challenge of visualizing missing data is not as troublesome 
here as it is for many other applications for two reasons: one 
relating to the data type and another to the layout technique. 
Firstly, our missing data, unlike in many other data sets, can be 
imputed to a limited and discrete number of choices. As an 
individual's values are inherited from their parents, we know the 
possible range that those values should take. Even with no 
ancestral data to work on, we know the values will be limited to a 
pairing of the (A,C,G,T) alphabet. Secondly, as [7] recognised, 
visualizations like scatterplots or graphs have difficulties with 
missing data as the data values are encoded in the layout's spatial 
attributes; as such missing data often translates directly to 
misleading or missing representations (e.g. replacing missing 
values in parallel coordinates with zero or minus one gives the 
impression the missing value still has a definite place on the 
coordinate, the alternative is to leave gaps in the representation). 
In our prototype though the missing data is layered on top of an 
existing visual representation. The pedigree visualization and 
table views described later always have placeholders for the 
individuals in the pedigree and coding for missing data can simply 
be overlaid on top. 

Visualising erroneous data is not a topic that has been explored 
extensively in the visualization literature. There has been research 
into specific techniques for uncertainty visualization [8] and what 
uncertainty itself entails [9], but it tends to concentrate on how to 
communicate uncertainty parameters and data provenance rather 
than looking at how to communicate data that is clearly wrong. 
However, visualisations often act as ad-hoc data quality tools 
through serendipitous error discovery: Sánchez et al [10] discuss 
starfield (scatterplot) visualisations that uncover data quality 
issues by revealing erroneous outliers, and visualization 
researchers routinely discover errors in data during the course of 
application development, but the default state for the vast majority 
of visualisations is to assume that the data is correct. Often the 
only visualisations to explicitly expect incorrect data are those 
built for the purpose of cleaning it or those designed to assess data 
validity. An early example here is Visage [11] which allowed a 
user to purge a dataset of erroneous outliers after viewing. More 
recently, [12] explored how correlating data graphically in a table 
could reveal data quality issues, though they didn't include a 
method to then edit such data. 

2.1 VIPER 

Table 1. A simple matrix of individuals by markers. Some cells 
(genotypes) are coloured to indicate inheritance error. 
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Table 1 is a small example of individuals plotted against 

markers so each cell displays the error state of an individual 
genotype. Totalling the errors by column and row gives the errors 
per individual and per marker. While this tabular representation 

gives a useful overview for some tasks (here it reveals Individual 
3 and Marker 3 both have a high proportion of errors), it doesn’t 
show a) the pedigree structure of the individuals, necessary for 
determining the source of errors, or b) a visually compact 
representation of the scale of marker sets present in real-world 
data. The biologists on this project initially envisaged data sets of 
up to 10,000 markers - however this figure then leapt to 250,000 
and will only rise as technology advances. Similarly, node-link 
representations are useful for showing simple pedigree structures, 
as exampled by one of the figures in this paper, but edge crossings 
proliferate if we look above a small number of relationships, 
making the view increasingly intractable for users [13]. 

In a previous response to these difficulties, a novel Java-based 
visualisation for representing errors in pedigree genotype data was 
developed - VIPER [14], upon which we build extensions for data 
masking. It combined a number of elements in a multiple view 
display, including histograms, tables and a novel pedigree 
representation. VIPER displays successive inter-generation 
relationships as in Figure 1: offspring are displayed as a layer of 
hexagonal glyphs sandwiched between layers of male and female 
parents (thus termed a 'sandwich' view). Within each glyph, 
triangles act as stylised up and down arrows to communicate the 
degree of errors to father (sire) and mother (dam) and the 
rectangle in-between shows errors that cannot be traced to either 
(novel alleles). A colour hue is used to convey the presence of 
erroneous data points, with the colour intensity representing the 
degree of error, thus large marker sets can be accommodated. 
Typically, grouping each sandwich by its male parents reduces 
clutter and as females rarely reproduce with multiple sires per 
generation, the dam glyphs only need repeating rarely. 

A pair of tables gave detailed error information for every 
individual and marker in the data set, split into errors with sire, 
dam, and novel alleles, along with a total error count column. The 
tables and sandwich view were linked for reciprocal highlighting 
of selected individuals, whilst selecting a marker from its table put 
the application into single marker view, showing only errors for 
that marker. Two histograms were also used to show error 
distributions in the data set (termed 'errorgrams'): one showing 
error distribution for markers and one for individuals. This 
allowed users to see an overview of errors in the data and revealed 
high-level trends. In general, uncleaned pedigree data tended to 
have a) some individuals with lots of errors, suggesting a problem 
with those individuals, and b) some markers with lots of errors, 
again suggesting a problem with those markers. The challenge 
was then to further develop VIPER from an error visualisation 
into a data-cleaning tool. 

3 PEDIGREE GENOTYPE CLEANING 
The goal of cleaning error-ridden data sets is to remove errors. 
However to actually correct errors is usually an intractable task; 

Figure 1. In VIPER, offspring are represented by hexagonal 
glyphs, coloured by error count: top triangle = no allele 
inherited from sire, central rectangle = novel alleles detected 
(present in neither parent), bottom triangle = no allele inherited 
from dam. 
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we might know which values have errors, but we do not know 
what the correct value should be. This is exacerbated in pedigree 
genotypes by the presence of missing data which shift the 
reporting of errors by genotype-checking algorithms away from 
their source in the pedigree. In fact, consistency checking of non-
trivial pedigrees has proven to be NP-complete [15]. 

Removing errors within this domain is thus achieved by 
masking errors; manipulating the data by marking certain data 
points as having unknown values so explicit discrepancies 
between parents and offspring are removed. In short, we say "we 
don't know what it is, but it's definitely not that". The genotype-
checking algorithm then treats these user-defined unknowns 
identically to missing values in the raw data: it infers the complete 
set of acceptable possible values based on analyzing the closest 
individuals in the pedigree that have present and correct values for 
the same marker. Thus, as well as discovering where errors occur, 
the algorithm uses structural information to help fill in the blanks. 
This is distinct from statistically-based methods that fill in gaps in 
multivariate data sets [16, 17], yet achieves the same ends. 

In this particular problem domain, this is an acceptable solution, 
as downstream analysis tools can cope with missing data by 
inferring possible values based on Mendelian inheritance but are 
broken by incorrect data, or worse, process the incorrect data to 
produce incorrect findings that may be damaging further down the 
line. The effect of such bad data has previously been recognised in 
animal conservation [18] and human health research [19]. 

3.1 Fundamental Cleaning Operations 
The original visualization [14] had two errorgrams that supported 
some simple filtering operations. One allowed removal of markers 
above a given error count, and another supported a visual filtering 
on individuals (greying out individuals with less than a given error 
count). While this provided opportunities to study basic error 
patterns, cleaning the data requires a more involved set of 
interactions, necessitating an iterative communication with the 
underlying data cleaning algorithm rather than just relying on an 
initial supply of error count information. 

Investigating with the biologists the most effective way to 
remove errors revealed that they would first remove markers with 
many errors, then mask the most erroneous individuals and then 
iteratively work through the remaining errors, leading to a set of 
three fundamental cleaning operations: 

 
1. Mask a marker 
2. Mask an individual 
3. Mask a genotype (pairing of marker and individual) 

3.2 Cleaning Bad Markers 
Markers are independent of each other, such that removing one 

marker does not affect the error state of other markers, making it 
cognitively the easiest operation and a natural starting point for 
cleaning. Therefore our first interactive cleaning task was to 
support the masking of bad markers, which required hooking up 
the existing errorgram slider to the genotype checking algorithm 
through an existing API (as would all subsequent masking tasks.) 

This proved to be an effective technique for the biologists who 
then asked to visually exclude markers with only a few errors as 
they were unimportant in the overall cleaning process. It was 
initially proposed to replace the errorgram slider with a range 
slider to set two values (low & high), however the biologists 
stated that ignoring these markers for the time being was 
conceptually different from masking the most erroneous markers 
and therefore another errorgram was added to allow them to 
control the display of low-error markers. This new errorgram was 
also filtered so that the high-error markers masked in the first 

errorgram were not shown, making it a zoomed view of the first 
errorgram, as shown in Figure 2. 

We also set both marker errorgrams to always reflect the data as 
it was upon loading. This gelled with the biologists' approach to 
cleaning the data: masking the worst markers first, and then 
tackling the more involved and smaller units of data such as 
individuals and genotypes, so revisiting the marker errorgram was 
not envisaged as necessary. 

3.3 The Transitive Error Problem 
The expectation was that, as with the markers, we could use an 
errorgram to mask the most error-prone individuals. However, this 
proved naïve as it did not account for the major problem with 
errors in pedigree genotype data sets – namely their transitive 

nature due to the relationships of individuals within the pedigree. 
Figure 3 demonstrates a simple example of this effect. Figure 

3a) shows a small single-marker pedigree with errors shown in 
red. Figure 3b) shows the result of naively masking the two 
individuals in error highest up in the pedigree. Here, due to 
masking a female (now labeled '??' in blue), errors in two of its 
children are removed, however another child (GT - circled) now 

AG GT

AG CG GT CAGAGC CC

CC GG GT GG GC

CA AC

GC CC

CC GCa b

dc

AG ??

AG CG GT CAGAGC CC

CC GG GT GG GC

?? AC

GC CC

CC GC

AG ??

AG CG ?? CAGAGC CC

CC GG GT GG GC

?? AC

GC CC

CC GC

AG GT

AG CG GT CAGAGC CC

CC GG GT GG GC

?? AC

GC CC

CC GC

Figure 3. The transitive effect of masking an individual genotype. 
Given the errors shown in red in part a) we mask the two error 
reporting individuals in the second generation in b). This removes 
many errors but also produces a new transitive error (circled). In 
part c) we mask this new error but it is just pushed down the 
pedigree (again circled). In part d) we alternatively break one of the 
pedigree relationships at the top (the dashed line), removing many 
existing errors and, crucially, we don’t introduce new errors. 

Male    In Error 

Female    Masked 

Figure 2. The second marker errorgram is an expanded view of 
the unfiltered portion of the first errorgram. In this new 
errorgram markers are visually excluded with the slider but not 
excised from the data set, unlike the first errorgram. 
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cannot match its 'T' allele with either parent. With its mother now 
masked, it tries to reconcile with its maternal grandparents (the 
two individuals in the top generation) but neither carry the 'T' 
allele as well and thus it now reports an error. When in turn this 
individual is masked in Figure 3c) the problem is just pushed 
down again to the next generation with another circled individual 
containing a ‘T’ allele now reporting an error. 

The underlying error in Figure 3 was between the first and 
second generations i.e. the lack of a T allele, but trying to mask 
the problem pushed the error down the pedigree and another 
subsequent masking just pushed it even further down. This is in 
fact the essential problem of transitive errors in pedigree 
structures: errors may be chased blindly down to the bottom of the 
pedigree, masking otherwise useful data along the way, and 
moving further from the source of the error at the same time. 

Therefore we realised the necessity for an operation that, rather 
than masking individuals or genotypes, masked the relationship 
between a child and parent. In terms of seeing the pedigree as a 
graph, this is like masking an edge between two nodes rather than 
masking information carried in the node itself. The effect of this is 
shown in Figure 3d) where the relationship from the erroneous 
individual in a) to its parents is removed instead of the individual 
being masked, which results in no new errors being caused. One 
of its offspring still remains in error, but this can be directly 
masked itself. This results in a fourth fundamental masking 
operation for cleaning the data set: 

 
1. Mask a marker 
2. Mask an individual 
3. Mask a genotype (pairing of marker and individual) 
4. Break a child/parent relationship in the pedigree. 

 

Of the four operators, 1 and 4 cannot add further errors into the 
data, but 2 and 3 do introduce this possibility.  

3.4 Cleaning Bad Individuals & Genotypes 
On a practical note, transitive errors meant error totals for related 
individuals would increase or decrease when other individuals 
were masked, making an errorgram and slider mechanism for 
masking individuals inelegant as individuals would sometimes 
jump from one side of the slider ’cut-off’ to the other, and the 
shape of the histogram would also markedly change during the 
process. It would also change the shape of the marker histograms 
if we populated them with the current error counts, which formed 
part of our reasoning to set the marker histograms to show only 
the initial state. 

To therefore support cleaning operations beyond the broad 
filtering of the marker errorgram, extra functionality was 
incorporated into the existing visualization. In both the sandwich 
view and the individual table we added a right-click context menu 
to individuals which gave a selection of masking operations. E.g. 
in the full marker mode, bringing up the menu on an individual 
would show the option to mask or unmask that particular 
individual - the second operation in our list of four. In single 
marker mode (where errors related to only one particular marker 
are shown), it would offer the choice to mask or unmask the 
genotype for that individual - the third of the four operations. 

There are also options to break or restore the pedigree 
relationships of an individual to its parents (the fourth basic 
masking operation). In the sandwich view the additional option to 
mask all individuals in an entire family is provided as a shortcut to 
doing the same masking operation on each individual. Again, in 
the single marker mode, the same action is available but instead of 
masking individuals it masks sets of genotypes. To allow markers 

Figure 4. The extended VIPER interface with newly introduced data cleaning elements highlighted. Filterable errorgrams (A) (with the 
bottom errorgram being a zoomed view of the top errorgram), expanded individual and marker tables showing incomplete and masked data 
points, along with individual marker masking (B), context menus for masking in the sandwich display (C) and a history tree for reversing 
masking decisions (D) - all connected to an underlying genotype checking algorithm. Masked data (in blue) is represented in various ways: 
masked pedigree relationships are indicated by solid triangles within glyphs (E), masked individuals and genotypes are indicated by 
stippling across an individuals' glyph (F). Masked individuals’ details are also accessible in an extra table (G). 

 

D 

C 

B  

E F 

G 

A 
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to be removed singly, or be removed independently of the 
errorgram filtering, a column of checkboxes was added to the 
marker table to allow masking or inclusion on a marker-by-
marker basis. This proved to be invaluable when dealing with sex-
linked marker problems. Lastly, an extra table that lists all current 
individual-level maskings (masking operations 2 & 4) was 
provided to give users a place to undo such operations. Figure 4 
shows these additions in the interface, along with examples of 
individuals having undergone various aspects of masking. 

The biologists stated that with these fine-grained maskings they 
wanted control of when the checking algorithm ran, so that the 
effect of several logically-related maskings could be tried 
together. This approach also aided the application’s 
responsiveness as recalculating the errors is CPU-intensive, and 
also helped when masking pedigree relationships, as re-layouts of 
individuals under dummy parents would not happen until users 
were prepared to view the effects of recalculation. So, automatic 
recalculation was kept only for marker errorgram interactions 
which rarely involve small numbers of maskings in any case. 

3.5 Masking Representations 
Initially, masking simply called the error checking algorithm 

for recalculation and redisplayed the new error output in the 
visualisation. However, the biologists stressed the importance of 
keeping track of what data they had masked during the cleaning 
process, and so a visual indication of masking was deemed 
necessary. As discussed, masking of errors is equivalent to setting 
values to unknown, therefore for visual consistency we decided to 
show masked data in the same hue as used for indicating missing 
data. Unknown data can therefore be thought of as divided into 
incomplete - missing from the initial data set - and masked - data 
deliberately hidden by the user to remove errors. 

Accordingly, this data was added to the marker and individual 
tables as two separate columns, masked and incomplete, and 
within the sandwich display deliberately masked individuals and 
genotypes were indicated with a stippled infill of the individual 
with the current "missing" hue - missing data was already 
indicated with a border of the same colour around the individual, 
so infilling served to distinguish the two conditions. 

Broken pedigree relationships were displayed as solid infills of 
either the up or down triangles in an individual’s glyph, indicating 
in which direction(s) the pedigree relationships had been broken. 

Figure 5 shows examples of how masking is conveyed within 
the sandwich view, both genotype and complete individual masks 
and the breaking of pedigree relationships between individuals. 

3.6 Visual History 
With such an explorative method of error removal, it is imperative 
that users can undo masking operations and then restart 
exploration from a prior position. Such a facility beyond a simple 
single undo/redo is known as a history function, and in this 
particular case a branching history function. After any user 
interaction that changes the set of masked markers, individuals or 
genotypes, a new history state composed of the current states of 
these values is saved and appended to this history. 

The history tree's visualization is shown at the bottom of Figure 
4, similar to that in [20], with each history state being represented 
by a node showing the overall error counts and different maskings 
applied at each state. The details in each node are kept as textual, 
rather than visual, representations to keep to a design choice that 
the only colour in the interface should represent the current state 
of erroneous and missing data. The path from the start of the 
cleaning process to the current error state is highlighted in the tree 
structure, and conversely, the greyed-out nodes represent masking 
attempts by the user that were then revoked, and act as a visual 
memory aid for hypotheses that have been tried and rejected. 

To return to a particular state the user simply clicks on the 
corresponding item in the history tree, and the saved maskings are 
reapplied to the data set. Without such a facility the onus falls on 
the user to remember what actions must be redone, not ideal when 
they are focusing on a challenging problem with the data. Indeed, 
the information-seeking mantra [21] includes the idea of history 
explicitly. 

The inclusion of an interactive history is designed to encourage 
an explorative approach to masking data, as users have the option 
to undo the maskings reflected in the interface to a previous state. 
Users can form hypotheses as to what actions would clean certain 
portions of the data set, carry out the actions to put those 
hypotheses into practice, and safely return to a previous known 
state if the presupposed effect on the error count did not occur. 

4 USER STUDY 
With the extended version of VIPER now incorporating data 
cleaning functionality it was decided to run a comparative 
empirical evaluation against an existing data cleaning tool for 
pedigree genotypes: GenotypeChecker (GC) [2]. The aim was to 
find out what objective and subjective differences occurred when 
both applications were used by expert biologists, and which of the 
features of VIPER, both the existing sandwich representation 
developed in [14] and the new cleaning interactions outlined in 
this paper, differed in respect to GC. 

GC is a Java application that shows a table-based display of 
markers (columns) by individuals (rows) in which genotypes that 
cannot be the product of an individual's assumed parents are 
coloured, as shown in Figure 6. As with VIPER, individuals, 
markers and genotypes can be masked and the effect on the 
remaining errors then recalculated. Rows (individuals) can be 
sorted on the basis of error count, gender, name or generation 

a) 

b) 

Figure 5. How masked data is represented in the visualisation. a) A 
full individual masking on G722 stipples the whole hexagon blue, 
and a single genotype masking on G558 stipples a lighter blue over 
the remaining errors shown in red. b) Masked relationships (G727 
& G730) are shown as solid blue triangles pointing in the direction 
of the parent gender they have disassociated from, and they are 
realigned with new, separate “unknown sire” (or dam) parents 
elements. The presence of originally incomplete data is shown as a 
blue border around individuals. 
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whereas the column ordering is fixed. However, beyond a simple 
ability to list the children and parents of a given individual, it 
cannot represent or explore the relationships in a pedigree, which 
is seen as a drawback to finding, understanding and fixing errors. 
As GC's underlying checking algorithm is the same as VIPER's, 
any differences in performance or preference should be due solely 
to the different interfaces. 

4.1 Part icipants 
Eleven biology professionals from The Roslin Institute, 
unconnected with this work, volunteered to take part in the 
evaluation for which we offered a prize draw of a £50 voucher. 
All were qualified to degree level, eight had PhDs and four had at 
least 25 years experience in their field. They variously described 
themselves as geneticists, bioinformaticians or biologists. 

All but one stated they used pedigree data in the course of their 
work, though that individual stated they understood Mendelian 
inheritance. Three stated they had infrequent experience of 
previously using GC when they needed to clean pedigree data, but 
for most work used pedigree data they assumed was consistent. 
Three others stated they had seen some form of visually 
represented pedigree data, and the other five said they'd never 
used any application that showed a pedigree visually. 

To explain the lack of visualisation exposure, raw pedigree data 
is often just simple "sire-dam-child-gender" format CSV files that 

are typically loaded into the de facto data manipulation tool of 
these biologists: Microsoft Excel. One of the developers of GC 
stated the reason that tool was so strongly based on a table-based 
representation was due to the biologists' familiarity with Excel. 

4.2 Test Procedure 
The experiment was a within-subject test where each participant 
was faced with 12 questions categorised into two principal tasks, 
one that posed questions about the interface and its 
representations, and another that asked them to perform cleaning 
on the data; the rationale being that before masking can be 
performed on any data, the representation of that data must be 
understandable. The participants tackled these questions using 
both the GC and VIPER interfaces, with the order flipped between 
successive participants to counter learning effects across the user 
group. Before they answered the questions on each interface they 
were given a demonstration and allowed to experiment and clarify 
issues regarding the interface. 

The twelve questions (listed in Table 2, along with the correct 
results per question) in the two tasks were a mixture of 
finding/masking data that did not require any pedigree exploration 
and those that would require a user to analyse individuals in the 
context of their family members - e.g. a question such as 'which 
individual has the most errors overall' required no pedigree 
exploration, whereas another question such as 'Marker-32 has 5 
errors - remove the three errors that occur in the same family' 
would require the user to relate the genotypes to the pedigree. Of 
the twelve questions, 5-8 inclusive were considered not to need 
pedigree exploration. 

The questions in the masking task in particular were organized 
such that it resembled a typical cleaning scenario: bad markers 
would be removed first, followed by the masking of problematic 
individuals. After that, sex-linked markers and genotypes would 
be targeted for masking. 

The tests were scored with each question receiving a Boolean 
right/wrong mark according to whether the correct answer was 
found, giving each user a total out of 12 for the tasks on each 
interface. Further, after the users completed the tasks on both 
interfaces an attitude scale with 12 items was used to elicit user 
preferences between the two interfaces for given operations. 

The data set used was a relatively small clean dataset of 131 
animals measured across 59 markers, making for a total of 7,729 
genotype data points, into which errors of varying types had been 
introduced for the participants to discover and clean. The tests 
were performed at the Roslin Institute on a laptop with a 19-inch 
widescreen display and each user was scheduled to take 

Task 1 – Interface Representation GC   VP 
1. How many sires are there in the original generation? 5 10 
2. What is the biggest family in the pedigree? 2 5 
3. How many full siblings does Individual 39 have? 10 7 
4. How many different dams does the sire Individual 203 produce offspring with? 4 8 
5. Which individual has the most errors overall? 9 9 
6. Which marker has the most errors overall? 10 10 
Task 2 – Data Cleaning (Masking)   
7. Mask all markers that have more than 30 errors. 9 8 
8. Mask the individual that reports the most remaining errors. 6 5 
9. One of the three markers 5, 10 and 50 is sex-linked and contains only errors to sires and novel alleles. Find it 

   
3 10 

10. Marker-4 has 10 errors. Remove these errors by masking as few individual genotypes as possible. 5 4 
11. Marker-32 has 5 errors. Remove the three errors that occur in the same family.  6 9 
12. The offspring of one of sire 203’s families has many errors to 203 across all markers. Identify this family and 
mask the offspring in the family. 

2 2 

Table 2. Task questions, and correct answers per question by interface. VP = Viper, GC = Genotype Checker. 

Figure 6. The GenotypeChecker interface. 
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approximately one hour overall to complete. 

4.3 Results (Performance) 
The results per user, shown in Table 3, revealed that when all the 
answers were considered there was no significant difference 
between the interfaces (two-tailed t-test, p=0.12). However, when 
only the eight questions that required users to explore within the 
pedigree were analysed, a significant effect came to light (two-
tailed t-test, p=0.03) showing that users obtained more correct 
answers using VIPER than with GC for these questions. 

Table 3. Correct answers per user by interface, and by subset of 
pedigree-biased questions. 

 All Q's, correct answers per user 
VP 7 11 8 6 6 9 7 4 11 10 8 
GC 7 10 2 6 3 6 8 8 11 6 4 
 Q1-4 & 9-12, correct answers per user 
VP 5 7 5 3 4 6 4 2 7 6 6 
GC 4 6 1 2 2 2 5 4 7 2 2 
 
There was no significant correlation between the time taken and 

correctness for either tool, and nor was there a significant 
difference in time taken by users between the two tools. 

4.4 Results (Preference) 
From the post-test questionnaire we obtained the results shown in 
Table 4. They showed a strong subjective preference for VIPER 
overall; all median values across the set of items were either a 
preference for VIPER or ‘No Preference’. Performing a Wilcoxon 
signed rank test on the summative values in the questionnaire 
showed a statistical preference (p<0.05, two-tailed) for VIPER 
compared to the 'No Preference' rating on the scale. The same test 
on the questions individually showed the same preference for 
VIPER in questions 1-3, 6-9 & 11, with no significant preference 
in the remaining questions. 

4.5 Observations 
In qualitative terms it was clear to see where users were led astray 
at some points in VIPER, the most common was an inability to 
remember being in the single marker view, and when asked to 
judge families on errors across the full marker set they would give 
an answer based on one marker's errors. This led to a particularly 
poor performance by all users with question 12 (though it was 
relatively no worse than the answers achieved with GC). 

Furthermore, the fact that roughly a third or more of questions 
were either skipped or answered incorrectly with both VIPER 
(45/132) and GC (61/132) reflects that cleaning flawed pedigree 
data is a difficult and skilful process; even though our 11 test 
subjects were professional biologists with an understanding of 
pedigrees most of them had not attempted any previous cleaning 
of pedigree data. 

What was interesting to note was how conditioned some users 
were to a spreadsheet mode of working. Even though the 
‘sandwich’ visualisation was explained and demonstrated, took up 
the majority of VIPER's screen space, and is decidedly table-
esque (it is essentially a nested table) itself compared to most 
other pedigree visualisations, the first instinct of some users was 
to head over to the tables of marker and individual error 
information and try and answer the questions from there. Only 
when this proved fruitless did they investigate the sandwich view. 
Some users stated GC’s "mask row/column" functionality for 
individuals and markers was something they were accustomed to 
from using Excel. This 'table-centredness' has been the case with 
other groups we have worked with, such as taxonomists, who 
replicated tree structures within a spreadsheet. Sairaya et al [22] 
also report that the bioinformaticians they studied performed 
extensive data pre-processing and cleaning in Excel before they 
used further visualisation tools on the data, so this attachment is 
not just unique to our users (and also indicates that when users 
visualize data, they expect it to be error-free.) 

5 CONCLUSION 
We have extended an existing pedigree genotype visualization 

tool, VIPER, with interactive cleaning capabilities, and then 
evaluated it against a table-based pedigree genotype cleaning 
application. Our evaluation revealed a significant subjective 
preference for VIPER's family-centred visualization as opposed to 
GC’s table-based display, and reflected a common finding [23, 
24] with visualization evaluations in that subjective user 
preference for interfaces tends to be more strongly pronounced 
than the effect found in objective task performance. 

 Another major influence on users' performance with interfaces 
is the similarity to other tools they commonly use, with one tree 
browsing evaluation [25] showing users performed better with the 
most familiar widget. Sedlmair et al [26] in their discussion of 
testing InfoVis applications in large companies also note the 
effects of users' attachment to conventional tools. It may be no 
performance difference was found in this study as while 
GenotypeChecker reflected the biologists’ familiarity with 

Table 4. Frequency distribution of user preference answers - (1 = Strongly Prefer Viper, 2 = Slightly Prefer VIPER, 3 = No Preference, 4 = 
Slightly Prefer GenotypeChecker, 5 = Strongly Prefer GenotypeChecker). Medians asterisked and shown in bold italics. 

Preference Item 1 2 3 4 5 
1. Finding structural information on a pedigree *7 1 2 1 0 
2. Finding descendents of an individual *8 2 0 1 0 
3. Finding ancestors of an individual *7 3 1 0 0 
4. Finding error information on a single individual 4 1 *1 4 1 
5. Finding error information on a single marker 3 *3 2 3 0 
6. Distinguishing between different types of error *7 2 2 0 0 
7. Tracing errors to a shared parent *8 0 2 1 0 
8. Finding error information on a single family *7 1 2 1 0 
9. Comparing errors between related families (one shared parent) *8 1 1 1 0 
10. Masking errors 1 2 *4 3 1 
11. Overall understanding of errors 5 *1 4 1 0 
12. Overall ease of use 5 *2 3 0 1 
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spreadsheets it was at the cost of not representing the underlying 
pedigree structure, whereas VIPER represented the structure of 
the underlying data more faithfully but users were less 
accustomed to its visual style. Both these points, along with the 
fact that pedigree cleaning is a cognitively tasking operation, 
perhaps explain why roughly 30% of the questions in both 
conditions were answered incorrectly, showing that there is still 
room for further research into pedigree cleaning interfaces. 

During the course of this work, it has become clear that it is 
crucial to understand the nature of the errors that are to be 
cleaned. In the case of pedigree genotypes the error is a function 
of the relation between two entities (i.e. incompatible genotypes), 
rather than of a particular entity in isolation. In such situations, 
removal of existing errors can cause new errors to appear, or 
remove other related errors at the same time. Interfaces for 
cleaning data where such transitive effects occur must be designed 
so that, optimally, these dependencies are clear to the users, and at 
the very least do not confuse the users. For instance, when 
cleaning involves structural alterations to data, as with the 
relationship masking operation here, the consequent re-layouts of 
the data often need to be delayed until the user is ready to view 
the result. Similarly, a history function is vital to a hypothesizing 
and exploratory cleaning of such data. When the underlying cause 
of error is not known, often due to the propagating effects of error 
and missing data, then the ability to undo and return to previous 
states is crucial. These points are of relevance not just to animal 
pedigree data but to a larger family of ontological data sets where 
entity properties are inherited from other entities, or when an 
object’s correctness can only be judged in comparison to other 
related entities. 
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