
A Machine Learning Approach to Model the
Received Signal in Molecular Communications

H. Birkan Yilmaz, Changmin Lee, Yae Jee Cho, and Chan-Byoung Chae
School of Integrated Technology, Institute of Convergence Technology

Yonsei University, Korea.
Email:{birkan.yilmaz, cm.lee, yjenncho, cbchae}@yonsei.ac.kr

Abstract—A molecular communication channel is determined
by the received signal. Received signal models form the basis
for studies focused on modulation, receiver design, capacity, and
coding depend on the received signal models. Therefore, it is
crucial to model the number of received molecules until time t
analytically. Modeling the diffusion-based molecular communica-
tion channel with the first-hitting process is an open issue for a
spherical transmitter. In this paper, we utilize the artificial neural
networks technique to model the received signal for a spherical
transmitter and a perfectly absorbing receiver (i.e., first hitting
process). The proposed technique may be utilized in other studies
that assume a spherical transmitter instead of a point transmitter.

I. INTRODUCTION

The manipulation of matter at the atomic and the molecular
scale constitutes nanotechnology. It is a promising technol-
ogy that has numerous potential applications [1]–[3]. One
of its innovative approaches is to utilize collaborative be-
havior amongst small entities. To enable the revolutionary
possibilities of nanotechnology, it is important to possess the
capacity to communication at the nano- and micro-scale [4].
As a possible means to communication at such a small
scale, researchers have proposed molecular communication via
diffusion (MCvD) [5]. Examples of MCvD may be found
prevalently in nature–quorum sensing between bacteria at
micro-scale and pheromone-based communication between
animals at macro-scale in both air and water environments.
What occurs in these examples is molecules are utilized to
convey information [1]–[3], [6]–[11]. In an MCvD system,
a transmitter node emits molecules and molecules propagate
through the environment until they arrive at the receiver node.
Received molecules constitute the received signal. This is
of prime importance when it comes to modeling an MCvD
channel.

One of the main challenges in MC is to develop valid
models for representing the received signal in different en-
vironments and conditions. Some of the MCvD models in the
literature, assume that whenever a molecule hits the receiver it
is removed from the environment [11]–[16]. This phenomena
is modeled by the first-passage process (a.k.a first-hitting
process). In this model, each molecule can contribute to the
received signal only once. In [12], the authors presented the
analytical model for the received signal in a 1-dimensional
(1D) environment while considering the first-passage process.
In [13], the authors enhanced the model from [12] by incorpo-

rating the drift component. In [15], the authors presented the
expected cumulative number of received molecules when the
transmitter is a point source and the receiver is an absorbing
spherical node in a 3D medium. In [17], the authors compared
the arrival process models used with the expected received
signal that was derived in [15]. In [18], the authors analyt-
ically modeled the received signal and derived the expected
cumulative number of received molecules when the receptor
effect was added to the system presented in [15].

On the other hand, some of the MCvD models ignore the
first-passage process, allowing molecules to pass through the
receiver node surface/boundary with no interaction between
the environment and the receiver [19]–[21]. In such models,
the molecules are allowed to contribute to the signal multiple
times, as they can pass in and out of the receiver node surface
in and out multiple times.

Both of the MCvD physical layer models are summarized
and presented in [4]. Researchers [4], [22] have claimed that
the first-hitting process is observed in nature more frequently
than the passive receiver process [4], [22]. Moreover, some
of these models are validated by macro-scale testbed imple-
mentations [23]–[25]. Both channel models (i.e., the received
signal for the first-hitting process and passive receiver) have a
common hurdle for the communication engineering: heavy tail
distribution of the received signal, which causes inter-symbol-
interference (ISI). In literature, plenty of techniques are pro-
posed to eliminate the severe effects of ISI by utilizing spe-
cialized modulations [26]–[32], error correcting codes [33]–
[35], and enzymes [19], [36]–[39]. In these studies, analytical
models and their assumptions are used for the derivations,
which indicates the importance of modeling the channel and
the received signal in different environments.

Modeling the MCvD channel with the first-hitting process
is an open issue for a spherical transmitter. The literature
introduces analytical models for the first-hitting process with
a point transmitter and with a spherical receiver [15]. In
this paper, we propose a channel model that is inspired
from the derived formulation in [15]. The proposed model
function has model parameters that are affected by the system
parameters. Moreover, we show that these model parameters
can be learned by an artificial neural network (ANN) and the
trained network can predict the model parameters for a given
system parameters.
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Fig. 1. System model of MCvD with point and spherical transmitter cases. In
the point transmitter case, molecules are free to go in the opposite direction.
On the other hand, molecules are reflected by the body of the transmitter in
the spherical transmitter case.

II. SYSTEM MODEL

In an MCvD system, there is at least one transmitter and re-
ceiver pair in a fluid environment. Figure 1 shows two different
cases for MCvD–point and spherical transmitters. In general,
the point transmitter case is studied in the literature [15],
[18], [21]. The point transmitter assumption are reasonable for
some applications. However the transmitter node has a body
in general and the transmitter does not react to the molecules
from itself. In this paper, we model the MCvD channel with
a perfectly absorbing receiver (i.e., whenever a molecule hits
the surface of the receiver node, it contributes to the received
signal) without the point transmitter assumption.

As shown in Fig. 1, emitted molecules diffuse in the 3D
environment, which is characterized by the diffusion coef-
ficient D. At the receiver side, the radius of the receiver
is denoted by rRx and the received signal consists of the
time histogram of hitting molecules. When we have a point
transmitter, molecules are able to more freely travel in the
opposite direction of the receiver more freely. In the spher-
ical transmitter case, however, molecules are obstructed and
reflected by the transmitter of radius rTx. Hence, the received
signals of these two cases are expected to differ.

A. MCvD with a Point Transmitter

The received signal is modeled analytically for the point
transmitter case. The diffusion process basically models the
average movement of particles in the concentration gradi-
ent. For modeling the received signal, we need to include
the boundary conditions that represent the concentration and
molecule distribution function. First, we consider Fick’s Sec-
ond Law in a 3D environment, which is given by

∂p(r, t|r0)

∂t
= D∇2p(r, t|r0) (1)

where ∇2, p(r, t|r0), and D are the Laplacian operator, the
molecule distribution function at time t and distance r given

the initial distance r0, and the diffusion constant. The initial
condition is given by

p(r, t→ 0|r0) =
1

4πr20
δ(r − r0), (2)

and the boundary conditions by

lim
r→∞

p(r, t|r0) = 0, (3)

D
∂p(r, t|r0)

∂r
= w p(r, t|r0), for r = rRx (4)

where rRx and w denote the radius of the receiver and the
rate of reaction. The reaction rate with the receiver boundary
is controlled by w. Specifically, w = 0 means a nonreactive
surface and w →∞, on the other hand, corresponds to the
boundary where every collision leads to an absorption.

In [15], the solution to this differential equation system
is presented and analyzed from the perspective of channel
characteristics. After finding the reaction rate, the authors
presented the formula for the fraction of molecules that hit
the receiver until time t, as follows:

F 3D
hit (t) =

rRx

d+rRx erfc
(

d√
4Dt

)
=

2rRx

d+rRx Φ

(
−d√
2Dt

)
(5)

where d, erfc(.), and Φ(.) represent the distance, complemen-
tary error function, and the standard Gaussian cdf, respectively.
When the transmitter is a point, there is a circular symmetry,
all the points at the same radius are equivalent and the solution
for the system of differential equations is enabled. For the
spherical transmitter case, however, it is more complex to
derive the formulation of the number of received molecules.

B. MCvD with a Spherical Transmitter

Modeling the received signal analytically for a spherical
transmitter is an open issue when the receiver is a perfectly
absorbing spherical receiver in a 3D environment. The main
difference and hurdle stem from the lack of circular symme-
try. For the spherical transmitter case, molecules are biased
towards going in the direction of the receiver due to the
obstructing body of the transmitter node. Therefore, each of
the molecules is expected to have a higher probability of
hitting the receiver.

Hurdles caused by a spherical transmitter steered us to
simulate the MCvD with a spherical transmitter and to analyze
the patterns so as to grasp the underlying dynamics. We ran
extensive simulations with many parameters. We realized that
the cumulative number of received molecules exhibits a similar
behavior to the point transmitter case with a small perturbation
that is dependent on the system parameters.

III. PROPOSED TECHNIQUE FOR CHANNEL MODELING

As noted above, the main challenge in MCvD is to develop
valid models for representing the received signal in different
environments and conditions. When the transmitter has a
spherical body, we propose to model the received signal by
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Fig. 2. Flowchart of the proposed technique. Phase 1 deals with fitting model parameters by utilizing the dataset from simulator. Phase 2 deals with training
an ANN on the training dataset that is obtained from Phase 1. Dataset from Phase 1 consists of input-output pairs where input is (d, rTx, rRx, D) and the
output is the model parameters (i.e., bi’s).

parameterizing (5) and learning the patterns behind the model
parameters.

The proposed technique is composed of two main phases:
fitting the model parameters constitutes phase one (i.e., form-
ing the input-output dataset for phase two) and learning the
patterns in the input-output dataset constitutes phase two. After
the learning phase (i.e., phase two), the output of the algorithm
is a trained ANN for future predictions on unexplored input.
A representative scheme of the proposed technique is depicted
in Fig. 2.

A. Model Function and Fitting

We propose two different model functions for fitting the
simulation data and name them as primitive model and en-
hanced model. We use only a scaling factor for the primitive
model, which is represented as follows:

F 3D
hit (t, b1) = b1

rRx

d+rRx erfc
(

d√
4Dt

)
(6)

where b1 represents the model fitting parameter. For the
enhanced model, we also parametrize the components related
to D and t, which is shown as follows:

F 3D
hit (t, b1, b2, b3) = b1

rRx

d+rRx erfc
(

d

(4D)b2 tb3

)
(7)

where b1, b2, and b3 are model fitting parameters. These model
fitting parameters are introduced for fitting simulation data to
model functions.

To find the model parameters corresponding to the sys-
tem parameters, we use nonlinear least squares curve fitting
technique. Assuming that we have N observations during the
simulation we formulate the fitting model parameter estimation
problem with m parameters as follows:

arg min
b1,...,bm

N∑
k=1

(
F 3D

hit (tk, b1, ..., bm)− S3D
hit (tk)

)2
(8)

where S3D
hit (t) corresponds to simulation data that is represent-

ing the ratio of hitting molecules until time t.
For primitive and enhanced models, we apply to the sim-

ulation data nonlinear least squares curve-fitting technique.

TABLE I
RANGE OF PARAMETERS USED IN THE EXPERIMENTS

Parameter Value
Number of emitted molecules 3 000

Simulation duration (tend) 1 s
Replication 500

TDS Distances (d) {2, 4, 6, 8, 10} µm
VDS Distances (d) {3, 5, 7, 9, 11} µm
TDS Transmitter radii (rTx) {5, 7.5, 10} µm
VDS Transmitter radii (rTx) {4, 6, 8} µm
TDS Diffusion coefficients (D) {50, 75, 100}µm2/s
VDS Diffusion coefficients (D) {60, 70, 80}µm2/s
TDS Receiver radii (rRx) {5, 7.5, 10} µm
VDS Receiver radii (rRx) {4, 6, 8} µm

The output of the curve fitting process consists of the model
parameters (i.e., b1 for primitive model and b1 ∼ b3 for the
enhanced model). Hence, we obtain model parameters for each
simulation case, which forms the dataset of the next phase.
This dataset structure is depicted in Fig. 2 in the middle panel,
which contains simulation case system parameters and the
model parameters (i.e., bi’s) from curve fitting.

B. Learning Model Parameters

In this paper, we introduce a machine-learning technique
to model the received signal in MCvD with a spherical
transmitter. One of the popular machine-learning techniques is
artificial neural networks. They have simple neuron-like nodes
with thresholds and the connections with weights. Basically,
the thresholds and the weights are adjusted until the desired
output is observed for the given inputs.

The dataset from the curve fitting phase is divided into
two disjointed subsets as training and validation datasets.
Training data is utilized for training the ANN for getting
the desired output for given inputs. Bayesian regularization
backpropagation technique is used for the ANN training that
updates the weights and bias values according to Levenberg-
Marquardt optimization. Bayesian regularization minimizes a
combination of squared errors and weights to determine the
ANN parameters that generalize the pattern in the input-



output pairs. We utilize the trained ANN to estimate the
channel parameters for different cases. Note that the curve-
fitting technique requires simulation data but a trained ANN
does not require any simulation data, i.e., required inputs are
the system parameters such as d, rTx, D, and rRx.

IV. RESULTS AND ANALYSIS

A. Performance Metrics and Parameters

For the performance metrics, we mainly use root mean
squared error (RMSE) with respect to simulation data in terms
of number of received molecules. First, we give the received
signal and signal-to-interference (SIR) plots for the example
cases. We then present the average RMSE over different cases.

Common system parameters for simulation, training (TDS),
and validation (VDS) datasets are presented in Table I.
From the given datasets, each of the VDS and TDS have
5× 3× 3× 3=135 different cases, making a total of 270
cases. Each simulation case is replicated 500 times to estimate
the mean received signal at the receiver side.

What is of prime interest for modeling an MCvD channel is
to model, as noted above, the received signal (i.e., the number
of hitting molecules until time t). To model the received
signal, we utilize curve-fitting and artificial neural network
techniques. In the performance figures, we cannot present all
135 cases, but we offer some example scenarios and average
RMSE plots.

B. Received Signal Analysis

In Fig. 3, the received signal is plotted for simulation
data, curve-fitting, and ANN techniques. Note that the ANN
technique requires no simulation data, while the curve-fitting
method does. After training an ANN, we estimated channel
model parameters for the validation data by giving only the
system parameters as input. For the primitive model that is
given in (6), a single channel model parameter was estimated.
On the other hand, for the enhanced model that is given in (7),
three channel model parameters were estimated.

It can be clearly seen that the enhanced model fits the
simulation data better than does the primitive model. At the
peak and the tail part of the received signal, we observe that the
enhanced model outperforms the primitive model and the point
transmitter formulation given in (5). The second observation
suggests that, with increased distance, the estimation perfor-
mance of the received signal is improved. This observation
is also supported with the RMSE plots in Fig. 5. Another
observation is that the trained ANNs generalize the fitted
model parameters well. In other words, we observe that the
ANN curves are close to the curves that are produced by curve
fitting. Without knowing the simulation data (by using only the
system parameters as inputs), the trained ANN estimates the
channel model parameters well.
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Fig. 3. Received signal plots for rTx =4 µm, rRx =8 µm, D=80 µm2/s with
time resolution of 1ms. From top to bottom, plots correspond to d=5 µm,
d=7 µm and d=9 µm cases.

C. SIR Analysis

For a more in-depth analysis we used the following metric,
SIR, formulated as:

SIR(t) =
F 3D

hit (t)

F 3D
hit (tend)− F 3D

hit (t)
(9)

where we can also substitute F 3D
hit (t) with the channel model

functions given in (6) and (7). This metric basically represents
the ratio of the cumulative number of received molecules until
time t and the number of interference molecules. SIR plots are
important since they show the performance of modeling the
ratio of desired signal and interference. In Fig. 4, SIR is plotted
for the simulation data, curve-fitting, and ANN techniques.
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Fig. 4. SIR plots for rTx = 4 µm, rRx = 8 µm, D = 80 µm2/s with time
resolution of 1ms. From top to bottom, plots correspond to d=5 µm, d=7 µm
and d=9 µm cases.

The enhanced model estimates the received signal better than
the primitive model. Moreover, the longer the distance the
better the channel parameter estimation performance. For
d = 9 µm case, the enhanced model is very close to the
simulation data. However, the primitive model with one scaling
factor does not adequately model the simulation data. Again,
we see that the trained ANN generalizes the fitting method
well for both of the cases (i.e., fitting and ANN curves are
overlapping for both models). After d=7 µm, ANN performs
close to the simulation data.

D. RMSE Analysis

To better understand the performance of the estimation
technique, we evaluated the mean RMSE of cases with respect
to (wrt) simulation data in terms of the number of received
molecules until time t. For RMSE analysis, we grouped results
with respect to distance and rRx so that each group was the
average of nine cases.
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Fig. 5. Average RMSE plots of ANN estimation with primitive and enhanced
models.

In Fig. 5, the RMSEs of the channel parameter estimation
methods are presented for ANNs with primitive and enhanced
models. The first observation suggests that the estimation
performance gets better with increasing distance. Moreover,
the RMSE of the enhanced model is significantly lower than
that of the primitive model. Note that the ANN technique re-
quires no simulation data, utilizing only the system parameters
as input to estimate the channel parameters. The primitive
model scales the formulation of point transmitter case and the
larger rRx case deviates more from the point transmitter case,
as the probability rises of receiving obstructed and reflected
molecules. Therefore, for the primitive model, performance
of the estimation of the received signal is better in terms of
RMSE for smaller rRx.

V. CONCLUSION

In this work, we developed a novel technique to model the
received signal in MCvD with a spherical transmitter. In the
literature, a point transmitter is assumed for the tractability of
the mathematical derivations in a first-hitting process frame-
work. Approaching the problem from a unique perspective,
we utilized an artificial neural network technique and a model
function for the number of received molecules. After training
an ANN, we were able to ask the ANN to estimate the channel
model parameters for different system setups. Our proposed
technique has promising results for modeling the number of
received molecules until time t. We observed that the proposed



technique models the received signal and SIR more effectively
for longer distances. The proposed technique may be utilized
to model an MCvD channel in other studies that assumes a
spherical transmitter instead of a point transmitter.
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