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Abstract—In this paper, we consider the problem of evaluat-
ing trust between individuals in social networks. The previously
introduced three-valued subjective logic (3VSL) provides a set of
useful tools in measuring interpersonal trust in social human
networks. However, the number of required operations for such
measurements grows exponentially with the size of network.
Moreover, the correlations between different paths connecting
the two individuals caused by common edges are not considered.
In this paper, we show that the operators in 3VSL can still be
used to give a lower-bound on trust even if such correlations
are taken into account. We introduce a low complexity scalable
algorithm to obtain this lower-bound. The numerical experiment
results are represented and compared with the 3VSL.
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I. INTRODUCTION

Uncertainty in predicting others’ behaviors naturally exists
in many networks including human social networks and
communication networks. Rationally individuals should take
the level of uncertainty into account in making decisions in
their interactions with others. If an individual A trusts B,
it means that with high probability A can expect B would
act as desired by A. Therefore less caution is required in
dealing with B. Trust is usually built based on previous
observations of the behaviors of a given agent [1, 2]. For
instance, in many online markets, the feedback from previous
customers about the quality of service provided by different
sellers is given. Hence the users make their decisions based
on these ratings. This is, to a very good extent, similar to
social human networks where individuals further trust those
ones with whom they have had a better experience (based on
their behavior in the past).

It should be noted that trust as a general term is a
complicated psychological concept and hardly measurable.
However, in practical engineering systems such as online
social networks or e-commerce, a mathematical model of trust
is highly desirable in decision making. As discussed earlier,
such a model can rely on the previous observations from the
behaviors of an agent. For instance, if we observe r instances
of good behavior and s instances of bad behavior, we can
expect that with probability r

r+s
we observe a good behavior

from the person in her next action. Using this intuition, in [1]
the reputation of an agent, i.e. the probability distribution
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Fig. 1: Series-parallel topology (left) vs. bridge topology
(right)

of the probability of good behavior1 is modeled with the
beta distribution with parameters obtained from the previous
observations. Similar studies extend the idea of evidence-
based trust, for instance [3] models trust as the certainty
in predicting the future actions of an agent based on the
precedent evidences. It should be noted that recommendation-
based trust can be prone to feedbacks by malicious nodes. A
robust method of trust analysis against such events is proposed
in [4].

Trust, in networks, is however more complicated. In a
network of agents, in similarity to human social networks,
formation of trust is not only based on agent-to-agent contact
through a direct contact (acquaintance), but also affected by
indirect contacts via intermediate agents. Trust in multiple
hops have a transitive nature, however it is discounted from
one hop to another depending how much the two sides of
a hop trust in each other. For instance if A trusts B with
probability pAB = 0.8 and B trusts C with probability pBC =
0.8, then A is expected to trust C with probability pAC =
pABpBC = 0.64, given that the observations of A from B and
B from C have been independent. Extending trust to complex
networks and how the opinions of different nodes should be
propagated across the network has been studied in [2, 5–8],
in [9] in semantic web and [10] in wireless networks.

Distributed recommendations as a practical model for
trust were discussed and suggested in [2] for online net-
works. Using the mentioned reputation based models, some
approximations for trust probability between individuals are
given in [5, 11]. However, these methods are based on the
assumption that the topology of the underlying graph of the

1This can be a confusing terminology. Here, the probability that good
behavior occurs is, itself, a random variable. Hence, it has a distribution just
like any other random variable.
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Fig. 3: Two paths ABDEGH and ACDEFH are proba-
bilistically dependent.

network only consists of series or parallel connections. In real
social networks the network graph is very likely to be more
complicated. For instance, it may include bridge connections
as illustrated in Fig. 1. In this case the network cannot be
decomposed to only parallel or series connections. In [8], the
three-valued subjective logic (3VSL) is introduced and based
on that, an algorithm is proposed to measure the trust between
two nodes in more complex networks such as the mentioned
bridge network topology. In the 3VSL, a quadruple of belief
(trust), disbelief (distrust)2, posteriori uncertainty and a-priori
uncertainty rates (to be formally defined later) is associated
with each pair of trustor i and trustee j. We denote this
quadruple by ωij = (b, d, n, e), which is called an opinion.
Then an equivalent binary decomposition tree of the network
directed graph is formed (see Fig. 2) and the two operators
combination (denoted by Θ) and discounting (denoted by ∆)
are applied to parallel and series connections, respectively.
These operators will be later described and also derived for
a more general case of multiple connections. However, it
should be briefly noted that in the parallel connections the
trustor is receiving multiple opinions from different sources
and therefore the combination operator combines all these
observations together. In the series connection an opinion
about a node j is discounted while it is transferred through
an intermediate node k to node i, depending on how much i
trusts in the opinion of k.

The 3VSL gives a deeper insight about trust propagation
through networks. However, there are two main challenges in
using the 3VSL which are addressed in this paper and briefly
discussed as follows.

• As we will see in Section III, the combination oper-
ator in [8] is established based on the assumption of
probabilistic independence between parallel connec-
tions. However, even if the opinions between different

2In this paper we use the terms trust and belief interchangeably. Also we
use the terms disbelief and distrust interchangeably.

pairs are formed based on independent observations,
opinions coming from paths with common edges are
not independent. For instance, in Fig. 3, the two
paths ABDEFH and ACDEGH are not indepen-
dent because of sharing the edge DE in the graph.
In this paper, we revisit the theoretical background
on the combination of opinions in networks and
use the Fortuin-Kasteleyn-Ginibre (FKG) correlation
inequality [12, 13] to show that the combination
operator in [8] is a lower bound on the probability of
trust (or distrust) for parallel connections. The FKG
inequality has been widely used in percolation theory
[14] and in network modeling [15, 16].

• The number of required operations in the binary tree
decompositions grows exponentially with the size of
the network. Therefore, it is computationally costly
to scale the algorithm to large scale networks. In this
paper, we propose a low-complexity algorithm which
provides a lower bound on the probability of trust and
disbelief with an order O(N3) of required operations.

The rest of this paper is organized as follows. The
system model and mathematical formulation of the opinions
quadruples is provided in Section II. In Section III we prove
that the combination operator gives the lower bound for
the probabilities of belief and disbelief. The low complexity
algorithm for measuring trust in complex networks is given in
Section IV. Numerical experiments are represented in Section
V and the paper is concluded in Section VI.

II. SYSTEM MODEL

As mentioned earlier, trust between two individuals in
online social networks can be mathematically expressed as
the expected probability of observing a desired action from
a trustee by a trustor based on previous observations. The
system model used in this paper is mainly adopted from the
three-valued subject logic introduced in [8]. In this model,
we denote the number of desired observations (e.g. positive
feedback in an online market) by r, the number of undesired
behaviours (e.g. negative feedback) by s and neutral observa-
tions by o. The opinion of a node i about node j is denoted
by ωij and is defined as follows.

ωij = (bij , dij , nij , eij)

bij + dij + nij + eij = 1

where bij , dij , nij and eij are the belief (trust), disbe-
lief, posteriori uncertainty and priori uncertainty rates. In
the absence of any observation, priori uncertainty is the
probability of trustworthiness, distrust or neutrality. In the
following we state the relationship between the mentioned
rates, observations (feedback) and the probabilities. The rates



in the opinion quadruple are obtained as follows.

bij =
r

r + s+ o+ 3

dij =
s

r + s+ o+ 3

nij =
o

r + s+ o+ 3

eij =
3

r + s+ o+ 3

(1)

In the absence of any feedback, eij = 1, which is translated to
absolute a-priori uncertainty (this results in equal probabilities
of trust, distrust and posteriori uncertainty as we will see in
(2), and that is how the summation with 3 in the denominators
in (1) is justified).

If we run a set of trials with two possible outcomes
(e.g. head and tails), and we observe r heads and s tails,
the probability distribution of p as the probability of head
follows the Beta distribution. In other words, the probability
p itself is considered as a random variable. In the reputation
based model introduced in [1], only positive and negative
feedbacks are considered and therefore the expected value of
the Beta distribution is considered as the probability of trust
(or distrust). In the 3VSL there are three possible outcomes,
i.e. trust, disbelief and neutral. Therefore, instead of the Beta
distribution, the trinomial Dirichlet distribution is used which
can be considered as the extension of the Beta distribution to
the experiments with more than two possible outcomes. The
pdf of the Dirichlet distribution is as follows.

f(Pb, Pd|α, β, γ) =
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)
Pα−1

b P
β−1

d P γ−1
n

where α, β and γ are the parameters of the Dirichlet dis-
tribution and Γ(·) is the Gamma function. Also Pb and Pd

are the probabilities of trust and distrust, respectively. Based
on the definition of the mentioned distribution the expected
probability of belief, distrust and uncertainty is related to the
observations and obtained as follows.

E(Pb) =
α

α+ β + γ
=

r + 1

r + s+ o+ 3
= bij +

1

3
eij

E(Pd) =
β

α+ β + γ
=

s+ 1

r + s+ o+ 3
= dij +

1

3
eij

E(1− Pb − Pd) =
γ

α+ β + γ
=

o+ 1

r + s+ o+ 3
= nij +

1

3
eij

(2)

Therefore, the probability space is split into three parts; trust,
distrust and the remainder is uncertainty. In this paper, we
assume the topology of the network is defined according to
the adjacency matrix A, where Aij = 1 if nodes i and j are
connected to each other, i.e. they can directly communicate
with each other and Aij = 0 otherwise. We assume that
Aij = 0 is translated to ωij = (0, 0, 0, 1), i.e. eij = 1.
The physical meaning of the setting is that if two nodes
cannot communicate, they are entirely uncertain about the
trustworthiness of each other (through a direct contact). As
we will see later, this assumption simplifies designing the low
complexity algorithm.

III. LOWER BOUND

In [8], the combination operator is introduced to combine
the trust probabilities of parallel paths. Here we derive the
operator for multiple paths. However, the fundamental con-
tribution of this section is to show that the derived operator
gives a lower bound on the probabilities of trust and distrust.
As discussed earlier and illustrated in Fig. 3, the correlation
between paths with common edges is ignored in [8]. The
impact of this correlation may be different from one network
to another depending on their topologies. However, from
a theoretical perspective it is important to recognize this
correlation and understand how it affects the trust. It should
be noted that when two paths share an edge, it means that
both paths are influenced by identical observations over the
common edge.

To obtain the lower bound we rely on FKG correlation
inequality [12, 13]. This inequality gives a lower bound on
the probability of the intersection of monotonically increasing
(or decreasing) events (or families of events). An event A is
said to be increasing if the indicator function is an increasing
variable, i.e. 1A(δ) > 1A(δ

′) whenever δ > δ′. For instance,
existence of a path between two specific nodes through a
given set of nodes is an increasing event. If A and B are two
families of monotonically increasing events, FKG correlation
inequality states that,

P (A ∩ B) > P (A)P (B) (3)

In percolation theory, this theorem is fundamental to un-
derstanding path formation in random graphs. Belief and
distrust are both monotonically increasing functions. For
instance, consider four nodes A,B,C,D which are connected
in tandem (A → B → C → D). If we know that A trusts
D via this path, we conclude that B must trust C. Similarly
if we know that A distrusts D then B must trust C and C
distrusts D (hence C’s disbelief in D could be believed by
B as B trusts in C). Similarly A should trust B to believe
in the discounted disbelief of B about D.

Now suppose that there exists M paths from node i
to node j. Since each of these paths is a monotonically
increasing event, using FKG the combined probability density
function of these paths is obtained as stated in the following
Lemma.

Lemma 1. For M parallel paths between any two nodes in
a graph we have:

g(Pb, Pd) > f(Pb, Pd|

M
∑

m=1

αm −M + 1,

M
∑

m=1

βm −M + 1,

M
∑

m=1

γm −M + 1)

(4)

where g(Pb, Pd) is the combined pdf of trust and distrust and
f(·) is the trinomial Dirichlet distribution with parameters
∑M

m=1
αm −M + 1,

∑M
m=1

βm −M + 1 and
∑M

m=1
γm −

M + 1.



Proof: The r.h.s Dirichlet distribution f is actually the
product of the distributions of trust (or distrust) on the M
paths. Therefore, the inequality is immediately resulted from
(3). If the paths are mutually edge-disjoint, the equality holds.

In the following, we apply lemma 1 to derive the inequal-
ities of the Proposition 2. These inequalities will be used in
Section IV to obtain a lower bound on the probabilities of
trust and distrust between any two given nodes.

By substituting the values of αm, we have,

E(Pb) >

(

∑M
m=1

αm

)

−M + 1
(

∑M
m=1

αm + βm + γm

)

− 3M + 3
=

(

∑M
m=1

rm

)

+ 1
(

∑M
m=1

rm + sm + om

)

+ 3

(5)

where αm−1 has been replaced by rm (trust rate associated

with path m) according to the definition of the Dirichlet
distribution. By substituting rm + sm + om = 3( 1

em
− 1)

and rm = 3 bm
em

in (5) we have

E(Pb) >

∑M
m=1

bm
∏M

ℓ=1,ℓ 6=m eℓ +
∏M

m=1
em

∑M
m=1

∏M
ℓ=1,ℓ 6=m em − (M − 1)

∏M
m=1

em
(6)

Therefore, by combining (2) and (6) we have:

b =

∑M
m=1

bm
∏M

ℓ=1,ℓ 6=m eℓ
∑M

m=1

∏M
ℓ=1,ℓ 6=m em − (M − 1)

∏M
m=1

em
(7)

and

e =

∏M
m=1

em
∑M

m=1

∏M
ℓ=1,ℓ 6=m em − (M − 1)

∏M
m=1

em
(8)

Similarly d and n are obtained as follows.

d =

∑M
m=1

dm
∏M

ℓ=1,ℓ 6=m eℓ
∑M

m=1

∏M
ℓ=1,ℓ 6=m em − (M − 1)

∏M
m=1

em
(9)

and

n =

∑M
m=1

nm

∏M
ℓ=1,ℓ 6=m eℓ

∑M
m=1

∏M
ℓ=1,ℓ 6=m em − (M − 1)

∏M
m=1

em
(10)

The collection of (7), (9),(10) and (8) is called the combi-

nation operator and is denoted by Θ(ω1, . . . , ωM ). It should
be noted that the similar procedure can be applied to the
probability Pd (probability of distrust) to obtain its lower-
bound. Hence, the following proposition is resulted.

Proposition 2. The following inequalities hold for Pb and
Pd.

E(Pb) > b+
1

3
e

E(Pd) > d+
1

3
e

(11)

Therefore, the certainty part including trust and distrust
is lower bounded by the above equations and hence the
uncertainty is upper-bounded by n+ 1

3
e.

IV. ALGORITHM

In this section, we exploit the lower bound discussed in
Section III and incorporate it to an iterative algorithm to
obtain a lower bound on the probabilities of trust and distrust
between each pair of nodes in the network. As discussed
earlier, the combination operator is applied to parallel con-
nections. For series connections, the discounting operator is
introduced in [8] and comes as follows.

∆(ωij , ωkj) =















bij = bikbkj

dij = bikdkj

nij = 1− bij − dij − ekj

eij = ekj

(12)

The algorithm begins with the initial values of the opinions
and applies the discounting operator to all the paths of
maximum length 2 between each pair of nodes i and j,
and then the opinions on these paths are combined by the
combination operator (see Fig. 4). The opinion on each pair
i and j is updated to the new opinion obtained from the
mentioned calculation and the next iteration is run for the
updated values until the algorithm is halted once it reaches
the required number of iterations T . As mentioned earlier, for
those nodes i and j which are not connected in the the graph
topology, the initial value of the opinion of i about j is set to
be (0, 0, 0, 1) (i.e. eij = 1). The discounting operator can be
nested in the combination algorithm for these parallel paths.
For instance, the final operator for the trust probability over
these paths of maximum length 2 on a graph with N nodes
would be obtained as follows.

Ψ(i, j) = Θ
(

ωij ,∆(ωi1, ω1j),∆(ωi2, ω2j), . . . ,∆(ωiN , ωNj)
)

(13)
It should be noted that since the discounting gives the exact
values of the opinions on series connections, the opinions
on trust and distrust obtained from the operator Ψ are lower
bounds. The algorithm is summarized in Algorithm 1.

The main contribution of the proposed algorithm is in its
dramatically lower computational complexity in comparison
to the binary decision tree based algorithm in [8]. As it can
be observed from the algorithm and the used operators, the
order of the complexity of the algorithm is of O(N3), as
the number of operations in each combining operation is of
O(N) and these operations should be performed for O(N2)
edges across the network. Whereas the size of the binary tree
grows exponentially in edge dense network. In the worst case
scenario, in a clique graph (a graph in which there exists an
edge between any two vertices), the entire set of possible
paths of length 1 to length N − 2 should be considered.
Therefore, it would be computationally costly to be deployed
in large-scale networks.

The low complexity of the algorithm comes from the fact
that the calculations are not performed on individual pairs.
Instead the collective calculations on paths of at most length
2 on all the pairs in the graph are then used in the next



Algorithm 1 Trust Assessment

1: for t = 1 : T do
2: for i = 1 : N do
3: for j = 1 : N do
4: ωij ← Ψ(i, j)

i j

1

2

N-2

3

!

Fig. 4: At each iteration the algorithm is performed on paths
of at most length 2 between each pair of nodes i and j

iteration for all pairs. Therefore, the influence of nodes on
others’ opinions is spread at a faster speed. For instance in
the first iteration, the opinion of each node i about a node
j is influenced by all the nodes within a distance of 1 hop
from i. In the next iteration, all the paths of at most length
4 participate in the formation of i’s opinion about j. This is
due to the fact that in the second round all the opinions are
the results of two hop calculations from the previous round
and hence any two hop connection might be influenced by at
most 4 hops from i to j. After T iterations, paths of length
2T have influenced all the opinions. Since the social networks
have a small diameter [17], the number of iterations required
to reach from each node to another is quite small (even though
the network is large-scale as N is large). For instance, if we
take the so-called six degrees of separation into account, at
most T = 4 would be sufficient to reflect the opinions of the
entire network about an individual.

V. NUMERICAL EXPERIMENTS

In this section, we provide some numerical results to
firstly compare the 3VSL and the algorithm proposed in this
paper and then represent the impact of network parameters
on formation of trust between individual nodes. In the first
experiment we have generated two networks with different
parameters. Other than the size of the network denoted by N
(number of nodes), we assume that with probability q, a node
is connected to another (the graph is directional). Therefore,
q = 1 means that the network is a clique graph where there
is an edge between any two vertices. To generate the initial
values for the opinions between the nodes in the network,
we assume that with probability ρ a node is trustworthy and
the trust rate in that node is b = 0.7 + 0.3r on the incoming
edges where r is a uniformly chosen random number between
0 and 1. We call ρ the probability of goodness. The reason
for this type of modeling is to resemble the real world where
the trustworthy nodes usually represent a similar behavior
towards different nodes. With probability 1 − ρ, a node is
not trusworthy and hence the distrust rate in that node is
d = 0.7+ 0.3r on each incoming edge. Also in the proposed

Parameters 3VSL Prop. Algorithm CPU1 CPU2

N = 10,
L = 8,
T = 4,
q = 1,
ρ = 1

b = 0.28,

d = 0.03,

n = 0.67

b = 0.20, d =

0.02, n = 0.76
35.45 0.0156

N = 25,
L = 4,
T = 3,
q = 1,
ρ = 1

b = 0.50,

d ≈ 0, n =

0.49

b = 0.43, d ≈
0, n = 0.56

355.9 0.06

TABLE I: Two networks: comparing the algorithm in [8] and
the proposed algorithm
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Fig. 5: Trust and distrust versus the size of network

algorithm we assume we have T iterations of the algorithm
and for the 3VSL we do not consider paths of length more
than L (as it would be computationally hard to take large paths
into account because of the exponential growth in the number
of such paths). We have also measured the CPU time to
compare the computational complexity of the two algorithms
(CPU1 for 3VSL and CPU2 for the proposed algorithm in
Table I). As it can be seen from the table, the computational
complexity of the algorithm in [8] is dramatically higher than
the proposed algorithm in this paper. We have selected a
random pair of nodes and the opinions on the edge connecting
the pair is reported here. The results are represented in Table
I.

As it can be observed from the table, when T and L are in
the range where comparison is fair between two algorithm,
e.g. T = 3 (which means nodes withing 8 hops have had
influence) and L = 4, the opinions resulted from the two
algorithms are not far from each other. It is also important to
remember that the results from our algorithm and the 3VSL
are both lower bounds on trust and distrust.

We further considered the impact of the size of the
network on the opinions. Here we have measured the average
opinions across the network on all of the edges. Networks
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Fig. 6: Impact of the probability of goodness and connectivity
of the network on trust and distrust

from size N = 5 to N = 100 have been compared in Fig. 5,
where q = 1 and ρ = 1. As it can be observed from the figure,
trust declines relatively rapidly in the smaller networks with
the growth of the size of network but remains nearly constant
in the larger networks. In Fig. 6 the impact of the probability
of goodness ρ and also the probability of connectivity q has
been shown. As it is expected, by increasing the fraction of
good nodes from ρ = 0.6 to ρ = 1, the trust increases and
hence the uncertainty decreases. Distrust in such networks
with a large fraction of trustworthy nodes (ρ > 0.5) is small
and remains nearly constant.

VI. CONCLUSION

Evidence based trust and reputation based models of
measuring trust have been studied in the literature. Extending
the concept to complex networks is however, relatively new.
In this paper, we revisited the theoretical foundation of a
previous study on trust in social networks and we proved
that the proper operators can provide a lower bound on the
probabilities of trust and distrust. Moreover, we proposed
an algorithm to obtain a lower bound on trust and distrust
which enables us to study trust in large scale social networks.
Although the focus of this paper is mainly on the microscopic
level measurements of trust (between individual nodes), it can
be a strong basis for a macroscopic level study in future.
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