
Robust Two-factor Smart Card Authentication

Omer Mert Candan

Sabanci University

Istanbul, Turkey

mcandan@sabanciuniv.edu

Albert Levi

Sabanci University

Istanbul, Turkey

levi@sabanciuniv.edu

Abstract—Being very resilient devices, smart cards have been

commonly used for two-factor authentication schemes. However,

the possibility of side-channel attacks renders private data stored

in the cards vulnerable to compromise. With this in mind, we

propose an authentication protocol that incorporates a second

factor, which is as a password, in addition to the smart card. The

scheme is aimed to withstand most common security breaches as

well as compromised smart card scenarios and offline dictionary

attacks on the passwords. Details of a reference implementation

are also given along with performance evaluation of the proposed

protocol comparing to the literature. Performance analyses show

that the proposed protocol outperforms existing solutions in the

literature. Moreover, the computational cost of the proposed

protocol is less than 2 seconds on our reference implementation

that uses commercially available smart cards.

Keywords—Two-factor Authentication; Remote Login; Smart

Card; Offline Dictionary Attack; Elliptic Curve Cryptography

I. INTRODUCTION

Online services have been more and more prevalent in daily
life. Internet users use remote servers all around the world to
store their information, even private information. As a standard
security measure, remote servers are expected to deny access to
users that fail identification and authentication processes. The
authentication usually depends on a pre-determined password
that only the legitimate user is supposed to know. This
introduces single point of vulnerability to whole mechanism. In
the event that the password is compromised, the remote server
will not be able to deny access to imposters. To remedy this,
two-factor authentication protocols have been devised. In this
paper, we propose such a protocol that utilizes passwords and
smart cards together. Our protocol is a robust one such that it
resists card stealing attacks or offline password guessing
attacks.

In recent years, many different smart card based
authentication schemes have been proposed [3, 5, 6, 7, 8].
Some of these protocols have been developed as an
improvement to a previous protocol that has been found out to
be insecure or inefficient [9, 10, 11]. Later, some of the
improved protocols have been shown to have security issues
themselves and enhanced versions of previously improved
schemes have been brought to attention [12]. This long chain of
design issues and solutions has shown that the security of an
algorithm or a scheme depends heavily upon the security of the
components that is built on.

Smart cards have been known to be safe to store private
information, thus have been a trusted tool in two-factor
authentication designs. However, side-channel attacks [1, 2] on
smart cards have broken the assumption that the contents of a

smart card are externally inaccessible. Since then, the protocols
that relied on the card to store sensitive information have been
found out to be weak against offline dictionary attacks on
stolen smart cards. Offline dictionary attacks are possible to
launch, since the password space is usually small for efficiency
(easy to remember, easy to type). We accept the possibility that
data stored in a smart card is extractable. On the other hand, we
still assume that a random number generated on-the-fly cannot
be revealed; otherwise the device would not be different than a
white box. We base our protocol on this assumption, thereby,
do not store any sensitive information on the card and use the
card in the process of generating random numbers and utilizing
them in the protocol run. Moreover, we aim that our proposed
protocol would be (i) lightweight, (ii) resisting against common
security attacks such as offline dictionary and replay attacks,
(iii) feasible to be implemented on commercially available
smart cards with standard features and capabilities. Our
protocol is based on other Elliptic Curve based schemes [3, 5,
6]. The key difference between our protocol and previously
presented ones is that our protocol is simpler, and operation-
wise is comparable with other protocols. Additionally, we
provide a reference implementation with actual timings of a run
of the protocol.

The rest of this paper is organized as follows. In the next
section (Section II), we give the details of our proposed robust
authentication protocol. Section III covers security analysis of
the proposed protocol. This analysis includes most of the
common security attacks and how the proposed protocol is
supposed to thwart them. Consecutively in Section IV, details
of a reference implementation are presented. Runtime
measurements of the implementation are given in Section V
and finally Section VI concludes the paper.

II. OUR PROPOSED PROTOCOL

The proposed protocol aims to authenticate users to a
remote server via smart cards. A user is assumed to have a
unique ID, a password and a smart card. At the registration
phase, which is performed only once, the user (the terms client
and user are used interchangeably) and the server agree on
multiple parameters while exchanging messages over a secure
channel. When a client wishes to log in (authenticate) to the
remote server, not only ID and the password should be known,
but the smart card should also be present. Upon receiving ID,
password pair; the smart card and the server communicates to
verify each other. If the verification is successful and the user is
authentic, then both sides can calculate a secret key that is
supposed to be the same on both ends. The secret key can be
utilized for further secure communication and the protocol ends
after the derivation of the symmetric key.

A. Elliptic Curve (EC) and EC Diffie-Hellman (ECDH)

In this subsection, the well-known Elliptic Curve (EC)
concept and Elliptic Curve Diffie-Hellman (ECDH) protocol
are overviewed.

 EC is a curve defined by an equation of the form:

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

where 𝑎 and 𝑏 are real numbers. ECDH is a key agreement
scheme that allows two parties to generate a secret value over
public channel. ECDH depends on the idea that it is very hard
or infeasible to solve EC Discrete Logarithm Problem
(ECDLP): given two points 𝑃 and 𝑄 on the curve such that
𝑄 = 𝑘. 𝑃.

 In ECDH, both parties select their random secret values,
(𝑘1 and 𝑘2) and perform multiplication on the same point (𝑃).

𝑄1 = 𝑘1. 𝑃

𝑄2 = 𝑘2. 𝑃

Then, they exchange 𝑄1 and 𝑄2. After the exchange, they

calculate the shared secret as follows.

𝑆1 = 𝑘1. 𝑄2

𝑆2 = 𝑘2. 𝑄2

In our protocol, ECDH key agreement scheme will be used

to create a temporary shared key in the login phase of the
authentication protocol.

B. Registration Phase

The communication in this phase is assumed to be over a
secure channel. The user, 𝑢𝑖 determines a unique 𝐼𝐷𝑖 and a
password 𝑃𝑊𝑖 . These are the inputs to the smart card. In the
card, a random number, 𝑏, is generated and this number is kept
secret throughout the lifetime of the card.

The server generates a secret random number, 𝑠, in the
registration phase of the first user of the system. The same
number is kept as server's secret and used for the remaining
users that will register later. The server also chooses an elliptic
curve, 𝐸𝐶, a symmetric cipher algorithm 𝐶(∙) and a secure
hash function 𝐻(∙) as system parameters.

The flow of registration phase is given in Fig. 1. In this
phase, the user sends 𝐼𝐷𝑖 to the server. Upon receiving 𝐼𝐷𝑖, the
server checks if the ID is in use by another user. If the received
ID is not unique, the registration phase is terminated.

In the reply message, the server specifies hash and
encryption functions to be used for the entirety of the
authentication protocol.

The user creates a large secret random number 𝑏 and
concatenates this number with the password and finally hashes
it. The output of the hash operation is sent to the server.
Meanwhile, user stores 𝑏, 𝐸𝐶, 𝐶(∙) together with her ID in the
smart card, 𝑆𝐶.

Obtaining the hash from the user, the server hashes its
secret s concatenated with client’s 𝐼𝐷𝑖 then applies XOR
operation with the hash received from the user. Finally, the
result 𝐴𝑖, is stored along with 𝐼𝐷𝑖 on the server side.

If the user wants to change the password, then a secure
channel should be reestablished. This can be achieved by
following the protocol and reaching to a shared session key
between the user and the server. The user 𝑢𝑖 creates a fresh
random number 𝑏𝑛𝑒𝑤 and sends this number along with
𝐻(𝑏𝑜𝑙𝑑||𝑃𝑊𝑜𝑙𝑑) and 𝑃𝑊𝑛𝑒𝑤 to the server. The server
recalculates 𝐴𝑖 and then replaces the old value with the newly
calculated value.

𝐴𝑖
′ = 𝐴𝑖 ⊕ 𝐻(𝑏𝑜𝑙𝑑||𝑃𝑊𝑜𝑙𝑑) ⊕ 𝐻(𝑏𝑛𝑒𝑤||𝑃𝑊𝑛𝑒𝑤)

If the server needs to perform key rotation, i.e. change the
secret number 𝑠𝑜𝑙𝑑 with 𝑠𝑛𝑒𝑤 , then all 𝐴𝑖 must be recalculated
as shown,

𝐴𝑖
′ = 𝐴𝑖 ⊕ 𝐻(𝑠𝑜𝑙𝑑||𝐼𝐷𝑖) ⊕ 𝐻(𝑠𝑛𝑒𝑤||𝐼𝐷𝑖)

Fig. 1. Registration Phase

C. Login Preparation Phase

During login, the communication channel is considered to
be insecure. The login is done in two phases: (i) login
preparation and (ii) verification phases. The first one, login
preparation phase is depicted in Fig. 2. The user 𝑢𝑖 provides
𝐼𝐷𝑖 and 𝑃𝑊𝑖 to the smart card. A random point 𝑃 in 𝐸𝐶 is
chosen together with a random number 𝑑𝑢. 𝑄𝑢 is calculated by
multiplying 𝑃 with 𝑑𝑢, and sent to the server with 𝑃. The
server chooses a random 𝑑𝑠 and calculates 𝑄𝑠 by multiplying 𝑃
with 𝑑𝑠 and a shared key 𝑆𝐾 by multiplying 𝑄𝑢 with 𝑑𝑠. Client
sends her ID and a timestamp encrypting it with freshly created
𝑆𝐾. The server decrypts this message and this concludes the
login preparation phase of the protocol.

D. Verification Phase

Verification phase, shown in Fig. 3, is the actual phase that
the client is authenticated to the server. At this phase, the server
and client switches to a modified version of the shared key that
they generated in the previous phase. This new key is
calculated as shown below.

𝑆𝐾′ = 𝑆𝐾 ⊕ 𝐻(𝑏 || 𝑃𝑊𝑖)

User 𝒖𝒊 Server

selects 𝐼𝐷𝑖

selects 𝑃𝑊𝑖

secret number: 𝑠

Elliptic Curve: 𝐸𝐶

 𝐼𝐷𝑖

Cipher: 𝐶(∙)

Hash function: 𝐻(∙)

𝐻(∙) and 𝐶(∙)

𝐻(𝑏 || 𝑃𝑊𝑖)

𝐴𝑖 = 𝐻(𝑏 || 𝑃𝑊𝑖) ⊕ 𝐻(𝑠 || 𝐼𝐷𝑖)

(𝐼𝐷𝑖 , 𝐴𝑖) is stored

picks random 𝑏

𝑆𝐶 ← {𝐼𝐷𝑖 , 𝐸𝐶, 𝐶(∙), 𝑏}

With the help of this new key, the server sends an
encrypted random challenge to the user and expects to see the
same value in the next message from the user. In addition to
responding to server's challenge, client puts its own random
challenge in the same message. Naturally, the client will
authenticate the server, if the server can successfully respond to
the challenge. Responses of the challenges (messages 5 and 6)
will have their own timestamps in order to prevent replay
attacks.

Fig. 2. Login Preparation Phase

Fig. 3. Verification Phase

After the end of the verification phase, if both parties make
sure about the identity of each other, they are individually able
to calculate the same session key as show below. This session
key can be used to secure further communication.

𝐾𝑠𝑒𝑠𝑠𝑖𝑜𝑛 = 𝐻(𝑆𝐾′ || 𝐻 (𝑐𝑐 ⊕ 𝑠𝑐) || 𝑇𝑆2 || 𝑇𝑆3)

III. SECURITY ANALYSIS

We assume that the adversary, denoted with A in the
subsequent discussions, has full control of the communication
channel. Therefore, the attacker can eavesdrop, block, modify
and inject packets into the insecure channel.

The second assumption is that the hash function we used is
a cryptographically secure one-way hash function. It has pre-
image resistance property so that it is not easy to find the input
of the function by analyzing its output. Moreover, the
symmetric cipher used is a computationally secure one.

Third assumption is that the attacker may compromise only
one of the two components: smart card or password. This
assumption is a reasonable one since if one obtains both, then
he/she has all the credentials that a legitimate user has.

In the following subsections, we discuss possible security
threats and how they are prevented.

A. Offline Dictionary Attack

Offline password guessing is a type of attack scenario in
which the adversary A has the control over the smart card of 𝑢𝑖.
A can extract secret information from the card, which is the
user's secret random number 𝑏. Then, in order to complete the
attack, 𝐴 must learn 𝑃𝑊 by trying possible passwords from a
dictionary in offline manner using the protocol messages. In
order to obtain the protocol messages, A can either

1. observe captured messages from previous runs of
protocol, or

2. initiate a new run with the server and try to find more
from the incoming message.

In both cases, 𝐴 first tries to obtain 𝐻(𝑏 || 𝑃𝑊), which is equal
to 𝑆𝐾′ ⊕ 𝑆𝐾. Then, 𝐴 launches a brute force attack on
H(b || PW) by trying different PW′ values from the dictionary
until he finds a correct PW′ such that, 𝐻(𝑏 || 𝑃𝑊′) =
 𝐻(𝑏 || 𝑃𝑊).

In the first case mentioned above, A has a bunch of
messages which were encrypted with either 𝑆𝐾 or 𝑆𝐾′. In this
case, 𝐴 needs to find out both 𝑆𝐾 and 𝑆𝐾′ in order to obtain a
test base (i.e. 𝐻(𝑏 || 𝑃𝑊)) for password guessing. However,
she does not know 𝑆𝐾 since she did not initiate the previous
protocol runs. 𝐴 can try to find out 𝑆𝐾 only by trying to break
ECDH messages of the corresponding login preparation phase.
However, this requires the attacker to solve ECDLP problem,
which is computationally infeasible. For learning 𝑆𝐾′, A only
has messages, which are encryptions of random numbers.
These do not help her either since we assume the use of secure
symmetric ciphers. Thus we conclude that without 𝑆𝐾 and 𝑆𝐾′,
A cannot launch an offline dictionary attack.

For the second case mentioned above, A initiates a protocol
run with the server and they calculate 𝑆𝐾 during the login
preparation phase. Then, they continue with message 4 of the

User 𝒖𝒊

User 𝒖𝒊

Server

Server

𝑄𝑢 = 𝑃 . 𝑑𝑢

enters 𝐼𝐷𝑖and 𝑃𝑊𝑖

random 𝑃 in 𝐸𝐶

random 𝑑𝑢

𝐻(𝑏 || 𝑃𝑊𝑖) = 𝐴𝑖 ⊕ 𝐻(𝑠 || 𝐼𝐷𝑖)

𝑄𝑠 = 𝑃 . 𝑑𝑠

𝑆𝐾 = 𝑄𝑢. 𝑑𝑠

random 𝑑𝑠

checks 𝐻(𝑠𝑐) = 𝐻(𝑠𝑐′)

𝑃 and 𝑄𝑢

𝐸𝑆𝐾(𝑠𝑐)

𝐷𝑆𝐾(𝐼𝐷𝑖 || 𝑇𝑆1)

checks 𝑇𝑆1

𝑆𝐾′ = 𝑆𝐾 ⊕ 𝐻(𝑏 || 𝑃𝑊𝑖)

𝑄𝑠

random 𝑠𝑐

𝑆𝐾 = 𝑄𝑠 . 𝑑𝑢

𝑆𝐾′ = 𝑆𝐾 ⊕ 𝐻(𝑏 || 𝑃𝑊𝑖)

𝐸𝑆𝐾(𝐼𝐷𝑖 || 𝑇𝑆1)

𝑠𝑐′ = 𝐷𝑆𝐾(𝐸𝑆𝐾(𝑠𝑐))

1.

random 𝑐𝑐

2.

𝐸𝑆𝐾′(𝑐𝑐 || 𝐻(𝑠𝑐′) || 𝑇𝑆2)

3.

𝐷𝑆𝐾′(𝐸𝑆𝐾′(𝑐𝑐 || 𝐻(𝑠𝑐′) || 𝑇𝑆2))

𝐸𝑆𝐾′(𝐻(𝑐𝑐′) || 𝑇𝑆3)

𝐷𝑆𝐾′(𝐸𝑆𝐾′(𝐻(𝑐𝑐′) || 𝑇𝑆3))

checks 𝐻(𝑐𝑐) = 𝐻(𝑐𝑐′)

4.

5.

6.

renames decrypted 𝑐𝑐 as 𝑐𝑐′

verification phase. Message 4 contains 𝐸𝑆𝐾′(𝑠𝑐). 𝐴 can try to

calculate 𝑆𝐾′ by trying different 𝑃𝑊′ values by checking the
equality 𝑆𝐾′ = 𝑆𝐾 ⊕ 𝐻(𝑏 ||𝑃𝑊′). Then for each 𝑆𝐾′, 𝐴 can
decrypt message 4 to find 𝑠𝑐. However, since 𝑠𝑐 is a random
number, A cannot be sure that the decrypted value is equal to
𝑠𝑐. Thus A cannot make sure that the correct value of 𝑆𝐾′ is
found. Thus, the attacker 𝐴 is enforced to stop the protocol
after message 4. One might argue that 𝐴 may take her chance
to generate a trial message 5 with the candidate 𝑠𝑐 and
corresponding 𝑆𝐾′. This can be tried, but the probability of
success is the same as the probability of success of one trial of
regular brute force attack, which is extremely small. Moreover,
the attacker cannot try again with the same 𝑆𝐾 since after
refusal of message 5 by the server, the protocol will start over
with a different 𝑆𝐾.

B. Replay Attacks

An adversary may choose to replay any previously sent
message in the protocol runs. Replaying message 1 from an
older session yields no result, since the server will most
probably choose a different elliptic curve point and therefore
will create a different 𝑆𝐾. Similarly, replaying an older
message 2 to client will still result in a different 𝑆𝐾 being
created.

Since the client and the server choose generates different
elliptic curve points at each run, 𝑆𝐾 will be different as well.
Replay of message 3 will not be decrypted correctly at the
server side and will not be of any advantage to the adversary
since the server will reject due to incorrect 𝐼𝐷𝑖 . In the same
sense, replaying messages 4, 5 or 6 will not benefit the
attacker, because different 𝑆𝐾 at each iteration of the protocol
leads to different 𝑆𝐾’; therefore, the server will notice any
discrepancy at the event of incorrect decryption.

C. Impersonation Attacks

Impersonation attacks happen when 𝐴 successfully
authenticates herself as either client or server to the other side.

1) Client Impersonation
 A legitimate user requires a smart card, an ID and a
password to log in. We do not focus on protecting the ID of the
user, because users tend to select IDs that are not supposed to
be private. The password and the smart card, however, should
only be in possession of the user. In the situation that both the
password and the card are compromised at the same time, 𝐴
has everything required to authenticate as the real user. There is
no way to prevent impersonation in this scenario, so we assume
that A can only obtain one of these two, as discussed at the
beginning of Section III.

If 𝐴 knows the password, but does not have the smart card,
then she cannot calculate 𝑆𝐾′ in the verification phase. She
needs to know 𝐻(𝑏 || 𝑃𝑊𝑖) and for this, client's secret 𝑏 should
be known. However, this secret number is stored only in the
smart card.

If 𝐴 has the smart card, but does not have the password, she
can still get past the login phase. Since the password space
could be small, 𝐴 may want to try all possible 𝑃𝑊𝑖 until
successfully authenticated. This can be thwarted easily by
employing a mechanism on the server side to lock down the

IDs of users with a number of unsuccessful login attempts.
Another approach 𝐴 may want to take is to try and guess 𝑆𝐾′
then retrace from that point to find 𝐻(𝑏 || 𝑃𝑊𝑖). This attempt
is futile since the message sent by the server (message 4) is
highly entropic, because it is an encryption of a random
number. The adversary may not know if he tries the correct
key, since the decryption does not produce a "meaningful"
result anyway.

2) Server Impersonation
In this section, we consider that the adversary 𝐴 is a third

party trying to impersonate server. Similar to the previous
scenario, 𝐴 can get past the login phase with ease. However,
since H(b||PW) is unknown, A cannot resume the protocol by
calculating SK′.

In another scenario, adversary may steal the card, extract 𝑏
from the card, and place it back without the user gets noticed.
In this case, when the user initiates the authentication process,
the adversary may interrupt and try to impersonate the server.
This attempt fails when client sends message 5. Since 𝐴 cannot
decrypt it since she does not know SK′, client will not get the
response (message 6) and the protocol will fail.

IV. IMPLEMENTATION DETAILS

We implemented the proposed protocol using a
commercially available smart card (Feitian A22CR) over Java
Card 2.2.2 platform. This section explains the details of this
reference implementation.

Client side of the protocol runs on a smart card specified
above. Server side of the protocol is managed by a Java
application. This application handles server-side calculations as
well as creation of commands that are to be sent to the smart
card. In this way, the exchange of messages between the client
and the server is simulated locally.

ECDH scheme is implemented by utilizing Java Card API's
KeyAgreement class. The object from this class requires an
ECPublicKey and an ECPrivateKey object to be initialized. As
the mode of the key agreement scheme, ALG_EC_SVDP_DH
is used.

Although there are a number of recommended elliptic curve
parameters, smart cards only allow implementation of a limited
subset of curves with specific prime lengths. In our
implementation, an elliptic curve with domain parameters
recommended under the name secp192r1 [4] is constructed. To
achieve this, keys are generated with LENGTH_EC_FP_192
parameters.

For symmetric encryption, AES with block size of 128 bit
is selected. The mode of the encryption is ECB and input data
is not being padded. For hash operations, both SHA-1 and
SHA-256 are available. One of them can be chosen at the
registration phase that is used for the entirety of the protocol.
For taking the timings, we use SHA-256.

To produce random challenge numbers, Java Card's
𝑅𝑎𝑛𝑑𝑜𝑚𝐷𝑎𝑡𝑎 object is initialized with
ALG_SECURE_RANDOM parameter. The random number
generator in this mode produces cryptographically secure
pseudo-random bit sequences.

The timestamps are not included in this implementation,
since the platform needs an external resource to tell the time.
This may be solved by implementing internal counters
synchronized at the registration phase. The values read from
these counters may be substituted with the timestamps.

V. PERFORMANCE EVALUATION

In this section, we provide performance evaluation of the
proposed protocol. We first give the timings of our reference
implementation and then we compare our protocol with that of
two other protocols in the literature.

The computational timings of the protocol run are given
Table 1 for the client side operations and in Table 2 for server
side operations. The exact timings are given for each particular
operation of login preparation and verification phases; timings
of the enrollment phase are not considered since these
operations are performed only once. The parameters used were
given in Section IV. As the client side smart card, Feitian
A22CR is used over Java Card 2.2.2. As the server, MacBook
Pro, 2.5 GHz Intel Core i7 (OS X 10.11 El Capitan) is used. As
seen in Table 1, the client side operations on the smart card
takes almost 1.55 seconds, which is an acceptable delay for a
smart card environment. After adding the server side delay,
total computational delay of our proposed protocol becomes
approximately 1.95 seconds. Such a delay is human-
imperceptible for a login experience.

TABLE I. CLIENT-SIDE TIMINGS

Process Time (ms)

creation of message 1 522

secret key derivation, after msg. 2 753

creation of message 3 26

creation of message 5 152

session key calculation, after msg. 6 98

total 1551

TABLE II. SERVER-SIDE TIMINGS

Process Time (ms)

creation of message 2 388

creation of message 4 15

creation of message 6 1

total 404

We also compared the computational cost of login and

verification phases of our protocol to other schemes [3, 5, 6],
which uses elliptic curve cryptography, in Table 3.

TABLE III. COMPARISON OF COMPUTATIONAL COST

type of operation Liu et

al.[3]

Zhang et

al.[6]

Chandrakar

& Om[5]

Our

Proposal

hash 14 10 4 6

EC point addition 2 4 2 0

EC point

multiplication
3 14 7 4

symmetric

en/decryption
1 4 4 8

This comparison is performed using the major
cryptographic functions' counts. As seen in Table 3, our
protocol uses much less number of EC point multiplications
when compared two of other protocols [5, 6] and just one more

EC point multiplication as compared to one of the protocols
[3]. Multiplication of two elliptic curve points is the costliest
operation among other operations such as symmetric
encryption, decryption and hashing. Therefore, we conclude
our proposed protocol performs better than two of the other
works and comparable to one of them.

VI. CONCLUSION

We propose a two-factor remote authentication protocol
that uses smart cards as what-you-have factor and a password
as what-you-know factor. The proposed protocol is a robust
one such that even if the smart card is captured and all the
secrets stored in are revealed, the attacker cannot impersonate
unless she know the password. Similarly, if the password is
learnt by the attacker, she cannot launch any attack without
possessing the smart card. More importantly, our protocol
resists against smart offline dictionary attacks.

We implemented our protocol using a commercially
available smart card and obtained reasonable timings, proving
that the proposed protocol can be used practically. Moreover,
we compared our protocol with other smart card based
protocols in the literature and showed the superiority of the
proposed one to two of the rival protocols.

REFERENCES

[1] Kocher, P. C., Jaffe J., Jun B. 1999. Differential Power Analysis.
Proceedings of the 19th Annual International Cryptology Conference on
Advances in Cryptology, Springer-Verlag: 388-397.

[2] Messerges, T.S., Dabbish, E.A., Sloan, R.H., 2002. Examining smart-
card security under the threat of power analysis attacks. IEEE Trans.
Comput. 51 (5), 541–552.

[3] Liu, T. -H, H. -F Zhu, and J. -S Pan. 2012. "Robust and Efficient
Password-Authenticated Key Agreement Scheme Based on Elliptic
Curve Cryptosystem." Journal of Applied Sciences 30 (1): 67-74.

[4] Standards for Efficient Cryptography Group. 2010. "SEC 2:
Recommended Elliptic Curves Domain Parameters, Jan. 2010. Version
2.0". http://www.secg.org/sec2-v2.pdf

[5] Chandrakar, P. and H. Om. 2015. "A Secure Two-Factor Mutual
Authentication And Session Key Agreement Protocol Using Elliptic
Curve Cryptography". 2015 IEEE International Conference On
Computer Graphics, Vision And Information Security (CGVIS).

[6] Zhang, Y., Chen, J., Huang, B., & Peng, C. 2014. "An Efficient
Password Authentication Scheme Using Smart Card Based on Elliptic
Curve Cryptography," Information Technology And Control, Vol. 43,
no.4, pp.390-401.

[7] Karuppiah, M., Saravanan R. 2014. "A Secure Remote User Mutual
Authentication Scheme Using Smart Cards". Journal of Information
Security and Applications. Volume 19, Issues 4–5, Pages 282–294.

[8] Song, R.. 2010. "Advanced Smart Card Based Password Authentication
Protocol". Computer Standards & Interfaces 32 (5-6): 321-325.
doi:10.1016/j.csi.2010.03.008.

[9] Xu, J., W.-T. Zhu, and D.-G. Feng. 2009. "An Improved Smart Card
Based Password Authentication Scheme With Provable Security".
Computer Standards & Interfaces 31 (4): 723-728.

[10] Islam, S. K.H. and G. P. Biswas (2013). "Design of improved password
authentication and update scheme based on elliptic curve cryptography."
Mathematical and Computer Modelling 57(11-12): 2703-2717.

[11] Li, X., Niu J., Khan M. K., Liao J. 2013. "An enhanced smart card based
remote user password authentication scheme." Journal of Network and
Computer Applications 36(5): 1365-1371.

[12] Wang, D., Wang P., Ma C., Chen Z. 2012. Robust smart card based
password authentication scheme against smart card security breach.
Cryptology ePrint Archive, Report 2012/439.

