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Abstract—An optimal base station (BS) location depends
on the traffic (user) distribution, propagation pathloss
and many system parameters, which renders its analytical
study difficult so that numerical algorithms are widely
used instead. In this paper, the problem is studied ana-
lytically. First, it is formulated as a convex optimization
problem to minimize the total BS transmit power subject
to quality-of-service (QoS) constraints, which also account
for fairness among users. Due to its convex nature, Karush-
Kuhn-Tucker (KKT) conditions are used to characterize
a globally-optimum location as a convex combination of
user locations, where convex weights depend on user
parameters, pathloss exponent and overall geometry of
the problem. Based on this characterization, a number
of closed-form solutions are obtained. In particular, the
optimum BS location is the mean of user locations in
the case of free-space propagation and identical user
parameters. If the user set is symmetric (as defined in the
paper), the optimal BS location is independent of pathloss
exponent, which is not the case in general. The analytical
results show the impact of propagation conditions as well
as system and user parameters on optimal BS location and
can be used to develop design guidelines.

I. INTRODUCTION

The problem of base station (BS) location in cellular

networks has been extensively studied in the existing

literature, see e.g. [1]-[9]. A number of optimization

algorithms have been proposed to attack this problem

numerically, taking into account a number of practically-

important parameters and limitations. Many of the pro-

posed algorithms use a pre-selected finite list of can-

didate sites where the BS could potentially be located

and look for the ones that optimize some objective

function amongst that list [1]-[4]. The considered prob-

lems are formulated as mixed integer programming or

combinatorial optimization and the methods to solve

them include simulated annealing, Tabu search, simplex

method and branch and bound algorithm, etc. While

these approaches can be useful in practice, their common

feature is that the considered problems are NP-hard

(i.e. the numerical complexity grows very fast with the

problem size), and convergence of algorithms to a global

optimum cannot be guaranteed. A different approach

is adopted in [6], where the weighted sum pathloss

(to all users) was minimized without any pre-selected

BS locations. Several numerical algorithms for local

optimization were used, such as Hooke-Jeeves, quasi-

Newton and conjugate gradient search. However, the cost

function was introduced in an ad-hoc manner, without

any explicit link to typical system-level performance

indicators (e.g. total power or energy efficiency), and

the resulting optimization problem was not convex.

While the above algorithms are useful from the practi-

cal perspective, they have a number of limitations at the

fundamental level. In all these algorithms, convergence

to a global optimum cannot be guaranteed either due to

non-convexity of underlying optimization problems or

inherent limitations (approximations) of the algorithms.

Furthermore, a gap to a globally-optimal solution is not

known or bounded either. Due to the numerical nature of

the algorithms, very limited or no insights are available.

No closed-form solutions to the considered problems are

known either.

In this paper, we adopt a different approach. Optimal

BS location is modeled as a convex optimization problem

to minimize the total BS transmit power, subject to per-

user quality-of-service (QoS) constraints, which also ac-

count for fairness among users. Due to the convex nature

of our formulation, the respective KKT conditions are

sufficient for global optimality, from which a number of

closed-form solutions can be obtained and numerical al-

gorithms can also be built with a guaranteed convergence

to a global optimum (using e.g. the barrier method) [11].

The emphasis of this paper is on the analysis, closed-

form solutions and insights they facilitate, rather than on

numerical algorithms. The system model is introduced in

Section II. This model may represent actual users in a

cellular system with their rate requirements as well as

expected user distributions (e.g. in business or apartment

buildings, shopping centers and other social attractors);

expected traffic demands in different locations can also

be represented in this way via virtual users (whose

locations and number are representative of the expected

traffic demand). The considered model and approach

are general enough to include any user rate that is a

monotonically-increasing function of the SNR and hence

can include fading, in addition to the average pathloss,
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as well as non-uniform user distributions. It also applies

to 3D scenarios, typical of unmanned aerial vehicles

(UAVs) or other mobile BSs [7]-[10]. While our model

is not as general as some other models in the literature,

it makes the problem analytically-tractable and a number

of novel closed-form solutions and properties follow.

An optimal BS location subject to QoS constraints is

formulated as a convex optimization problem to min-

imize the total BS transmit power, which is a key to

the further development. Based on this formulation, an

optimal BS location is characterized as a convex com-

bination of user locations in the general 3D case, where

the convex weights depend on user bandwidth and rate

demands, some system and propagation parameters, and

overall geometry of the problem, see Theorem 1. This

characterization is subsequently used to obtain a number

of explicit closed-form solutions for an optimal BS

location (to the best of our knowledge, for the first time).

In the case of free-space propagation, the optimal BS

location is the weighted mean of user locations (where

the weights are determined by system parameters). If, in

addition, the users have identical parameters (rate and

bandwidth), the problem further reduces to the well-

known facility location problem (in squared Euclidean

norm metric) and the optimal BS location is the mean

of user locations. Our novel contribution here is that this

BS location also minimizes its total transmit power under

free-space propagation and identical system parameters

of the users (but not otherwise in general).

We further show that this result also applies to other

propagation environments (with other pathloss expo-

nents), provided that the set of users is symmetric in

a certain way, see Definitions 2 and 3. Hence, this result

is more general than originally expected. Furthermore,

the optimal BS location is also independent of pathloss

exponent ν in this case while ν has a profound impact

on it for asymmetric user sets. In the case of large

pathloss exponent, the optimal BS location is determined

by the most distant users. An unusual property is ob-

served whereby an optimal BS location is not necessarily

unique: while it is always unique when the pathloss

exponent ν > 1, this is not the case with ν = 1. These

results are further extended to include additional location

constraints (due to e.g. existing infrastructure) as well

as elevated BS scenarios (e.g. UAV-BS), see Theorems

2 and 3.

The analytical results above, i.e. an optimum BS loca-

tion (to minimize its total transmit power), its geometric

properties as well as the impact of pathloss exponent and

user distribution on this location are, to the best of our

knowledge, novel and cannot be found in the existing

literature. They render insights unavailable from purely

numerical studies, which can be subsequently applied to

obtain design guidelines for more complicated scenarios,

for which no analytical solutions are known.

It is worthwhile to note that, in the special case of

pathloss exponent ν = 1 and identical user parameters,

the problem considered here reduces to the celebrated

”Fermat-Weber” problem [12], which is to find a point

that minimizes the sum of its distances to a set of given

points, and for which no closed-form solution is known

to this day in the general case. To quote [12], ”The

Weber problem ... has a long and convoluted history.

Many players, from many fields of study, stepped on its

stage, and some of them stumbled. The problem seems

disarmingly simple, but is so rich in possibilities and

traps that it has generated an enormous literature dating

back to the seventeenth century, and continues to do so.”

II. SYSTEM MODEL AND PROBLEM FORMULATION

Let us consider a BS serving N users located at

xk, k = 1, .., N , via some form of orthogonal multiple-

access technique (e.g. FDMA). We require user rates Rk

to be monotonically-increasing functions of the SNR,

e.g.

Rk = ∆fk log(1 + γk/Γk), (1)

where ∆fk and γk = Prk/σ
2
0k are the bandwidth and the

SNR of user k, the channel is frequency-flat with AWGN

noise of power σ2
0k and Prk is the signal power received

by user k; Γk ≥ 1 is the SNR gap to the capacity of user

k [13]. When efficient (capacity-approaching) codes are

used for each user, Γk → 1. The received power Prk is

related to the transmit power Pk allocated by the BS to

user k via the pathloss model, see e.g. [14],

Prk = αkPk/d
νk
k , (2)

where dk = |c − xk| is the distance between the

BS located at c and user k located at xk, |x| is the

Euclidean norm (length) of vector x, νk is the pathloss

exponent, and αk is a constant related to the propagation

environment, which is independent of distance but may

depend on frequency. For example, in the case of free-

space propagation environment, e.g. when line-of-sight

(LoS) path is dominant, νk = 2 and αk = (λk/(4π))
2,

where λk is the wavelength of user k, while for the 2-ray

ground reflection model νk = 4 and αk = h2
th

2
rk, where

ht, hrk are the BS and user k antenna heights [14], all

in the far-field.

We assume that the BS knows the pathloss to each user

(or, equivalently, its SNR). To satisfy QoS requirements,

each user rate must not be less than its target rate R0k:

Rk ≥ R0k. To achieve this objective in an energy-

efficient way, the operator selects BS location c in

an optimal way to minimize its total transmit power

PT =
∑

k Pk subject to the QoS constraints as follows:

(P1) min
{Pk},c

∑

k

Pk s.t. Rk ≥ R0k, (3)

where the optimization variables are BS location c as

well as per-user powers {Pk}, so that the BS performs



optimal per-user power allocation as well. The rate

constraints Rk ≥ R0k also ensure fairness among users.

Noting from (1) that the constraint Rk ≥ R0k is

equivalent to γk ≥ γ0k = (2R0k/∆fk−1)Γk, the problem

(P1) can be re-formulated as follows:

(P2) min
{Pk},c

∑

k

Pk s.t. Pk ≥ βk|c− xk|
νk , (4)

where βk = γ0kσ
2
0k/αk. Note that σ2

0k may also include

interference power as a part of it. We further note that

problem (P1) and hence (P2) can also accommodate any

rate model that is a monotonically-increasing function of

the SNR Rk(γk), not only that in (1), so that the condi-

tion Rk ≥ R0k is equivalent to γk ≥ γ0k with properly-

selected γ0k = R−1
k (R0k). This generalized model can

also include fading, where Rk and γk are interpreted

as the average (ergodic) rate and SNR respectively. It

should be emphasized that the problem formulation (P2)

is based on power/energy minimization, unlike some

other formulations in the literature (e.g. [6][12]) where

the objective (cost) function is introduced in an ad-hoc

way. The restriction to a single BS is necessary to make

the problem analytically tractable (which seems to be out

of reach otherwise). However, minimizing the BS power

in one cell as in (3), (4) will also reduce the amount

of inter-cell interference it generates to other cells under

frequency re-use.

III. OPTIMAL BS LOCATION AND POWER

ALLOCATION

To the best of our knowledge, no analytical solution

is available in the literature to either (P1) or (P2) in

the general case (even though the setting is limited

to a single BS). Therefore, we present next a general

characterization of an optimal BS location according to

(P2) (see Appendix for a proof), from which a number

of closed-form solutions follow.

Theorem 1. An optimal BS location c
∗ for (P2) in

(4) can be expressed as a convex combination of user

locations {xk}:

c
∗ =

∑

k

θkxk, θk =
βkνk|c

∗ − xk|
νk−2

∑

k βkνk|c∗ − xk|νk−2
(5)

if either (i) νk ≥ 2 or/and (ii) c
∗ 6= xk and νk ≥ 1.

Transmission with the least per-user power is optimal:

P ∗
k = βk|c

∗ − xk|
νk .

Next, we explore some properties of an optimal BS

location.

Proposition 1. When νk > 1 for some k, an optimal

BS location is unique. This is not necessarily the case if

νk = 1 for all k.

Proof. Observe that (P2) is equivalent to

minc
∑

k βk|c − xk|
νk , since transmitting with the

least per-user power is optimal, and that the objective

here is strictly convex if νk > 1 for some k, so that the

solution is unique [11]. Non-uniqueness for νk = 1 can

be shown via examples, see Proposition 4.

To obtain some insights, we need the following defi-

nition [11], from which Corollary 1 follows.

Definition 1. Let {yk} be a set of points. Its convex hull

conv{yk} is the set of all convex combinations of the

points in {yk}:

conv{yk} =

{

∑

k

qkyk : qk ≥ 0,
∑

k

qk = 1

}

(6)

Corollary 1. The optimal BS location c
∗ in (5) is in the

convex hull of all user locations:

c
∗ ∈ conv{xk} (7)

Proof. Notice from (5) that 0 ≤ θk ≤ 1,
∑

k θk = 1,

and then apply Definition 1.

The above Corollary implies that the search of c
∗

can always be confined to conv{xk}, without loss of

optimality. For example, if all users are located on a

line or in a convex building, the optimal BS is also on

this line or in this building. We obtain below a number

of explicit closed-form solutions for c∗ in some special

cases.

A. Free-space propagation

The first important special case is that of free-space

propagation, where νk = 2. In practice, νk is close to

2 when propagation is close to free space, i.e. most of

the 1st Fresnel zone is free of obstructions [14]. This

is also the case in a multipath channel when multipath

components are much weaker than LoS; therefore, LoS

dominates and the propagation becomes almost the same

as in free space. νk is close to 2 in many indoor

environments when LoS is present [14] and νk = 2
appears often in the 3GPP LTE propagation models.

Using Theorem 1, c
∗ can be expressed as follows in

this case.

Corollary 2. If νk = 2 for all k, the optimal BS location

c
∗ is a weighted mean of the user locations:

c
∗ =

∑

k

θkxk, θk =
βk

∑

i βi
. (8)

Proof. Use (5) with νk = 2.

Note that (8) is an explicit closed-form solution, since

θk are now independent of c∗. It follows that users with

larger βk, i.e. those requiring higher rates, contribute

more to c
∗ so that as βk increases, c

∗ moves closer

to xk. In the limiting case of β1 > 0, βi = 0, i 6= 1, the

optimal location c
∗ = x1.

Further simplification is possible when all users re-

quire the same rate and have the same system settings,



so that βk = β ∀k. In this case, (8) reduces to the mean

value of the users’ locations - a result well-known in

the facility location literature under the Euclidean norm

squared criterion [11]. Our novel contribution here is that

this BS location minimizes its total transmit power under

free-space propagation and identical system parameters

of the users (but not otherwise in general).

B. Large pathloss exponent

To obtain further insights, we consider the limiting

case of large pathloss exponent νk → ∞, which serves

as an approximation to large but finite νk. To simplify

the discussion, we further assume that all users have

identical parameters so that βk = β ∀k.

Proposition 2. If νk → ∞, the optimal BS location is

the mean of most distant user locations.

Proof. Use (5) and take the limit νk → ∞.

Hence, for large pathloss exponent, it is the most

distant users who determine the optimal BS location,

while nearby users contribute little. Finding most distant

users in a set can be expressed as a geometric (and

convex) problem of finding the smallest enclosing sphere

where optimization variables are the sphere center c and

its radius r:

min
r,c

r s.t. |c− xk| ≤ r ∀k. (9)

C. Symmetric sets of users

To obtain closed-form solutions for c
∗ beyond those

above, we consider now the scenarios where user lo-

cation sets possesses some symmetry properties. This

should also approximate (due to the continuity of the

problem in user locations) the scenarios where users are

nearly-symmetric. We will need the following definitions

of symmetric sets.

Definition 2. Let Ωl = {xk : k ∈ Il} be a set of |Il|
points (users), where Il is an index set and |Il| is its

cardinality. The set Ωl is called elementary symmetric

if the distance between its center al = |Il|
−1

∑

k∈Il
xk

and any of its points is the same, i.e. |al−xk| = dl ∀k ∈
Il.

Definition 3. Set Ω is symmetric if it is a union of

disjoint elementary symmetric sets with the same centers,

i.e. Ω = ∪lΩl and al = a ∀l.

While an elementary symmetric set is also symmetric,

the converse is not true in general, i.e. a symmetric set

does not need to be elementary symmetric, as Fig. 1

illustrates, so the former is more general than the latter.

Equipped with these notions of symmetry, we are now

able to obtain the optimal BS location in a closed form.

Proposition 3. Let the set Ω of user locations be

symmetric, i.e. Ω = ∪lΩl, where Ωl are disjoint and

elementary-symmetric, νk = νl for any k ∈ Il, and

Fig. 1. The union of 4 elementary symmetric sets Ω1..Ω4 with the
same center is symmetric; the optimal BS location, for any pathloss
exponent ν, is its (common) center.

βk = β ∀k. Then, for any pathloss exponents νk > 1
for all k, the optimal BS location is its center a, i.e. the

mean of the users’ locations,

c
∗ = a = x =

1

N

∑

k

xk. (10)

Proof. Using (5) and exploiting the symmetry properties,

along with the convexity of the objective functions,

results in (10) after some manipulations, see [15].

It should be emphasized that this result holds for any

νk > 1, not just for νk = 2, as in Corollary 2 (with

βk = β), so this result is more general in terms of

νk but more restrictive in terms of user locations as

symmetry is required here, unlike Corollary 2. Note also

that, unlike the general case, the optimal BS location

is independent of pathloss exponent νk as long as the

user set is symmetric. This Proposition also implies that

when new users are added to existing ones, the optimal

BS location is not affected as long as new users do not

disturb symmetry. It can be further shown that the BS

location in (10) also minimizes the amount of co-channel

interference to the users of other cells provided they

satisfy certain symmetry requirement.

D. Collinear users

Let us consider the case where all users are located

on a line. This is motivated by practical settings on

highways, in tunnels, street canyons or corridors. Fol-

lowing Corollary 1, an optimal BS location is also on

the line, while its specific location depends on users’

locations and pathloss exponent. We consider below

the case of νk = 1 for all k and demonstrate some

unusual properties such as non-uniqueness of optimal

BS location. Note that ν < 2 represents an environment

more favorable for propagation than free space and it is

possible in channels with guided wave structure, such as

tunnels, corridors, street canyons [14].



Fig. 2. If νk = 1 and the number of users is even, an optimal BS
location is not unique: it can be anywhere between two middle-point
users.

Proposition 4. Let all users to have the same system

parameters, νk = 1, βk = β ∀k, and be located on a

line as represented by their scalar coordinates xk, k =
1...N ; without loss of generality, set x1 ≤ x2 ≤ . . . ≤
xN . If νk = 1, an optimal BS location is a median of

users’ locations:

c∗ =

{

x(N+1)/2, N is odd,

any a ∈ [xN/2, xN/2+1], N is even.
(11)

While this result is known in the facility location

literature (under L1 norm cost), our novel contribution

here is that this BS location also minimizes its total

transmit power under certain system and propagation

settings (but not in general).

An illustration of Proposition 4 is given in Fig. 2 when

the number of users is even. Note that an optimal BS

location is not unique in this case, which is ultimately

due to the fact that |x| is not strictly convex. However, if

ν > 1, then it is always unique, according to Proposition

1, since |x|ν is strictly convex in this case. To see the

impact of ν, let us consider 3 special cases as shown in

Fig. 3:

1. For ν = 1, an optimal BS location is a median point

(not unique – can be anywhere between users 3 and 4).

2. For free-space propagation, ν = 2, the optimal BS

location is the (unique) mean of the users’ locations,

according to Corollary 2.

3. For asymptotically-large ν, the optimal BS location

is the mean of the most distant users’ locations, accord-

ing to Proposition 2, so that most distant users contribute

most to optimal BS location in this case.

Thus, ν has a profound impact on optimal BS location

for asymmetric user sets. This is in stark contrast with

symmetric user sets (Proposition 3), where the optimal

BS location is independent of ν.

E. Elevated BS

In practice, BS is often located at some elevation

above ground to provide clear LoS to most users hence

improving coverage. This also includes scenarios with an

airborne communication node (e.g. a drone). To model

this scenario, we consider a setting where all users

are located on a (ground) plane with 2-D vector xk

representing user k, while the BS is above the ground

at a given height h and c is its 2-D location (projection)

(a) ν = 1.

(b) ν = 2.

(c) ν → ∞.

Fig. 3. Optimum BS locations for different pathloss exponents. For
ν = 1, it is a median point, which is not unique (anywhere between
users 3 and 4); for ν = 2 - the mean of the user locations; for ν → ∞
- the mean of the most distant users. As ν increases, the impact of the
distant user on the right increases too.

on the ground plane. The distance between the BS and

user k is therefore
√

|c− xk|2 + h2 = |c−xk|h. Thus,

the problem (P2) becomes

min
{Pk},c

N
∑

k=1

Pk s.t. Pk ≥ βk|c− xk|
νk
h . (12)

The following Theorem characterizes its solutions.

Theorem 2. Consider the elevated BS location problem

in (12) when νk ≥ 1. Its solution c
∗ can be expressed

as a convex combination of user locations {xk}:

c
∗ =

∑

k

θkxk, θk =
βkνk|c

∗ − xk|
νk−2
h

∑

i βiνi|c∗ − xi|
νi−2
h

. (13)

Proof. Follows from the proof of Theorem 1, see [15].

A number of properties/solutions pointed above also

hold for the elevated BS problem in terms of its 2-

D projected location c
∗. In particular, Corollaries 1-3,

Propositions 2, 3, do hold for the elevated BS as well.

Proposition 1 is strengthened as follows.

Proposition 5. The optimal elevated base station loca-

tion is unique for any νk ≥ 1 if h 6= 0.

Proof. Follows the steps of that of Proposition 1 by

observing that |x|νh is strictly convex for any ν ≥ 1
if h 6= 0.

F. Additional location constraints

When locating a BS in practice, quite often there are

some additional constraints due to existing infrastructure,

such as a limited roof-top area available for a BS loca-

tion. In such a case, the problem (P2) can be modified

to include extra constraint on BS location as follows:

(P3) min
{Pk},c

∑

k

Pk s.t. Pk ≥ βk|c − xk|
νk , |c− al| ≤ rl,

where k = 1...N, l = 1..L; the additional constraints

|c − al| ≤ rl account for physical limitations or

preferences, as discussed above, for given al, rl. An

optimal BS location under these extra constraints can

be characterized as follows.



Theorem 3. When (i) νk ≥ 2, or/and (ii) νk ≥ 1 and

c
∗ 6= xk, the optimal BS location for the problem (P3)

can be expressed as a convex combination of user and

constraint locations:

c
∗ =

N+L
∑

k=1

θkxk, (14)

where xN+l = al, l = 1...L,

θk = Θ−1νkβk|c
∗ − xk|

νk−2, k = 1...N, (15)

θN+l = 2Θ−1µl, l = 1...L, (16)

Θ =

N
∑

k=1

βkνk|c
∗ − xk|

νk−2 + 2

L
∑

l=1

µl, (17)

and dual variables µl ≥ 0 are found from

µl(|c
∗ − al| − rl) = 0, (18)

subject to |c∗ − al| ≤ rl. Signaling with the least per-

user power is optimal: P ∗
k = βk|c

∗ − xk|
νk .

IV. CONCLUSION

In this paper, the problem of determining an optimal

BS location for a given set of users was formulated as

a convex optimization problem to minimize the total BS

power subject to QoS constraints. Its globally-optimal

solution was expressed as a convex combination of

user locations. Based on this, a number of closed-form

solutions were obtained, which revealed the impact of

system and user parameters, propagation pathloss, as

well as the overall system geometry. The symmetry

in the user set was shown to make the optimal BS

location independent of pathloss exponent, which is not

true for asymmetric sets. These results provide insights

unavailable from numerical algorithms, and allow one to

develop design guidelines for more complicated systems.

V. APPENDIX: PROOF OF THEOREM 1

Since the problem (P2) is convex and the strong

duality holds (since Slater condition is satisfied), its

KKT conditions are sufficient for optimality [11]. Its

Lagrangian is

L(Pk, c) =
∑

k

Pk +
∑

k

λk(βk|c− xk|
νk − Pk),

(19)

where λk ≥ 0 are Lagrange multipliers responsible for

the power constraints. First, we consider the non-singular

case, when c
∗ 6= xk ∀k, and deal with the singular case

later on. In the non-singular case, the KKT conditions

take the following form
∑

k

λkβkνk(c − xk)|c − xk|
νk−2 = 0, 1− λk = 0,

(20)

λk(βk|c− xk|
νk − Pk) = 0, (21)

Pk ≥ βk|c− xk|
νk , λk ≥ 0, (22)

where (20) are the stationary conditions, (21) are the

complementary slackness conditions, and (22) are primal

and dual feasibility conditions. The 1st condition in (20)

was obtained from

∂|x|ν/∂x = νx|x|ν−2 (23)

if x 6= 0, which always holds in the non-singular case.

The 2nd condition in (20) implies λk = 1 so that,

from (21), Pk = βk|c−xk|
νk , i.e. transmitting with the

least required power for each user is optimal. Combining

this with the 1st condition in (20) results, after some

manipulations, in (5).

The singular case, when c
∗ = xk for some k, is more

involved as, in this case, (23) and hence 1st condition in

(20) do not hold (since x = 0 and |x| is not differentiable

at x = 0). One way to deal with this difficulty is

to consider a regularized version of (P2), see [15] for

details.
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