
BlendMAS: A BLockchain-ENabled Decentralized
Microservices Architecture for Smart Public Safety

Ronghua Xu, Seyed Yahya Nikouei, Yu Chen
Binghamton University, SUNY
Binghamton, NY 13902, USA

{rxu22, snikoue1, ychen}@binghamton.edu

Erik Blasch, Alex Aved
US Air Force Research Laboratory

Rome, NY 13441, USA
{erik.blasch.1, alexander.aved}@us.af.mil

Abstract—Thanks to rapid technological advances in the Inter-
net of Things (IoT), a smart public safety (SPS) system has be-
come feasible by integrating heterogeneous computing devices to
collaboratively provide public protection services. While a service
oriented architecture (SOA) has been adopted by IoT and cyber-
physical systems (CPS), it is difficult for a monolithic architecture
to provide scalable and extensible services for a distributed IoT
based SPS system. Furthermore, traditional security solutions
rely on a centralized authority, which can be a performance
bottleneck or single point failure. Inspired by microservices
architecture and blockchain technology, this paper proposes a
BLockchain-ENabled Decentralized Microservices Architecture
for Smart public safety (BlendMAS). Within a permissioned
blockchain network, a microservices based security mechanism
is introduced to secure data access control in a SPS system.
The functionality of security services are decoupled into separate
containerized microservices that are built using a smart contract,
and deployed on edge and fog computing nodes. An extensive
experimental study verified that the proposed BlendMAS is able
to offer a decentralized, scalable and secured data sharing and
access control to distributed IoT based SPS system.

Index Terms—Blockchain, Microservices Architecture, Smart
Contract, Internet of Things (IoT), Smart Public Safety (SPS).

I. INTRODUCTION

The proliferation of Internet of Things (IoT) technology
allows the concept of Smart Cities to become feasible with
smart surveillance as one of the most intensively studied topics
in the IoT community. Smart Public Safety (SPS) systems
process surveillance video streams at the edge and utilize
many smart sensors. However, there are still challenges to be
tackled in order to realize a fully functional IoT-based SPS
system in practice. Relying on a centralized architecture that
is based on cloud computing center inevitably adds uncertain
latency and poses extra workload to communication networks.
While merging lower-level image processing tasks with an
edge computing platform is able to meet the requirements
for delay-sensitive, mission-critical applications [9], [23], new
challenges are also introduced by the distributed and cross-
domain features such as scalability, heterogeneity and inter-
operability.

The SPS system is deployed in a distributed network envi-
ronment that includes a large number of IoT devices (camera
+ edge hardware) with high heterogeneity and dynamics.
The heterogeneity and resource constraint at edge necessi-
tate a scalable, flexible and lightweight system architecture

that supports fast development and easy deployment among
multiple service providers. Furthermore, those smart devices
are geographically scattered across near-site network edges.
It is therefore not suitable to enforce security policies on
a centralized authority basis, which suffers from the per-
formance bottlenecks or single point of failures. Thus, the
SPS system needs a decentralized framework that provides
a security mechanism in the trust-less network environments.

Recently, a novel service oriented architecture (SOA), called
the microservices architecture, has emerged and gained a
lot of popularity [16] in designing a smart city platform.
Instead of deploying the system as a monolithic unit as
traditional SOAs do, the microservices architecture divides an
monolithic application into multiple atomic microservices that
run independently on distributed computing platforms. Each
microservice performs one specific sub-task or service and
requires lightweight communication with other system compo-
nents. Such characteristics make the microservices architecture
an ideal candidate to build a flexible platform, which is easy
to be developed and maintained for cross-domain applications.
Specifically, the microservices architecture possesses many
attractive features, such as good scalability, fine granularity,
loose coupling, continuous development, low maintenance
cost, and so on. These beneficial features make a microservices
architecture a natural selection to enhance SPS systems based
on the edge computing paradigm.

A microservices-enabled application also demonstrates vul-
nerabilities in security due to its usage of distributed data shar-
ing and accessing interfaces [38]. Recent methods demonstrate
efforts in developing new decentralized security solutions
for distributed network applications. Blockchain, which acts
as the fundamental protocol of Bitcoin [19], has demon-
strated great potential to revolutionize the fundamentals of
information technology (IT) due to many attractive proper-
ties, such as decentralization and transparency. Decentralized
Application (DApp), which is built on smart contract and
deployed on blockchain network, performs pre-defined algo-
rithms and agreement without relying on third-party interme-
diary. Blockchain and smart contract together are promising
to provide a decentralized solution to enable a secured data
sharing and access control for SPS systems.

In this paper, a BLlockchain-ENable Decentralized Mi-
croservices Architecture for SPS (BlendMAS) is proposed

ar
X

iv
:1

90
2.

10
56

7v
1

 [
cs

.N
I]

 2
7

Fe
b

20
19

to secure data accessing among different service providers
and entities in a public safety system. The proposed plat-
form follows the divide-and-conquer principle to decouple
the SPS and security functionality into multiple containerized
microservices that are computationally affordable to each
individual computing platform. The distributed microservices
could cooperate with each other as a service pool to perform
complicated decision-making and analytical missions. The
mining services enforce a consensus mechanism among a
large number of authorized miners to maintain sanctity of
the data recorded on the permissioned blockchain network.
The security mechanism of the SPS is implemented as sepa-
rated microservices that are built on the smart contract. The
hash of the frame features and the corresponding decision
is put into a block data, that is approved and appended to
the blockchain network for data tampering prevention. The
identity authentication and access control strategy ensure that
only an authorized entity is capable of accessing services and
data in a SPS system.

The major contributions of this paper are:
1) A complete architecture of microservice-based SPS plat-

form is introduced, which is implemented in a hierarchi-
cal edge-fog-cloud computing paradigm;

2) A fully functional permissioned blockchain network is
implemented as microservices and deployed on a physical
network;

3) A prototype of smart contract enabled data sharing and
access control mechanism is designed and tested on a
permissioned blockchain network; and

4) A comprehensive experimental study has been conducted
that compares the proposed BlendMAS with the mono-
lithic SOA framework. The experimental results validate
the feasibility of the BlendMAS scheme in IoT environ-
ments without introducing significant overhead.

The remainder of this paper is organized as follows: Section
II analyzes and reviews the state of the art research and on-
going effort in each of components adopted in a SPS system.
Section III illustrates the details of the proposed BlendMAS
system. Beside the implementation of the proof-of-concept
prototype, Section IV reports an extensive experimental study
using test scenarios that are built on both edge devices
(Raspberry Pi) and fog computing devices (Desktop). Finally,
a summary is presented in Section V.

II. BACKGROUND KNOWLEDGE AND RELATED WORK

A. Smart Public Safety

Traditional surveillance systems depend on human operators
to interpret the processing of captured video [8]. However,
there is a growing demand for human resources to monitor
the data stream as the camera numbers rise in congested areas
[6]. Recently a number of smart systems are introduced which
aim at minimizing the role that human operators play in object
detection, such that the responsibility of abnormal behavior
detection is taken by various more intelligent machine learning
(ML) algorithms [29]. Some techniques employ statistical

analysis [13] or [26] that use more modern ML approaches
where the algorithm automatically processes the collected
video frames in a cloud to detect, track, and report any unusual
circumstances.

These traditionally algorithms are computationally expen-
sive and normally implemented at the powerful cloud servers
of the surveillance system. An example is the Wide Area
Motion Imagery (WAMI) that transforms the frames from the
image sensors back to the cloud for processing [11], [30],
[31], [32]. Earlier studies show that this approach puts a heavy
burden on the network [9], [10]. Ideally, the minimum delay
and communication overhead is achievable if all the functions
are conducted on-site at the network edge, and the decision is
made instantly.

Recently, the smart surveillance community has introduced
some decentralized surveillance frameworks that are more
convincing in many mission-critical, delay sensitive tasks [20],
[37]. Implemented based on the edge-fog-cloud hierarchy
architecture. the input frame that is streamed out of the
surveillance camera is given to an edge unit where low-level
processing is performed [21], [22]. The intermediate-level is
fog nodes, where multiple tasks are performed based on the
processing power and resources available. Finally, the cloud
is focused on historical profile building, algorithm fine tuning,
and global statistical analysis, which depends on the type of
decisions the system is going to make.

B. Microservices in IoT

A service oriented architecture (SOA) is widely adopted in
the development of application software in a IoT and CPS
environment [7]. The traditional SOA utilizes a monolithic ar-
chitecture that constitutes different software features in a single
interconnected and interdependent application and database.
Owing to the tightly coupled dependence among functions
and components, such a monolithic framework is difficult to
adapt to new requirements in an IoT-enabled system, such
as scalability, service extensibility, data privacy, and cross-
platform interoperability [12]. As an extension of the tradi-
tional SOA, the microservices architecture allows functional
units of an application to work independently with a loose
coupling though encapsulating a minimal functional software
module as a microservice, which can be individually developed
and deployed. Each microservice is a process dedicated to
certain function of the application. The individual microser-
vices communicate with each other through a lightweight
mechanism, such as HTTP RESTful API or a message bus
asynchronously [17]. Finally, multiple decentralized individ-
ual microservices cooperate with each other to perform the
functions of complex systems. The flexibility of microservices
enables continuous, efficient, and independent deployment of
application function units. As two significant features of the
microservices architecture, fine granularity means each of the
microservices can be developed in different frameworks and
with minimal development resources, while loose coupling
implies that functions of microservices components is inde-
pendent of each others deployment and development [38].

Thanks to granularity and coupling properties, the microser-
vices architecture has been investigated in many smart solu-
tions to enhance the scalability and security of IoT-based appli-
cations. The IoT systems are advancing from “things”-oriented
ecosystems to a widely and finely distributed microservices-
oriented ecosystems [12]. An Intelligent Transportation Sys-
tems (ITS) that incorporates and combines the IoT approaches
using the serverless microservices architecture has been de-
signed and implemented to help the transportation planning
for the Bus Rapid Transit (BRT) systems [15]. To enable a
more scalable and decentralized solution for advanced video
stream analysis for large volumes of distributed edge devices,
a conceptual design of a robust smart surveillance systems was
proposed based on microservices architecture and blockchain
technology [18]. It aims at offering a scalable, decentralized
and fine-grained access control solution for smart surveillance
systems.

C. Blockchain and Smart Contract

As a fundamental technology of Bitcoin [19], blockchain
initially was used to promote a new cryptocurrency that
performs commercial transactions among independent entities
without relying on a centralized authority, like banks and gov-
ernment agencies. Essentially, the blockchain is a public ledger
based on consensus rules to provide a verifiable, append-
only chained data structure of transactions. Thanks to the
decentralized architecture that does not rely on a centralized
authority, blockchain allows the data to be stored and updated
distributively. The transactions are approved by miners and
recorded in the time-stamped blocks, where each block is iden-
tified by a cryptographic hash and chained to preceding blocks
in a chronological order. In a blockchain network, a consensus
mechanism is enforced on a large amount of distributed nodes
called miners to maintain the sanctity of the data recorded on
the blocks. Thanks to the trustless proof mechanism running
on miners across the network, users can trust the system
of the public ledger stored worldwide on many different
decentralized nodes maintained by ”miner-accountants”, as
opposed to having to establish and maintain trust with a
transaction counter-party or a third-party intermediary [27].
Thus, blockchain is an ideal decentralized architecture to
ensure distributed transactions among all participants in a
trustless environment, like edge-based IoT networks.

Emerging from the intelligent property, a smart contract
allows users to achieve agreements among parties through
a blockchain network. By using cryptographic and security
mechanisms, a smart contract combines protocols with user
interfaces to formalize and secure relationships over com-
puter networks [28]. A smart contract includes a collection
of pre-defined instructions and data that have been saved
at a specific address of blockchain as a Merkle hash tree,
which is a constructed bottom-to-up binary tree data struc-
ture. Through exposing public functions or application binary
interfaces (ABIs), a smart contract interacts with users to
offer the predefined business logic or contract agreement. The
blockchain and smart contract enabled security mechanism for

Fig. 1. Illustration of the BlendMAS System Architecture.

applications has been a hot topic and some efforts have been
reported recently, for example, smart surveillance system [18],
[25], social security system [36], space situation awareness
[35], identification authentication [14] and access control [33],
[34]. Blockchain and smart contract together are promising to
provide a solution to enable a secured data sharing and access
authorization in decentralized SPS systems.

III. SYSTEM DESIGN OF BLENDMAS
Leveraging the attractive characteristics of the microservices

architecture that support fine granularity, loose coupling, and
continuous delivery, the BlendMAS system is a completely
decentralized solution where individual functional components
of system are developed by different teams and hosted by
heterogeneous hardware platforms, as shown in Fig. 1. In
the system design, the Docker container is adopted for the
microservices architecture and the multi-layer BlendMAS plat-
form is implemented following the edge-fog-cloud computing
paradigm. Two type of containers are deployed at the edge
layer. One is responsible for the security policy service that
enforces the data access control and verification to prevent
from unauthorized service request and data tampering, while
another is the video stream processing microservice to extract
features of frames. Owing to more powerful computing and

storage resources, the features fusion, behavior analysis and
mining microservices are hosted at the fog layer or cloud layer.

A. System Architecture of BlendMAS

Figure 1 illustrates the proposed BlendMAS system
architecture, which utilizes microservices-enabled private
blockchain network to secure video stream services while
providing secured data sharing. The proposed system consists
of three services:

• Smart Surveillance Application Services: These services
provide functions to support smart surveillance, such
as video stream processing, object detection and track-
ing, and movement features extraction. Real-time video
streams are generated by cameras and transmitted to edge
microservices for features extraction. Lower level features
are transferred to fog nodes for data aggregation and
higher level analytic services, such as pattern recognition,
behavior analysis and anomalous event detection.

• A Permissioned Blockchain Network: The security mi-
croservice provides not only network communication
channel on the Internet, but also a private blockchain
network infrastructure running on a decentralized peer-
to-peer network. All the network communications among
entities run on TCP/IP protocol. Security solutions, such
as identity authentication and access control, are devel-
oped as Decentralized Application (DApp) which is based
on a smart contract and deployed on the blockchain
network.

• Blockchain-enabled Security Services: The security ser-
vice section acts as a fundamental service pool to sup-
port key functions of security mechanism. The provided
services could be divided into two main clusters: mining
services and security policy services. As a core function
of maintaining the blockchain network, mining services
are responsible for executing consensus algorithms to ver-
ify transactions and generating new blocks. The miners
are containerized microservices running on single or mul-
tiple host machines to fulfill mining task independently.
Finally, multiple certificated miners cooperate with each
other to secure the private permissioned blockchain net-
work. All the security polices and models, such as identity
authentication and access control, are transcoded into
separate microservices, and those microservices work
together as a security policy services cluster. Through
implementing each security model or policy as a single
microservice that works independently from each other,
the security policy services cluster could address scala-
bility and heterogeneity in IoT-based smart surveillance
systems by offering more flexible, interoperable and
lightweight security solutions.

In the SPS system, the feature data extracted by the edge
computing will be merged with contextual data on fog layer
nodes for high level tasks (such as situation awareness).
Therefore a security mechanism is necessary to protect the data
shared among functional service nodes and enforce an access

Fig. 2. Identity-based Permissioned Blockchain Network.

control policy. To enable a decentralized, scalable, and fine-
grained security scheme for SPS system, the proposed Blend-
MAS is focused on two issues: the permissioned blockchain
management, and security mechanism enforcement.

B. Identity-based Permissioned Blockchain

All the entities on the permissioned blockchain network
are implemented as containers, which perform blockchain ser-
vices independently on the host machines. The containerized
microservices could be categorized as miners or non-mining
nodes given the computation power of the host machines. Only
the authorized participants could be recognized by entities
of network and perform blockchain services, such as mining
blocks, sending transactions and deploying smart contracts.
An identity management mechanism ensures that participants
identify each other while not necessarily fully trust each other.

Figure 2 illustrates the identity authentication process to
enroll new node in the permissioned blockchain network. An
oracle, who acts as the administrator of blockchain network,
maintains a global node registration and identification policies
for the permissioned blockchain network management. To join
the permissioned blockchain network, the participants must
send joining requests to an oracle for identity authentication.
The oracle verifies new entity’s joining request by performing
identification policies. After the oracle approved the joining
requests, the new entity’s node information will be added
to a global static node record, and the oracle will send
updated static nodes record to all certificated participants in
blockchain network accordingly. The membership revocation
occurs when an entity explicitly launches leaving request or
oracle implicitly rule out any misbehaved node. The oracle
simply updates static node record on each participant to
change configuration of blockchain network. As shown in
Fig. 2, all the containerized miners cooperate with each other
to enforce consensus mechanism, while other non-mining
containers function as service providers to offer blockchain

interactive services like sending transactions. Compared to
a public blockchain network, the permissioned blockchain
network can achieve a more efficient consensus mechanism,
and more secured network by limiting participants with clearly
defined security policies.

C. Blockchain-enabled Security Microservices

Utilizing the microservices architecture, the security func-
tions are decoupled into multiple microservices and deployed
on distributed computing devices. These decentralized security
microservices work as a service cluster to offer a scalable,
flexible and lightweight data sharing and access control mech-
anism for the SPS system. The key service components and
operations are introduced below.

1) Registration Service: In the proposed BlendMAS sys-
tem, all entities must sent registration request to registration
microservice before accessing smart surveillance services.
Entity registration process is performed by the registration
microservices associating entity’s unique blockchain account
address with a Virtual ID (VID). All the registration infor-
mation indexed by VID are recorded in a profile database
maintained by the registration microservices on the fog node.

2) Identity Authentication: Since each blockchain account
is uniquely indexed by its address that is derived from his/her
own public key, the account address is ideal for identity
authentication needed by other security microservices, such
as hashed index recording and access control. The identity
authentication microservices expose RESTful API to other
microservices-enabled providers for referring identity verifica-
tion results. Once an authentication service request is received,
the identity authentication decision making process queries
the requester identity profile from the registration service, and
returns the identity verification results according to the pre-
define policies.

3) Security Management: In the security services cluster,
the security management microservices act as data and security
service managers who deploy the smart contracts encapsulat-
ing hashed index authentication and the access control policies.
Taking advantage of the cryptographic and security mecha-
nisms provided by the blockchain network, smart contracts
can secure any algorithmically specifiable protocols and rela-
tionships from possible malicious interference by third parties
in a trustless network. After the smart contracts have been
deployed successfully on the blockchain network, they become
visible to the entire network. The authorized participants could
call Remote Procedure Call (RPC) interfaces to interact with
smart contract.

4) Hashed Index Authentication: To successfully save the
generated hashed index record to the blockchain, a hash index
recording microservices entity initially sends an access request
to the security management microservices to get a permission
for executing the hashed index record generation application
binary interfaces (ABI) functions of a smart contract. If
the access request is granted, the index recording microser-
vices receive acknowledgement from security management
microservices with a smart contract address and the ABI

function for recording hashed index data. After generating
hashed index records, the hashed index recording microser-
vices simply interact with the authorized ABI function to save
the hashed index data to the blockchain. In hashed index
authentication process, microservice queries a hashed key-
value index by interacting with smart contract and compares it
with calculated hash values of the record index table. Finally,
the authentication results are sent back to service requester.

5) Access Control: To successfully access services or re-
sources at SPS service providers, an entity initially sends an
access right request to the access control microservices to get
a capability token. Given a reference of the entitys profile,
which is the authenticated identity information maintained
by the registration microservices, a decision making policy
module running on the access control microservices evaluates
the access request by enforcing the authorization policies. If
the access request is granted, the access control microservice
issues the capability token encoding authorized access right,
and then launches a transaction to update the token data in
the smart contract. Once the transaction has been approved
and recorded in a new block, the access control microservice
responds to the requester by providing a smart contract address
for the querying token data. Otherwise, the access right request
is rejected and a denied acknowledgement is returned. Autho-
rization validation process is triggered when when a smart
surveillance service provider receives a service request from
users. Given the validation result that demonstrates the access
right policies and conditional constraints are satisfied, the
service provider grants the access request and offers services
to the requester. Otherwise, the service request is denied.

IV. EXPERIMENTAL ANALYSIS

The BlendMAS system is actually the security sub-system
of a complete SPS system. Due to the limited space, the
implementation and experimental evaluation of the entire SPS
prototype are not reported here. But interested readers may
find the experimental results of the microservices architecture
based video stream processing at the edge in [24].

A concept-proof prototype system has been implemented
on a real private Ethereum [1] blockchain network environ-
ment. The smart contract development use Solidity [4], which
is a contract-oriented, high-level language for implementing
smart contracts. In order to evaluate the performance and the
overhead of our proposed access control scheme, the security
microservices have been implemented using docker container
and deployed on both on edge and fog units. The web service
application is based on the Flask framework [2] using Python,
and the profiles and policy rules management are developed
using an embedded structured query language (SQL) database
engine, called SQLite [5].

A. Environmental Setup

The mining microservices are deployed on a platform with
stronger computing power, like a laptop or a desktop. Two
miners are deployed on a laptop and other four miners are
distributed on four desktops. Table I describes configurations

of nodes used in the experiments. In this prototype, the laptop
acts as a cloud computing server, which takes role of oracle
to manage blockchain network. All desktops work as fog
computing nodes, while a Raspberry PI 3 Model B runs
as edge computing node. The SPS functions and security
microservices are hosted both on fog and edge computing.
All devices use Go-Ethereum [3] as the client application to
work on the blockchain network.

TABLE I
CONFIGURATION OF EXPERIMENTAL NODES.

Device Lenovo P50 Dell Optiplex
760

Raspberry Pi 3
Model B

CPU 2.3 GHz Intel
Core i7 (8 cores)

3 GHz Intel
Core TM (2
cores)

quad-core ARM
Cortex A53,
1.2GHz

Memory 16GB DDR3 4GB DDR3 1GB SDRAM

Storage 250G SSD+
500G HHD

250G HHD 32GB (microSD
card)

OS Ubuntu 16.04 Ubuntu 16.04 Raspbian
GNU/Linux
8 (jessie)

B. Performance Evaluation

To evaluate the performance of the microservices-based
security mechanism, a service access experiment is carried
out on a physical network environment which includes 3
Raspberry PIs and 2 desktops. One Raspberry PI works as
a client to send service request, while server side is SPS
service provider, who has been both hosted on edge (Raspberry
PI) and fog (desktop) nodes. A blockchain enabled capability
based access control (BlenCAC) scheme [33] is selected to
enforce the access control policies. The hashed index au-
thentication microservice and access control microservice are
deployed on two Raspberry PIs separately. To measure the
general cost incurred by the BlendMAS scheme both on the
edge device processing time and the network communication
delay, 50 test runs have been conducted based on the proposed
test scenario, where the client sends a data query request to
server for an access permission. This test scenario is based on
an assumption that the client has been assigned a valid token
when it performs the action on server. Therefore, all steps of
hashed index authentication and access right validation must
be processed on the server side so that the maximum latency
value is computed.

1) Computational Overhead: Figure 3 shows the com-
putational overhead introduced by AC process. The entire
executing time of the access control process is 42.4 ms (41.8
ms + 0.1 ms + 0.5 ms) on the edge device and 14.5 ms
(14.2 ms + 0.1 ms + 0.2 ms) on the fog node. The average
time for querying data from the smart contract is 41.8 ms on
edge device and 14.2 on fog node. Since the authorization
process includes CapAC token validation and the access right
verification, the average time of authorization process is about
0.6 ms (0.1 ms + 0.5 ms) on the edge device and 0.3 ms

Fig. 3. Execution time of each individual stage of the access control
Microservices.

(0.1 ms + 0.2 ms) on the fog node. Owing to cryptography
and hash chain computations in data from smart contract,
querying CapAC token introduces the highest overload among
AC operation stages. The average total delay time cause by
service request operation of retrieving data from client to
server is 196 ms on the edge device and 85 ms on the fog
node. Compared with total delay time, the overload introduced
by AC enforcement is about 21 % (42.4 ms / 196 ms) on the
edge side and about 17 % (14.5 ms / 85 ms) on the fog side.

Figure 4 shows computational overhead incurred by hashed
index authentication on both edge and fog sides. Similar to
access control process, a querying hashed index operation,
which is mainly responsible for fetching hashed index value
from smart contract, is the most computing intensive stage.
Since the fog nodes have more computation capacity than
the edge nodes do, while the execution time of querying
hashed index token on edge nodes is about 23.4 ms, the
same operation takes only 10.9 ms on fog nodes. The index
authentication process is divided into two steps, extracting
hashed value from the features data and verifying the hashed
index from smart contract given hashed value. The average
time of the authorization process is about 1.8 ms (1.4 ms +
0.4 ms) on edge nodes and 0.8 ms (0.6 ms + 0.2 ms) on fog
nodes. The average total delay time introduced by the service
request operation of retrieving data from client to server is
161 ms on edge device and 51 ms on fog node. Compared
with total delay time, the overload introduced by hash index
authentication is about 14 % (23.4 ms / 161 ms) on the edge
side and about 21 % (10.9 ms / 51 ms) on the fog side.

2) Communication Overhead: To evaluate the overall net-
work latency incurred by the microservices architecture, a
comprehensive test has been performed on two service ar-
chitectures: the microservices architecture and the mono-
lithic framework. Micro App uses microservices framework
in which service providers, BlednCAC and hashed index
authentication, are decoupled into three separate containers
and deployed on different host machines. While Mono App
uses monolithic framework that all service functions are en-
capsulated as one container and run on single host machine.
Simulating a regular service request allows measuring how

Fig. 4. Execution time of each individual stage of the Hashed Index
Authentication Microservices.

Fig. 5. The Network latency incurred by Microservices-enable BlendCAC
Solution.

long it takes for the client to send a request and retrieve the
data from the server.

Figure 5 shows the overall communication latency in-
curred and compares the execution time of the BlendCAC
and a benchmark without any access control enforcement on
two service architectures. For the monolithic framework, at
the fog, the benchmark without access control enforcement
(Mono App NoAC) takes an average of 50.4 ms for fetching
requested data versus that the BlendCAC (Mono App) con-
sumes on average of 59.9 ms. It means that embedding the
BlendCAC scheme only introduces about 9.5 ms extra latency.
At the edge devices, the Mono App takes on average of
140.3 ms for fetching requested data versus Mono App NoAC
on average of 55.4 ms, which means that access control
process incurs 84.9 ms extra latency. For a microservices
architecture, at the fog, the Micro App incurs 89.7 ms (133.5
ms - 43.8 ms) extra latency compared with average time
consumed by Micro App. While at the edge devices, the
Micro App incurs 95.8 ms (147.1 ms - 51.3 ms) extra latency
compared with Micro App. No matter which architecture,
Mono App or Micro App, owing to lower computation power
of edge computing platform, the network latency incurred by
embedding the BlendCAC on edge device is much higher than
on fog node.

Considering the scenarios without access control enforce-
ment, microservices and monolithic framework have almost
the same performance both on edge and fog platforms. How-

ever, when it comes to BlendCAC scenario, the experiments
on two architectures show different communication latency
between fog and edge platforms. On the fog computing level,
the network latency of Micro App takes an average of 133.5
ms for fetching requested data versus that the Mono App only
consumes on average of 59.9 ms. But for edge devices, both
frameworks have almost the same network latency, which is
about 140 ms. Since services on monolithic framework utilize
an Internal Process Communication (IPC) to call functions and
share data, given the same computation and memory power,
it is much more reliable and faster than the Remote Process
Communication (RPC) used by microservices architecture,
which is subject to the Quality of Service (QoS) determined
by the network communication status. Since the fog nodes
are more powerful than edge devices, the influences caused
by computation and network communication for Micro App
is more significant than the same case for Mono App on fog
nodes. Although microservices incurs more network latency,
which is 73.6 ms (133.5 ms - 59.9 ms) on the fog side
and 6.8 ms (147.1 ms - 140.3 ms) on edge side, it still
brings benefits to the distributed IoT-based system, such as
loosely coupled dependence, easy service deployment and
cross-platform interoperability.

C. Discussions

The experimental results demonstrate that the proposed
BlendMAS strategy is effective and efficient to provide se-
cured data sharing and access control services for IoT-based
SPS system. Compared to centralized security solutions based
on monolithic framework, the BlendMAS scheme has the
following advantages:

1) Decentralized security mechanism: leveraging the
blockchain and smart contract technology, the proposed
BlendMAS scheme allows service providers to control
their devices and resource without relying on a cen-
tralized third authority to establish the trust relationship
with unknown nodes; the risk of performance bottleneck
and the single point of failure incurred by centralized
architecture are mitigated; and

2) Fine-grained architecture: embracing fine-grained mi-
croservices architecture enables the smart public safety
toward domain-driven design, technology heterogeneity
and continuous delivery, which is critical to the scalable,
heterogeneous, flexible and dynamic IoT-based smart
surveillance applications.

V. CONCLUSIONS

In this paper, we proposed a decentralized data sharing
and access control mechanism leveraging the microservices
and blockchain technology, called BlendMAS, to handle the
challenges in IoT-based public safety system. A concept-proof
prototype has been built in a physical IoT network environ-
ment to verify the feasibility of the proposed BlendMAS.
The hash index authentication and access control models
are transcoded to smart contracts deployed on the private
Ethereum blockchain network. The functionality of smart

surveillance and security services are decoupling into separate
containerized microservices and deployed on distributed edge
and fog computing nodes. Extensive experimental studies have
been conducted and the results are encouraging. It validated
that the BlendMAS solution is able to efficiently and ef-
fectively enforce identity authentication and access control
policy in a distributed IoT-based smart surveillance network.
This work has demonstrated that the proposed BlendMAS
framework is a promising approach to provide a decentralized,
scalable, fine-grained architectural security mechanism for
SPS system.

While the reported work has shown great potential, there is
still a long way to go towards a complete decentralized and
lightweight security solution for IoTs and edge computing.
Deeper insights are in need. Part of our on-going effort is fo-
cused on further exploration of the micro-blockchain platform
based on permissioned blockchain network and lightweight
consensus algorithm running on IoT devices.

ACKNOWLEDGEMENTS

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of the United States Air Force.

REFERENCES

[1] “Ethereum Homestead Documentation,” http://www.ethdocs.org/en/
latest/index.html.

[2] “Flask: A Pyhon Microframework,” http://flask.pocoo.org/.
[3] “Go-ethereum,” https://ethereum.github.io/go-ethereum/.
[4] “Solidity,” http://solidity.readthedocs.io/en/latest/.
[5] “SQLite,” https://www.sqlite.org/index.html.
[6] E. Blasch, É. Bossé, and D. A. Lambert, High-level information fusion

management and systems design. Artech House, 2012.
[7] B. Butzin, F. Golatowski, and D. Timmermann, “Microservices approach

for the internet of things,” in Emerging Technologies and Factory Au-
tomation (ETFA), 2016 IEEE 21st International Conference on. IEEE,
2016, pp. 1–6.

[8] F. F. Chamasemani and L. S. Affendey, “Systematic review and classi-
fication on video surveillance systems,” International Journal of Infor-
mation Technology and Computer Science (IJITCS), vol. 5, no. 7, p. 87,
2013.

[9] N. Chen, Y. Chen, E. Blasch, H. Ling, Y. You, and X. Ye, “Enabling
smart urban surveillance at the edge,” in Smart Cloud (SmartCloud),
2017 IEEE International Conference on. IEEE, 2017, pp. 109–119.

[10] N. Chen, Y. Chen, S. Song, C.-T. Huang, and X. Ye, “Smart ur-
ban surveillance using fog computing,” in Edge Computing (SEC),
IEEE/ACM Symposium on. IEEE, 2016, pp. 95–96.

[11] Y. Chen, E. Blasch, N. Chen, A. Deng, H. Ling, and G. Chen, “Real-
time wami streaming target tracking in fog,” in Sensors and Systems for
Space Applications IX, vol. 9838. International Society for Optics and
Photonics, 2016, p. 98380D.

[12] S. K. Datta and C. Bonnet, “Next-generation, data centric and end-to-
end iot architecture based on microservices,” in 2018 IEEE International
Conference on Consumer Electronics-Asia (ICCE-Asia). IEEE, 2018,
pp. 206–212.

[13] T. Fuse and K. Kamiya, “Statistical anomaly detection in human dy-
namics monitoring using a hierarchical dirichlet process hidden markov
model,” IEEE Transactions on Intelligent Transportation Systems, 2017.

[14] M. T. Hammi, B. Hammi, P. Bellot, and A. Serhrouchni, “Bubbles of
trust: A decentralized blockchain-based authentication system for iot,”
Computers & Security, vol. 78, pp. 126–142, 2018.

[15] L. F. Herrera-Quintero, J. C. Vega-Alfonso, K. B. A. Banse, and E. C.
Zambrano, “Smart its sensor for the transportation planning based on
iot approaches using serverless and microservices architecture,” IEEE
Intelligent Transportation Systems Magazine, vol. 10, no. 2, 2018.

[16] A. Krylovskiy, M. Jahn, and E. Patti, “Designing a smart city internet
of things platform with microservice architecture,” in Future Internet
of Things and Cloud (FiCloud), 2015 3rd International Conference on.
IEEE, 2015, pp. 25–30.

[17] D. Lu, D. Huang, A. Walenstein, and D. Medhi, “A secure microservice
framework for iot,” in Service-Oriented System Engineering (SOSE),
2017 IEEE Symposium on. IEEE, 2017, pp. 9–18.

[18] D. Nagothu, R. Xu, S. Y. Nikouei, and Y. Chen, “A microservice-enabled
architecture for smart surveillance using blockchain technology,” arXiv
preprint arXiv:1807.07487, 2018.

[19] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[20] S. Y. Nikouei, Y. Chen, A. Aved, and E. Blasch, “Eiqis: Toward an

event-oriented indexable and queryable intelligent surveillance system,”
arXiv preprint arXiv:1807.11329, 2018.

[21] S. Y. Nikouei, Y. Chen, S. Song, and T. R. Faughnan, “Kerman: A hybrid
lightweight tracking algorithm to enable smart surveillance as an edge
service,” arXiv preprint arXiv:1808.02134, 2018.

[22] S. Y. Nikouei, Y. Chen, S. Song, R. Xu, B.-Y. Choi, and T. R. Faughnan,
“Intelligent surveillance as an edge network service: from harr-cascade,
svm to a lightweight cnn,” arXiv preprint arXiv:1805.00331, 2018.

[23] ——, “Real-time human detection as an edge service enabled by a
lightweight cnn,” in Edge Computing, the IEEE International Confer-
ence on, 2018.

[24] S. Y. Nikouei, R. Xu, Y. Chen, A. Aved, and E. Blasch, “Decentral-
ized smart surveillance through microservices platform,” in 2019 SPIE
Defense + Commercial Sensing. SPIE, 2019.

[25] S. Y. Nikouei, R. Xu, D. Nagothu, Y. Chen, A. Aved, and E. Blasch,
“Real-time index authentication for event-oriented surveillance video
query using blockchain,” arXiv preprint arXiv:1807.06179, 2018.

[26] M. Ribeiro, A. E. Lazzaretti, and H. S. Lopes, “A study of deep
convolutional auto-encoders for anomaly detection in videos,” Pattern
Recognition Letters, 2017.

[27] M. Swan, Blockchain: Blueprint for a new economy. ” O’Reilly Media,
Inc.”, 2015.

[28] N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, no. 9, 1997.

[29] X. Wang, “Intelligent multi-camera video surveillance: A review,” Pat-
tern recognition letters, vol. 34, no. 1, pp. 3–19, 2013.

[30] R. Wu, Y. Chen, E. Blasch, B. Liu, G. Chen, and D. Shen, “A container-
based elastic cloud architecture for real-time full-motion video (fmv)
target tracking,” in 2014 IEEE Applied Imagery Pattern Recognition
Workshop (AIPR). IEEE, 2014, pp. 1–8.

[31] R. Wu, B. Liu, Y. Chen, E. Blasch, H. Ling, and G. Chen, “Pseudo-real-
time wide area motion imagery (wami) processing for dynamic feature
detection,” in 2015 18th International Conference on Information Fusion
(Fusion). IEEE, 2015, pp. 1962–1969.

[32] ——, “A container-based elastic cloud architecture for pseudo real-time
exploitation of wide area motion imagery (wami) stream,” Journal of
Signal Processing Systems, vol. 88, no. 2, pp. 219–231, 2017.

[33] R. Xu, Y. Chen, E. Blasch, and G. Chen, “Blendcac: A blockchain-
enabled decentralized capability-based access control for iots,” in The
2018 IEEE International Conference on Blockchain (Blockchain-2018).
IEEE, 2018, pp. 1–8.

[34] R. Xu., Y. Chen, E. Blasch, and G. Chen, “Blendcac: A smart contract
enabled decentralized capability-based access control mechanism for the
iot,” Computers, vol. 7, no. 3, p. 39, 2018.

[35] R. Xu, Y. Chen, E. Blasch, and G. Chen, “Exploration of blockchain-
enabled decentralized capability-based access control strategy for space
situation awareness,” Optical Engineering, vol. 58, pp. 58 – 58 – 16,
2019. [Online]. Available: https://doi.org/10.1117/1.OE.58.4.041609

[36] R. Xu, X. Lin, Q. Dong, and Y. Chen, “Constructing trustworthy and
safe communities on a blockchain-enabled social credits system,” in
Proceedings of the 15th EAI International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services. ACM, 2018,
pp. 449–453.

[37] R. Xu, S. Y. Nikouei, Y. Chen, A. Polunchenko, S. Song, C. Deng,
and T. R. Faughnan, “Real-time human objects tracking for smart
surveillance at the edge,” in 2018 IEEE International Conference on
Communications (ICC). IEEE, 2018, pp. 1–6.

[38] D. Yu, Y. Jin, Y. Zhang, and X. Zheng, “A survey on security issues
in services communication of microservices-enabled fog applications,”
Concurrency and Computation: Practice and Experience, p. e4436,
2018.

http://www.ethdocs.org/en/latest/index.html
http://www.ethdocs.org/en/latest/index.html
http://flask.pocoo.org/
https://ethereum.github.io/go-ethereum/
http://solidity.readthedocs.io/en/latest/
https://www.sqlite.org/index.html
https://doi.org/10.1117/1.OE.58.4.041609

	I Introduction
	II Background Knowledge and Related Work
	II-A Smart Public Safety
	II-B Microservices in IoT
	II-C Blockchain and Smart Contract

	III System Design of BlendMAS
	III-A System Architecture of BlendMAS
	III-B Identity-based Permissioned Blockchain
	III-C Blockchain-enabled Security Microservices
	III-C1 Registration Service
	III-C2 Identity Authentication
	III-C3 Security Management
	III-C4 Hashed Index Authentication
	III-C5 Access Control

	IV Experimental Analysis
	IV-A Environmental Setup
	IV-B Performance Evaluation
	IV-B1 Computational Overhead
	IV-B2 Communication Overhead

	IV-C Discussions

	V Conclusions
	References

