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Abstract—Blockchains can guarantee fairness during the ex-
change of digital goods such that in a two-party exchange no
one is defrauded by a malicious opponent. While several notions
of fairness have been discussed in the literature, they all ignore
that damage cannot only be incurred by the malicious failure
of the exchange, but also by an unfair allocation of transaction
costs. To address this issue we: 1. define the novel concept of cost
fairness, which 2. builds on the notion of maximum cost matrices
that formalize transaction costs in different combinations of
benevolent and malicious behavior. 3. We show how limited
notions of cost fairness can be achieved by modifying an existing
exchange protocol or using a container protocol. In particular, we
also provide 4. a tool that let us predict the maximum cost matrix
for a specific protocol execution and, thus, gives trade exchange
parties the possibility to weigh not only the value of transaction
of exchanged goods but also the associated transaction costs.

Index Terms—blockchain, fairness, cost fairness, fair exchange
protocols

I. INTRODUCTION

When talking about the term fairness in electronic com-

merce [3], it usually refers to the property of a protocol that

no party can take advantage over the other party by behaving

maliciously. In the context of data exchange, fairness deals

with the whereabouts of the data to be transferred before and

after the exchange and the funds paid for it. It was shown,

e. g., by Pagnia and Gärtner, that a trusted third party is

required in order to achieve fairness [16], [19]. In real-world

applications, trusted third parties can be public institutions,

notaries, company consortiums, etc. With the emergence of

blockchains, several approaches have been presented how

such a system can be used to improve on existing protocols

used in distributed systems [11], [13], [4], [7]. In particular,

blockchains can be used to play the role of a distributed trusted

third party in case of two or more parties involved in the

protocol do not trust each other [8], [9], [10], [17].

Using the services of a trusted third party incurs costs

regardless of whether a centralized trusted third party is

employed or whether a blockchain plays this role. Classic

trusted third parties are usually paid with a fixed, e.g., monthly,

rate, or per transaction. In both cases, it is known before the

exchange which participant has to bear which cost. In the

Ethereum blockchain, the transaction fees to be paid stem

from the operations carried out by the smart contract that

implements the trusted third party functionalities [18]. The

fees have to be paid by the person invoking the smart contract

and may vary depending on various system parameters as well

as the smart contract implementation. In particular, the costs

depend on both the invocation of smart contract methods and

the size of transferred method parameters.

If an exchange protocol is realized via blockchains, the

smart contract of the protocol can offer multiple methods,

which have to be called in a defined order by the respective

seller or buyer to conduct a fair exchange. The execution cost

of these methods can differ depending on parameters. Different

sizes and complexities among the smart contract methods can

result in transaction fees to be paid by the seller that are

different than the fees to be paid by the buyer.

Since the concept of fairness as defined by Asokan [3] does

not cover the distribution of the cost to be paid, situations

may arise which contradict to the intuitive understanding

of fairness, as it might be possible to create situations in

which an honest participant has to bear significantly more

cost than a cheating adversary, although formally fulfilling the

characteristic of fairness.

Until now, formal specifications of fairness in digital ex-

change protocols may enforce that either the two goods are

exchanged or no exchange takes place at all, but they ignore

who bears incurred transaction costs of a failed exchange. The

assignment of transaction costs is already a non-negligible

matter when the exchange succeeds. When one of the two

parties causes the exchange to fail and the other party has to

bear significant transaction costs, the overall functioning of

the exchange platform is at stake as parties may be deterred

from using such a platform in the first place. Therefore, our

main contribution is the introduction of cost fairness as an

additional criterion that an exchange protocol on a blockchain

should fulfill.

In order to enable the examination and evaluation of fair

protocols with regard to cost fairness, we discuss and answer
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the following research questions:

RQ1 How can cost fairness be defined?

RQ2 How can exchange protocols be optimized regarding

execution cost?

RQ3 How can exchange protocols be optimized regarding cost

imbalances between participating parties?

To support the definition of cost fairness, we introduce the

concept of a maximum cost matrix, which informs about the

cost that can be imposed on the two trading parties in different

configurations of cooperative or non-cooperative behaviour.

Furthermore, as our second contribution, we present BDTsim,

a framework for simulating the behavior of the parties of two-

party exchange protocols in order to determine the maximal

costs under different combinations of cooperative and non-

cooperative behavior of the two parties, which provides input

for a plausible and enforceable allocation of transaction costs

on the two parties.

In Section II we survey related work describing properties

of trading protocols and various notions of fairness found in

the literature. In Section III we present our definition of cost

fairness and Section IV presents how cost fairness can be

determined. We discuss general aspects of cost fairness regard-

ing blockchain-based fair exchange protocols using examples

from existing exchange protocols in Section IV-C - IV-E. We

conclude our work in Section V and provide our ideas for

future work.

II. RELATED WORK ON EXCHANGE PROTOCOLS

A. Fairness of Exchange Protocols

Informally, a protocol is said to be fair if no party can take

advantage over an honestly behaving counterpart. According

to Asokan [3], the formal definition of strong fairness means

that at the point of protocol termination either the exchange

proceeded successfully, i. e., both parties received what they

aimed for, or the exchange failed, i. e., no party received what

it wanted.

A relaxation of this notion is the flavor of weak fairness [3].

According to this property, it is not required that the exchange

either completely succeeded or completely failed at the time

of protocol termination. Instead, it is only guaranteed that if

strong fairness is not given, an honest party can prove to a third

party that the other party received the expected item while

itself did not. Note, it is not required that the third party can

resolve the dispute in the sense that the exchange successfully

happened at the end. Instead, it just needs to be able to verify

that the exchange was unfair.

B. FairSwap

The FairSwap protocol by Dziembowski et al. [9] provides

strong fairness for both parties. It requires a trusted third party

in case of a dispute which is realized by a smart contract.

The implementation provided by the authors works over the

Ethereum blockchain.

The protocol is applicable for any exchange of data which

can be represented as a binary string against money (e. g.,

online purchases of movies or music files). An important

requirement on the data is that it can be identified by its hash

value. In the given example, the Merkle hash of the file is

used as an identifier. This identifier is known to both parties

at the start of the protocol.

An exchange that uses the FairSwap protocol is started by

initializing a smart contract with an offer. The offer contains

the identifier of the digital good, the demanded price, and some

metadata about the digital good that is to be exchanged, e.g.,

the hash of the encrypted data which is transferred to the buyer

at the same time as the contract gets initialized. After receiving

the encrypted good and seeing the initialized smart contract,

the buyer can decide to accept the offer by depositing the

required amount of money in the smart contract. Afterward,

the seller reveals the encryption key by sending it to the smart

contract. Upon receiving the key via the smart contract, the

buyer decrypts the data received at the beginning and compares

it with the expected good. If he obtains the correct data, he

finalizes the exchange by sending a final message to the smart

contract. This triggers the payout for the seller and terminates

the protocol. Otherwise, if the obtained data is not equal to the

file corresponding to the identifier agreed-upon and stored in

the smart contract, the buyer uses the information obtained

by the encrypted data to create a public certificate of the

other party’s malicious behavior. In FairSwap, this certificate

is called proof of misbehavior. Using this proof provided by

the buyer, the smart contract is able to detect the seller’s

behavior and will refund the money deposited by the buyer

when accepting the transfer. After execution, the protocol

terminates resulting in a failed exchange. It is important that

the buyer is only able to create a valid proof of misbehavior

if the seller did not send the correct data. Therefore, the buyer

is not able to falsely request a refund. This property is called

defamation free.

It is easy to see that the execution of FairSwap requires

both parties to pay transaction fees when interacting with the

smart contract. Moreover, even if the buyer behaves honestly,

he needs to increase his financial expenses when sending the

proof of misbehavior to the judge smart contract. This situation

can be considered unfair since the honest party is punished.

C. Financial Fairness

Financial fairness guarantees that an adversary is monetar-

ily penalized, if he aborts upon receiving the output of the

exchange before the honest party gets to know the output.

Financial fairness is often provided by blockchain-based proto-

cols with an inherent cryptocurrency (e. g., Bitcoin, Ethereum)

[5], [12], [2], [1], [14], [15]. This notion does not ensure that

the exchange either succeeds or fails as in strong fairness

and neither guarantees that the honest party has evidence

about the status of the transfer. Financial fairness targets to

compensate the honest party in the case that the honest party

reveals or releases its goods towards the cheating party, but

the cheating party then, after learning about or receiving the

goods, leaves the protocol without giving money or the goods

to be exchanged in return. In this case, a previously deposited

amount of money (also called security deposit or penalty) is
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paid as compensation for the missing goods or money as well

as the cost the honest party has to pay for.

However, this notion does not cover protocol abortions prior

to the release or revelation of the goods to be exchanged. Since

cost may also be incurred for, e.g., initialization, which must

also be paid if one of the parties leaves the protocol, it is

desirable for the honest party to be secured, e. g., financially, to

prevent cost without corresponding compensation. Since this

relates to the entire execution of the protocol and not just to a

certain phase as in financial fairness, we need a concept that

includes the cost of the entire protocol execution. In this work,

we define our notion of cost fairness which covers the costs of

the complete execution of the protocol and not, as in financial

fairness, limited to a single phase.

It is necessary to mention that a protocol can also be

designed to achieve none of the aforementioned notions. In

this case, the protocol is said to guarantee no fairness at all.

It might seem not intuitive to aim for a protocol that achieves

no fairness, but such protocol might be cheaper with regard

to transaction costs. Depending on the protocol, achieving

stronger notions of fairness requires additional mechanisms

or interaction rounds, which might be expensive. Moreover,

depending on the value of the exchanged items, a party might

be willing to take some additional risk in order to use a cheaper

protocol.

III. COST FAIRNESS

In this section, we define the concept of cost fairness. We

relate cost fairness to blockchain-based exchange protocols in

Section IV.

When conducting a two-party exchange which requires a

trusted third party, the following costs may be encountered by

seller and/or buyer:

• Payment: the items/money used to pay for a traded good.

• Fees: the money used to pay for trusted third party

operations.

• Fines: cost a buyer or seller must bear bear in case of

protocol violation. The protocol defines the recipient of

the fines, usually the trading partner as compensation or

even to a third party (e. g., an infrastructure operator, or

a charitable organization).

In the remainder of our work the term transaction costs refers

to the sum of costs that do not include payment, i. e., fees plus

fines spent minus fines received.

A. Modeling Cost Fairness as Non-cooperative Game

Game theory models behavior by two (or more) parties

that individually pursue strategies that maximize their payoffs.

In our setting, the available strategies are to complete the

exchange of goods by conforming to the exchange protocol

or not.

For each valid combination of strategies, we model the costs

for the two involved parties. The core idea of our proposal

is that we use a blockchain as a trusted third party that

enforces payoffs and limits costs in such a way that parties

are motivated to conform to the fair and cost-fair exchange

protocol.

When talking about two-party protocols, we have four

possible combinations of strategies on how the parties S and

B can behave:

• S and B both follow the protocol

• S follows the protocol while B does not

• S does not follow the protocol while B does

• neither S nor B follow the protocol

For the remainder of the paper, we call S and B to be honest
if they follow the protocol and malicious if they do not.

Depending on the protocol, the seller and buyer can act

maliciously in different variants (e. g., in FairSwap, the seller

by sending wrong data or the wrong key). Since different

variants can result in different costs, and we are interested

in an upper bound costs estimation of exchange protocols

for each of these cases, we consider the maximum costs for

each party for each of the combinations of strategies listed

above. By summarizing the costs of all operations during a

protocol execution and computing the maximum costs for all

possible sequences of operations, we can calculate the costs

for seller and buyer for the cases that both parties are honest

(Shh and Bhh), honest seller with malicious buyer (Shm and

Bhm), malicious seller with honest buyer (Smh and Bmh),

and both parties malicious (Smm and Bmm). We write down

these results of upper bound costs in a maximum cost matrix
(see Table I).

Maximum Cost Matrix B honest B malicious
S honest (Shh, Bhh) (Shm, Bhm)

S malicious (Smh, Bmh) (Smm, Bmm)

TABLE I: Maximum cost matrix providing information about

upper bound transaction costs for seller S and buyer B.

A maximum cost matrix can also be used to determine

whether the risk in terms of financial loss in case of cheating

is distributed evenly between both parties, i. e., Shm ≈ Bmh.

We provide an example of how a maximum cost matrix can

be calculated for a given blockchain-based protocol in Section

IV-C.

B. Full Cost Fairness

Definition 1. Given a maximum cost matrix M with entries

Shh, Bhh, Shm, Bhm, Smh, Bmh, Smm and Bmm, an

exchange protocol P achieves full cost fairness, if all of the

following criteria are met:

CF1 In case of both parties are honest, the maximum costs

for protocol execution (Shh, Bhh) have to be known to

the parties before the actual protocol starts.

CF2 In case of one party stays honest while the other party

acts maliciously, the honest party must get compensated

for any transaction costs it has incurred, i. e., Shm =
0 ∧Bmh = 0.

Note that property CF1 allows both parties to decide if they

are willing to accept the required costs. Moreover, property

CF2 does not upper bound the costs for malicious behavior
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since a malicious party can deviate arbitrarily from the proto-

col specification.

The requirements CF1 and CF2 result in the maximum cost

matrix to be achieved by an exchange protocol as depicted

in Table II in order to call a protocol to be full cost fair. As

long as all values from the maximum cost matrix of a given

exchange protocol are lower or equal compared to the values

in the maximum cost matrix required to achieve for full cost

fairness, a protocol achieves full cost fairness.

Full Cost Fairness B honest B malicious
S honest (Shh, Bhh) (0, ∞)

S malicious (∞, 0) (∞, ∞)

TABLE II: Maximum cost matrix to be achieved for full cost

fairness.

C. Partial Cost Fairness

Depending on the environment, it might be non-trivial to

achieve full cost fairness. In the literature, deposits are fore-

seen for the case that the buyer (seller) abandons the protocol.

The deposited funds can be paid out to the other party as a

compensation.1 One might consider to require deposits before

the execution of a transaction. If the depositing itself, however,

also incurs transaction costs, it implies a recursive requirement

to put forward deposits for protecting upcoming operations. It

follows that if the first operation of the protocol is charged with

fees, it is not possible to secure the first transaction using a

deposit for compensation in case of one party abandoning the

protocol after the first operation. As full cost fairness seems

impossible to be achieved in the aforementioned scenario, we

have developed a weaker notion of cost fairness:

Definition 2. Given a maximum cost matrix M with entries

Shh, Bhh, Shm, Bhm, Smh, Bmh, Smm and Bmm, an

exchange protocol P is partial cost fairness for the S (B),

if all of the following criteria are met:

PCF1 In case of both parties are honest, the maximum costs

for protocol execution (Shh, Bhh) have to be known to

the parties before the actual protocol starts.

PCF2 In case of S (B) is honest while B (S) is malicious,

S (B) should get compensated for any transaction cost

incurred (Shm = 0 ∨ Bmh = 0).

PCF1 and PCF2 result in a maximum cost matrix as

depicted in Table III.

Partial Cost Fairness B honest B malicious
S honest (Shh, Bhh) (Shm, ∞)

S malicious (∞, Bmh) (∞, ∞)

TABLE III: Maximum cost matrix to be achieved for partial

cost fairness with the condition Shm = 0 ∨ Bmh = 0.

1In the literature, depositing funds for this purpose is also referred to as
security deposit or penalty.

D. Container Protocol for (Re-)Distribution of Transaction
Cost

Using a container protocol as described below, the seller

and buyer can agree on different cost distributions than given

by the protocol itself. The container protocol consists of a

deposit phase, where one or both parties deposit funds into

the container protocol’s smart contract. Then, the contained

protocol is executed. In the end, the container protocol will

do a payout as agreed at the beginning of the protocol.

1) Uninformed Container Protocol: When the contained

protocol is used without modifications, the container protocol

cannot distinguish between the strategies used by the seller or

buyer. Therefore, there cannot be a strategy-dependent payoff

in the payout phase of the container protocol. Therefore, the

seller and buyer can only agree on one amount Δ, which has

to be deposited at the beginning of the protocol and will be

paid off at the end (see Table IV). The uninformed container

protocol can be used to achieve partial cost fairness.

Uninf. C. P. B honest B malicious
S honest (Shh +Δ, Bhh −Δ) (Shm +Δ, Bhm −Δ)

S malicious (Smh +Δ, Bmh −Δ) (Smm +Δ, Bmm −Δ)

TABLE IV: Maximum cost matrix for the uninformed con-

tainer protocol.

2) Informed Container Protocol: With minimum protocol

modifications, it is possible to inform the container protocol

about the strategies used by the seller or buyer as deter-

mined by the smart contract in order to ensure e. g. strong

fairness. Using this information, the container protocol can

do a strategy-dependent payout at the end of the protocol.

Therefore, it is possible that the seller and buyer agree on

different amounts Δxy which will be paid off depending on the

protocol outcome (see Table V). Note: as long as the deposit

phase of the container protocol is charged with fees, it is still

not possible to use the container protocol to achieve full cost
fairness.

Inf. C. P. B honest B malicious
S honest (Shh + Δhh,

Bhh −Δhh)
(Shm + Δhm,
Bhm −Δhm)

S malicious (Smh + Δmh,
Bmh −Δmh)

(Smm + Δmm,
Bmm −Δmm)

TABLE V: Maximum cost matrix for the informed container

protocol.

IV. COST FAIRNESS IN BLOCKCHAIN-BASED EXCHANGE

PROTOCOLS

We will relate our definitions of cost fairness to blockchain-

based exchange protocols. To this end, we first elaborate on

the costs incurred by blockchain-based protocols and present

a way to estimate these costs by our simulation tool BDTsim.

Next, we analyze the FairSwap protocol in regard to cost

fairness and discuss methods to influence transaction costs.
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A. Calculation of Protocol Execution Cost

When all costs are well defined, we can calculate the

costs for an exchange protocol analytically as well as in an

evaluative manner. Since we focus our work on blockchain-

based exchange protocols, we need a cost definition for

blockchain interactions, which is provided in [18, p. 25]

for the Ethereum blockchain. We assume that the costs for

additional infrastructure required for using an Ethereum based

fair exchange protocol (e. g., internet connection, computa-

tional resources) are negligibly low compared to the costs

arising from Ethereum transactions in terms of transaction

fees. Therefore, we only consider the Ethereum transaction

fees in the following.

Note that the Ethereum blockchain has a special character-

istic regarding the costs to be paid not only for the number of

bytes sent to the smart contract, but also the value of the bytes.

Ethereum charges more transaction fees for bytes with values

unequal to zero than for bytes equal zero. Since blockchains

make extensive use of cryptographic hashes whose values are

deemed to be unpredictable regarding the input parameters,

even a slight change of a transaction (e. g., different execution

time) will result in a different hash. These differences may

alter the number of byte-wise zeros and may therefore require

different transaction fees. This can even happen for multiple

protocol executions with an identical set of parameters. Nev-

ertheless, these differences are negligibly small and do not

tackle the concept of cost fairness in general. However, when

applying the definitions of cost fairness to an Ethereum-based

protocol, the limits presented by the maximum cost matrix

should be compared with a certain tolerance.

B. BDTsim: Framework for Blockchain-based Data Trading
Simulations

Since the costs in the form of transaction fees may depend

on a large number of parameters (see Section I), an analytical

analysis of protocol execution costs might be cumbersome to

conduct. For this reason, we developed BDTsim2, a simulation

tool for Ethereum-based exchange protocols. We have chosen

Ethereum as (first) platform to be supported, since Ethereum

is the most known blockchain platform with support for smart

contracts. This also allows us to run BDTsim on derivates of

the Ethereum blockchain like Quorum3. BDTsim is written in

Python and available as open-source software. In BDTsim,

protocol developers and users can model the behavior of

seller and buyer (i. e., by specifying the variants of operations

conducted by the parties, including operations not allowed

by the protocol to simulate a malicious party) and run a

simulation using the original, unmodified Ethereum smart

contract presented along with the concept of the protocol. As

a result, BDTsim returns the transaction fees to be paid and

possible incoming fund transfers in all honest/malicious cases

2Blockchain Data Trading Simulator
Sources: https://gitlab.com/MatthiasLohr/bdtsim/
Documentation: https://matthiaslohr.gitlab.io/bdtsim/

3Permissioned variant of the Ethereum blockchain –
https://consensys.net/quorum/

as listed in Section III-A. These values can be used to create

a maximum cost matrix for the simulated protocol (for the

set of used protocol parameters during protocol execution).

Furthermore, BDTsim has the ability to visualize possible

protocol paths and costs per-operation to help identifying

expensive parts of a protocol. This way, BDTsim can be used

during protocol development to show and reduce the cost to

be paid.

As an example of a protocol which can be used for conduct-

ing an exchange, we briefly describe a rudimentary exchange

protocol that achieves no fairness for the buyer. In the Simple
Payment Protocol the two parties agree off-chain about the

digital good and the amount of money to be exchanged. After

the agreement, the buyer transfers the demanded payment

to the seller. Upon receiving the money, the seller can send

the digital good to the buyer which completes the exchange

protocol. The advantages of this protocol are its simplicity and

the low cost. Since the protocol only contains a single on-

chain transaction which, additionally, is only a cheap payment

transaction, the overall transaction costs are low. However, this

protocol does not provide any fairness guarantee for the buyer.

After sending the money to the seller, the seller can freely

decide whether or not to send the agreed-upon digital good.

Moreover, there is no way for the buyer to show the dishonesty

of the seller and fairness cannot be recovered. Additionally,

although the transaction cost are rather low, the complete

financial expenses are paid by the buyer. This holds even if

the buyer is honest but the seller behaves maliciously.

BDTsim currently contains simulation support for the Sim-

plePayment protocol (used for demonstration and testing is-

sues) as well as FairSwap (more protocols will be added in

the future, support is planned for the protocol of Delgado-

Segura [8], OptiSwap [10] and SmartJudge [17]). In Section

IV-C we describe a simulation of FairSwap using BDTsim

and present the results. BDTsim is currently limited to smart

contracts running on the Ethereum blockchain and is only able

to monitor interactions, money transfers, and resulting costs

of on-chain transactions. As long as it is within these limits

and the number of possible sequences of operations allowed

by the protocol is within reasonable limits, a protocol can be

simulated by BDTsim.

For implementing support for a new protocol, the protocol

author has to model the behavior of seller and buyer (all

distinguishable variants) as code, which interacts with the

environment (blockchain) provided by BDTsim. Off-chain

interactions, such as direct data transfer, does not need to

be implemented, since BDTsim only monitors blockchain

interactions. However, since later steps in the protocol might

require to access results from previous off-chain interactions

between seller and buyer, sometimes off-chain interactions

have to be implemented partially (e. g., in FairSwap the buyer

has to use data encrypted by the seller in its last step of the

protocol, so it is required to implement the encryption).

Listing 1 shows the Python source code modeling the

behavior (honest and malicious) for seller and buyer for

the SimplePayment protocol: For the modeling, we focus on

432



rational and distinguishable behavior. E.g., the buyer could

send no money or an amount smaller than the price if acting

maliciously. However, since both would result in the same

situation that the goods are not (fully) paid and a rational

malicious buyer would try to optimize his transaction costs,

he would prefer the cheaper way of not sending any funds.

BDTsim internally monitors method calls to

protocol_path.decide(...), builds up a tree of

all possible protocol paths and runs a simulation for each

possible path. Correct functionality of BDTsim is ensured by

unit tests.

C. Cost Fairness Evaluation of FairSwap

FairSwap [9] allows to perform an exchange of digital good

against money over a blockchain like Ethereum. The authors

provide a full security proof showing that their protocol is fair

according to the strong fairness definition. We evaluate which

definitions of cost fairness FairSwap fulfills.

We model all distinguishable variants of seller and buyer

behavior in BDTsim. For the simulation, we use the Ethereum

smart contract initially published by the authors of FairSwap
4, except for small bug fixes and fixes for compatibility issues

incurred by updates of the Solidity language specification. The

models as well as the smart contract used for simulation are

contained in the BDTsim project.

FairSwap supports two parameters for protocol execution.

The first one states the number of chunks into which the

complete data is split (in the practical implementation limited

to values of the power of 2) and is denoted by n. The second

parameter denotes the size of a single chunk in bytes (in the

implementation limited to a multiple of 32).

FairSwap (n = 2, s = 32) B honest B malicious

S honest (1,335,228, 51,363) (1,263,039, 0)

S malicious (1,320,350, 57,522) (1,320,350, 57,522)

(a) FairSwap simulation with n = 2, s = 32

FairSwap (n = 128, s = 32) B honest B malicious

S honest (1,336,840, 51,308) (1,264,695, 0)

S malicious (1,321,984, 65,355) (1,321,984, 65,355)

(b) FairSwap simulation with n = 128, s = 32

FairSwap (n = 128, s = 256) B honest B malicious

S honest (1,337,862, 51,330) (1,265,739, 0)

S malicious (1,322,994, 91,039) (1,322,994, 91,039)

(c) FairSwap simulation with n = 128, s = 256

TABLE VI: Maximum cost matrix of the FairSwap [9] proto-

col. Costs are given in Gas as used as operation cost unit in

Ethereum [18, p. 4].

As we can see when comparing Table VI to the requirements

for full cost fairness or partial cost fairness, FairSwap does not

achieve either, although it meets the criteria of strong fairness

(see the proof in [9]). This shows that when using FairSwap

in practice, both parties can use the protocol to mislead the

other party to pay transaction fees without any compensation

and thus cause financial damage. Conducting a more detailed

4https://github.com/lEthDev/FairSwap

analysis, we can see that a major part of the total costs is

caused by smart contract deployment (1, 263, 039 gas when

n = 2, s = 32, see Table VIa). When the buyer and the seller

agree on a trade using FairSwap (the initial agreement is done

off-chain) and the seller initializes the protocol by deploying

the smart contract, the buyer can leave the protocol without any

costs while the seller has to pay for a significant amount of gas.

In reverse, if the buyer is honest but the seller acts maliciously,

the buyer has to pay more gas compared to the situation where

the seller is honest to reclaim the money deposited for paying

for the data to be traded. The difference gets even higher with

an increasing number of chunks or data size (see Tables VIb

and VIc).

D. Cost Fairness in Public and Private Blockchains

As already discussed in Section III-B, it is not possible to

achieve full cost fairness as long as the first protocol operation

is charged with a fee. Since public blockchains like Bitcoin and

Ethereum charge for any transaction, it is not possible to create

a protocol that realizes full cost fairness by relying solely on

on-chain transactions. For now, we also do not know about

any mechanism using off-chain transactions for achieving full

cost fairness for a protocol running on a public blockchain.

Public blockchains use transaction fees as an incentive

for people to participate in extending the blockchain, the

situation is different for permissioned blockchains. Permis-

sioned blockchains are usually operated in a specific context,

e. g., by a company or a consortium of companies. There

are multiple possible reasons for operating a permissioned

blockchain instead of using a public instance, e. g., privacy,

well-known identities of participants (they have to authenticate

in order to access the permissioned instance), performance

and cost reduction. Since the operator can decide about the

conditions for accessing and interacting with the blockchain,

he can also decide about the transaction fees to be paid.

Hyperledger Fabric [6], a framework for realizing customized

private blockchains does not even have a concept for digital

currency at all, which implies that no transaction fees can

be charged. However, transaction fees can be realized when

creating a smart contract (“chaincode”) for a Hyperledger

Fabric network.

When working in a blockchain environment where no trans-

action fees are charged, full cost fairness regarding transaction

fees is provided for any protocol. However, there might

be other costs (e. g., monthly fees for participating in the

permissioned blockchain) which should be considered when

discussing cost fairness.

E. Minimizing Cost towards Cost Fairness

As mentioned in Sections III-C and IV-D, it is not possible

to achieve full cost fairness when only considering on-chain

transactions charged with transaction fees. However, for prac-

tical application, there is a general interest in reducing costs.

For blockchain-based protocols, this implicates the reduction

of transaction fees.
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Listing 1: Python source code for modelling the behavior of seller and buyer for the SimplePayment (payment after goods

release, direct payment without smart contract) protocol for simulation in BDTsim.

class SimplePayment(Protocol):
def execute(self, protocol path: ProtocolPath , environment: Environment ,

data provider: DataProvider , seller: Account, buyer: Account, price: int):
release goods = protocol path.decide(seller, ’release goods?’, [’yes’, ’no’])
if release goods == ’yes’: # honest seller
# At this position, off−chain operations for releasing the goods could be implemented.
# Since BDTsim does not monitor off−chain operations , implementation is not required by BDTsim.
pay = protocol path.decide(buyer, ’pay?’, [’yes’, ’no’])
if pay == ’yes’: # honest buyer
environment.send direct transaction(buyer, seller, price) # payment

else: # malicious buyer
pass # buyer received the goods but leaves protocol without payment

else: # malicious seller
pass # seller leaves the protocol unexpectedly , no reaction from buyer

As we mentioned in III-C and IV-D, the obstacle for not

achieving full cost fairness are the costs to be paid for the first

transaction in the protocol. Partial cost fairness, which we can

achieve using a container protocol (see Section III-D), implies

an imbalance between costs for seller and buyer (see Sections

III-C and III-A). In order to reduce the imbalance of payments

for a protocol that already achieves partial cost fairness, the

first transaction has to be as cheap as possible. Simultaneously,

to have the initializing party deposited funds in order to

provide partial cost fairness, the first transaction must come

along with a funds transfer, as long as no off-chain concept is

used for depositing the money. In Ethereum, a simple money

transfer to an actual account (not a smart contract) requires

exactly 21,000 gas. Transferring money to a smart contract

requires at least 21,000 gas, increasing dependently on the

number of operations the smart contract method called for

the transfer. Therefore, to reduce the imbalance as much as

possible, the smart contract method used for initializing the

protocol and receiving the money deposit from the initializing

party should be as small as possible.

V. CONCLUSION

This work focuses on the cost in terms of transaction fees

which must be paid for executing two-party exchange proto-

cols. For a comparable notation of the costs, we introduced the

concept of a maximum cost matrix. For cost calculation, we

presented BDTsim, our simulation framework for blockchain-

based data trading. From the concept of a maximum cost

matrix, we derived the definition of cost fairness, answering

RQ1. We used BDTsim for simulation of the FairSwap pro-

tocol, showing that, even if it reaches formal fairness, cost

fairness can not be achieved. We presented a general container

protocol which can be used to reduce imbalances between the

costs of participating parties (answering RQ3) and presented

some ideas, how a blockchain-based exchange protocol can

be optimized in order to generally reduce protocol execution

cost, tackling RQ2.

We figured out smart contract deployment to be a major

cost driver. Depending on the protocol, it might be possible

to create reusable smart contracts for the protocol, which

may initially be more expensive to deploy due to increased

complexity. However, subsequent protocol executions do not

require to deploy the smart contract again, therefore, the

average costs for deploying the smart contract distributed

among all protocol executions decrease with an increasing

number of protocol executions. In future work, we want to

conduct a broader evaluation of existing exchange protocols

(e. g., using [10], [8] [17], etc.) for identifying the major cost

drivers such as smart contract deployment. Using the results of

the evaluation, we aim to reduce the overall cost of exchange

protocols as well as the imbalance between the cost to be paid

by participating parties.

Furthermore, we want to research if our definition of full

cost fairness can be achieved in public blockchains applying

approaches known from blockchain-based state channels.
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