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Abstract—This paper introduces BlockReduce, a Proof-
of-Work based blockchain system which achieves high
transaction throughput by means of a hierarchy of merged
mined blockchains, each operating in parallel on a partition
of the overall application state. Most notably, the full PoW
available within the network is applied to all blockchains
in BlockReduce, and cross-blockchain state transitions are
enabled seamlessly within the core protocol. This paper
shows that, given a hierarchy of blockchains and its as-
sociated security model, BlockReduce scales superlinearly
in transaction throughput with the number of blockchains
operated by the protocol.

Index Terms—blockchain, distributed systems, perfor-
mance, scalability, proof-of-work

I. INTRODUCTION

Blockchains are popular as a means to enable trustless,
decentralized, peer-to-peer value transfer. Among the
approaches to achieving distributed consensus in cryp-
tocurrencies, Proof-of-Work (PoW) is the oldest, most
established, and arguably most well-understood. How-
ever, PoW-based cryptocurrencies are currently limited
in terms of transaction throughput in comparison with
traditional payment mechanisms such as credit cards.
This has resulted in increased transaction costs and
a greater shift towards alternate scaling mechanisms.
In particular, Proof-of-Stake (PoS), other Proof-of-X
consensus protocols, and a proliferation of Layer 2
protocols have been proposed and implemented in order
to enable lower transaction fees. All of these approaches
have different trust models in comparison with Proof-of-
Work and, as a result, come with their own associated
challenges and weaknesses.

S. Vishwanath is an advisor to Dominant Strategies and incubates
startups in the blockchain domain through ChainHub.

The two most notable cryptocurrencies, Bitcoin and
Ethereum, are both PoW-based1 and have a maximum
throughput of under 20 transactions per second [1],
[2], whereas Visa alone can execute more than 2,000
transactions per second on their credit card network [2].
Indeed, it is now presumed (without proof) by a majority
of people that PoW cryptocurrencies simply cannot meet
the throughput requirements of a global currency.

In this paper, we introduce BlockReduce, a PoW
cryptocurrency that achieves high transaction through-
put (as a Layer 1 protocol). We describe BlockReduce
by first identifying the primary factors that cause low
transaction throughput (and therefore, large fees) in PoW
blockchains. We then address and ameliorate each factor,
resulting in a truly scalable solution.

The primary tools underlying our solution for scala-
bility are as follows:

Latency-dependent Clustering of Network Nodes:
As noted across the literature [3], network latency is one
of the biggest factors in the scalability of blockchain
systems. In our work, we translate this understanding
of network latency into a suitable hierarchical cluster-
ing, where nodes self-partition into a hierarchy of sub-
networks with which they share low-latency connections.
Each sub-network operates its own blockchain to validate
and update a partition of the overall application state.

Transaction-dependent Security: Currently, a vast
majority of PoW cryptocurrencies afford the same level
of security—where, for our purposes, security refers
to the amount of work an adversary would need to
perform in order to succeed in a double-spend attack—
for all transactions, regardless of the economic value
of the transaction. However, in most human-commerce

1at the time of writing, Ethereum has not yet attempted the transition
to Proof-of-Stake
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interactions, low-value transactions are not secured to
the same level as high-value transactions. For example,
credit card transactions of low value often do not require
signatures, while higher value transactions go through a
more stringent signature verification process. Ultimately,
even in the blockchain domain, we believe that security
should be transaction-value dependent, with high-value
blocks (and associated transactions) afforded greater
security guarantees. Thus, the amount of work applied
to all transactions for the sake of settlement need not
be the same in the short-term, although in order to pre-
vent transaction conflicts from proliferating, eventually
all transactions in BlockReduce must be validated and
secured by the maximum amount of work available to
the system.

Merged Mining: BlockReduce is composed of a
tree of blockchains operated in parallel. Rather than
performing PoW computations on a single block header,
miners simultaneously mine a blockchain at each level
of the tree using the same PoW computations, and one
PoW solution might correspond to a block in multiple
blockchains. This has two effects in BlockReduce. The
first is that all miners always mine on the root of the tree,
meaning the root blockchain receives all of the mining
power of the network. The second is that blocks are
found periodically which are shared between blockchains
at different levels of the tree (these blocks are called
coincident blocks), which allows work to be shared
across blockchains and also enables cross-blockchain
state-transitions.

A. Proof-of-Work Blockchains

The first published instance of Proof-of-Work being
applied to blockchains is Nakamoto’s famous Bitcoin
protocol [4], where Nakamoto combined PoW with a
block selection rule called the Longest Chain Rule to
achieve Nakamoto consensus on transactions. BlockRe-
duce uses PoW to reach a similar form of consensus on
each blockchain in the tree. In order to accommodate
for this hierarchical structure, we define a variant of the
Longest Chain Rule which we refer to as the Hierarchical
Longest Chain Rule. We describe these aspects of the
BlockReduce protocol in more detail in Sections IV-B
and IV-D.

B. Proof-of-Work Efficiency

A significant limiter of transaction throughput in pub-
lic blockchains is the amount of time it takes for data to
propagate within the peer-to-peer network after blocks
are mined. In order to provide intuition about this phe-
nomenon, we define the PoW efficiency of a blockchain
as the fraction of PoW computations which contribute to
the canonical chain (i.e., the chain of blocks which are
committed to the transaction ledger/state machine). In

the ideal setting in which all nodes follow the protocol
and there are no network delays on block propagation,
the PoW efficiency, E , is 1. This is because when there
are no propagation delays, all miners instantaneously
adopt each new block into their canonical chain.

To model a more realistic setting, we define λ as the
total rate of block generation by the network and the
network delay ∆ as the time between when a block
is found and when it is received by all nodes in the
network. Under this model, [5] computes the effective
block generation rate to be λ

1+λ∆ , resulting in a PoW
efficiency of E = 1

1+λ∆ .
Furthermore, if a fraction β of nodes are adversarial

and are mining a private branch of the blockchain as
part of an attack, then [5] computes the PoW efficiency
of honest nodes to be E = (1−β)

1+(1−β)λ∆ , which varies
inversely with ∆. On the other hand, assuming the ad-
versary experiences negligible network delay with itself
while mining a private chain (i.e., ∆ ≈ 0), then their
PoW efficiency is approximately 1. Herein lies the prob-
lem. If ∆ is fixed, then an adversary’s relative advantage
over honest nodes increases as the block generation rate
increases. Systems such as Bitcoin suppress λ in order to
reduce the impact of ∆ on the PoW efficiency of honest
nodes. This phenomenon is discussed in various works
[6], [7], and several solutions have been presented which
assume ∆ to be fixed. In BlockReduce, we partition the
network into sub-networks so that the ∆ experienced
by each sub-network is smaller than that of the overall
network, thereby allowing each sub-network to operate a
blockchain with a higher block generation rate. We can
achieve this while maintaining an equal PoW efficiency
across all blockchains, which we believe is critical to
a truly scalable blockchain. Moreover, we utilize the
Hierarchical Longest Chain Rule described in Section
IV-D to guarantee that each blockchain receives the
maximum amount of work available to the network,
thereby achieving high transaction throughput without
sacrificing security or PoW efficiency.

C. Our Contributions

We present BlockReduce, a PoW blockchain system
which enables high transaction throughput by utilizing
a hierarchy of merged mined blockchains operating in
parallel on non-overlapping partitions of the application
state. To the best of our knowledge, BlockReduce is the
first protocol which promises superlinear scaling with
the number of parallel blockchains it operates while still
securing each blockchain with the maximum amount
of work available to the network. We introduce the
Hierarchical Longest Chain Rule as a block-selection
mechanism which allows each blockchain in the hier-
archy to inherit the work of its parent blockchain and
also enables native, cross-blockchain state transitions



between any state partitions in the hierarchy. Finally, we
analyze the performance of the protocol to demonstrate
the superlinear scalability of BlockReduce.

II. RELATED WORK

There have been a number of proposals for scaling
transaction throughput in blockchains. We provide a brief
summary of several types of approaches.

A. Parallel PoW Blockchains

In a manner conceptually similar to BlockReduce,
many protocols aim to achieve high transaction through-
put by operating several blockchains in parallel. The
PoW version of Parallel Chains [8] involves mining a
metablock containing candidate blocks for a number
of parallel chains which operate non-overlapping state
partitions. Notably, Parallel Chains does not support
cross-blockchain transactions and is therefore of more
limited application than BlockReduce. Chainweb [9] is
another protocol operating many parallel chains, where
each block header references the headers of other chains
in order to braid the chains together. Chainweb allows
cross-blockchain state transitions and also features a
mechanism by which chains inherit work from one
another, but it can achieve only a linear increase in
transaction throughput with the number of parallel chains
whereas BlockReduce achieves superlinear scaling.

B. Proof-of-Stake Protocols

Many Proof-of-Stake protocols have been proposed
and implemented, such as Ouroboros Praos [10] and
Ethereum’s planned move to Proof-of-Stake, as a means
to enable high transaction throughput and low settlement
times. However, Proof-of-Stake protocols currently do
not afford the same security guarantees as PoW and
also often suffer from shortcomings such as the “nothing
at stake” problem or predictability on the next eligible
validator [11].

C. Layer 2 Protocols

There are multiple Layer 2 protocols (i.e., proto-
cols which operate independently and only periodically
interact with the blockchain) which have been devel-
oped in order to facilitate high transaction throughput.
These include Starkware, Polygon, and Lightning among
many others [12]. Although some such architectures can
achieve high transaction throughput, Layer 2 solutions
inevitably require alternate trust models from the core
blockchain protocol which may not be suited for all use
cases. BlockReduce scales as a Layer 1 protocol and
does not require those additional assumptions to achieve
high transaction throughput.

III. MODEL

In this section, we describe the network model under
which we analyze the BlockReduce protocol. We adopt
a simple overlay-network model to understand the inter-
actions between nodes: that of a d-regular graph on N
network nodes. This model arises from the standard set
forth by Bitcoin, where the protocol executed by each
node attempts by default to maintain a set of 8 peers.

We assume a synchronous, round-based model for
block propagation. According to [13], with probability
1 − o(1), the number of synchronous rounds required
for data to broadcast via gossip in a random d-regular
network of N nodes is

(1 + o(1))
( 1

ln(2(1− 1
d ))
− 1

d ln(1− 1
d )

)
lnN. (1)

We use this result to characterize the overall network
propagation delay ∆ (i.e., the amount of time it takes
for a single block to be propagated across the network)
in terms of the average single-link propagation delay, δ,
as follows.

∆ = δ(1 + o(1))
( 1

ln(2(1− 1
d ))
− 1

d ln(1− 1
d )

)
lnN.

(2)
Adopting the shortened notation of [13], this gives us

the following bound:

∆ < δCd lnN. (3)

We define ∆ in this way to show that ∆ decreases as δ
or N decrease. In Section IV we use this understanding
to show that ∆ is reduced in higher order blockchains
within the BlockReduce protocol, thereby allowing for
higher block generation rates while still maintaining high
PoW efficiency within those blockchains.

IV. A HIERARCHY OF BLOCKCHAINS

In this section, we describe the BlockReduce protocol
and show that all nodes operating a particular blockchain
are able to agree upon its state.

A. Notation

The BlockReduce protocol requires that nodes self-
partition into a hierarchy of sub-networks, where the
hierarchy is a tree consisting of R levels called orders.
Each sub-network is denoted N~v , where ~v is the unique
path from the root to the specified node in the hierarchy
tree. The root of the hierarchy tree is of order 1, and the
leaves are of order R. An example of a BlockReduce
hierarchy structure and its associated sub-network parti-
tioning is provided in Figures 1 and 2. In this example,
the hierarchy has three orders, and networks of order 1
and 2 each have two child sub-networks.
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Figure 1. Hierarchy tree with 3 orders, where each box is a sub-
network which operates a distinct blockchain.

Each sub-network N~v operates a blockchain B~v
to achieve consensus on a partition of the state S~v .
Blockchains of order r have block arrivals at a rate λr,
network delay ∆r, and an average single-link propaga-
tion delay δr.

Figure 2. Illustration of topological network segregation: a) full
network b) two order 2 sub-networks c) four order 3 sub-networks.

We adopt a functional notation when discussing rela-
tionships between sub-networks, blockchains, and state
partitions. We denote parent(N~v) to be the parent sub-
network of N~v in the hierarchy tree and order(N~v) = |~v|
to be the order of N~v. We often overload this functional
notation with inputs B~v , S~v, or simply ~v, and these
functions are evaluated in the same way.

B. Merged Mining

Mining in BlockReduce is similar to mining in a
standard PoW blockchain except that, in BlockReduce,
multiple blocks are mined simultaneously using a tech-
nique called merged mining [14], and the Longest Chain
Rule (LCR) introduced by Bitcoin [4] is modified to
accommodate the hierarchical structure of BlockReduce.

Each BlockReduce miner selects an order R
blockchain (a leaf node in the tree) and simultaneously
mines each blockchain along the path from root to leaf.
For example, the miner might select the leaf B{1,1,1},
in which case they would simultaneously mine B{1},
B{1,1}, and B{1,1,1}. To accomplish this, miners con-
struct a block for each blockchain they are mining,
concatenate the block headers together, and perform

PoW computations on the combined block header; as
a result, those blocks will all share the same block hash.

Blockchains closer to the root of the hierarchy have
increasing and overlapping PoW difficulties so thaat
a block which meets the difficulty requirement of a
blockchain of order r also meets the difficulty require-
ment of each blockchain of order greater (i.e., further
from the root) than r. For example, Figure 3 depicts
a sequence of blocks in a system with 3 orders. In
this example, the difficulty requirement for an order 1
block is that the block hash has 12 leading 0’s (in the
binary expansion), whereas an order 2 block requires
only 8 leading 0’s, and an order 3 block requires 4
leading 0’s. In this case, an order 1 block with 12
leading 0’s also meets the difficulty requirement of
each other order. A block which is shared by multiple
orders in this way is called a coincident block because
it serves to coincide these blockchains under a shared
block reference. In Section IV-D, we show that under
the Hierarchical Longest Chain Rule, coincident blocks
impose a partial ordering on blockchains of different
orders which enables cross-blockchain state transitions.

0x0FFF 0x00FF 0x0FFA 0x000F B{1,1,1}� � �

0x00FF 0x000F� B{1,1}

0x000F B{1}'

&

$
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Figure 3. Example block visualization for a system with 3 orders.
Each box represents a block, and the value inside the box is the
hexadecimal representation of the block hash. Blocks in the bottom
row make up blockchain B{1,1,1} and so forth. Block B2 meets the
difficulty requirement of B{1,1} and is therefore a coincident block
shared by orders 2 and 3, B4 is also a coincident block but is shared by
all 3 orders, and blocks B1 and B3 only meet the difficulty requirement
of B{1,1,1}.

C. Partitioning the Ledger State

We adopt a generic state model in which each trans-
action constitutes an update to the application state.
This generality allows BlockReduce to support the Un-
spent Transaction Output (UTXO) model, in which
the application state is simply the set of all UTXOs,
as well as more sophisticated smart contract models,
where the application state is the smart contract state.
State is partitioned between all blockchains to prevent



duplication, and for the purpose of cross-blockchain
state transitions, each transaction must specify an origin
blockchain ~vo and a destination blockchain ~vd. If the
origin and destination of a transaction are the same, the
state transition occurs in the same way as a traditional
blockchain implementation. If the origin of a transaction
is different from its destination, for example if an asset
is being tranferred from one blockchain to another, then
the state update involves removing the asset from the
origin state and adding it to the destination state. This
leads to the following protocol rule.

Protocol Rule 1. In order for a transaction with origin
~vo to be valid, the state that it modifies must be valid
with respect to S ~vo .

For example, if a user is attempting to move an asset
from ~vo to ~vd, then the transaction must have origin ~vo
and the user must demonstrate ownership of the asset in
S ~vo .

D. The Hierarchical Longest Chain Rule

BlockReduce utilizes a novel consensus rule to select
the canonical chain—i.e., the chain of blocks referencing
state updates to be applied—for each blockchain. In
Bitcoin and other more traditional systems, the Longest
Chain Rule (LCR) stipulates that the canonical chain is
the sequence of valid blocks with the most work (often
referred to as the longest chain or, more accurately, the
heaviest chain) [4]. BlockReduce follows a similar rule
but must also account for the existence of coincident
blocks within the hierarchy.

Before defining the Hierarchical Longest Chain Rule
(HLCR), we first define what conditions a block must
meet to be considered valid. While specific requirements
may vary between implementations, such as varying
block size, transaction and/or smart contract structure,
or block header composition, in general we can define a
valid block as follows.

Protocol Rule 2 (Valid Block). A block is considered
valid if it meets all protocol rules and all of its prede-
cessors (of any order) are also valid.

In other words, a valid block must conform to the rules
of the blockchain and must reference no prior blocks
which deviate from those rules. Importantly, because a
coincident block has a predecessor at multiple orders,
if any of its predecessors are invalid then the block is
also invalid. This guarantees that a coincident block is
either valid in all blockchains for which it meets the
difficulty requirement or none of them. Next, we define
the HLCR which miners use to determine the canonical
chain in BlockReduce.

Protocol Rule 3 (The Hierarchical Longest Chain Rule).
The canonical chain of the root blockchain B{1} is the

heaviest sequence of valid blocks in B{1}. The canonical
chain of any blockchain B~v of order greater than 1
is the heaviest sequence of blocks which contains all
coincident blocks between B~v and parent(B~v) which are
present in the canonical chain of parent(B~v), and no
coincident blocks between B~v and parent(B~v) which are
not present in the canonical chain of parent(B~v).

In other words, the canonical chain for the root
blockchain is selected via the standard LCR. For each
other blockchain B~v of order greater than 1, the canon-
ical chain must include all coincident blocks that are
shared between B~v and parent(B~v) that are present in
the canonical chain of parent(B~v). However, if there is
some coincident block between B~v and parent(B~v) that
is not in the canonical chain of parent(B~v), then it cannot
be in the canonical chain of B~v.

If an incoming block causes the canonical chain to
change, then the state updates dictated by blocks which
are no longer part of the canonical chain must be reverted
and the new state updates applied. This is why the
canonical chain must contain all coincident blocks that
are shared with the parent blockchain, as otherwise a
cross-blockchain state transition which has been applied
at both origin and destination could later be reverted
at the origin but not the destination, thus causing an
inconsistency in the overall network state.

E. Inter-Blockchain Ordering via Coincident Blocks

Within a single blockchain, all blocks in the canonical
chain are totally ordered according to their distance
from the genesis block. Between blockchains of different
orders, blocks are partially ordered due to the coincident
blocks which arise from merged mining.

Intuitively, a coincident block serves as a shared point
in “time” between blockchains, allowing nodes to agree
upon which blocks came “before” the coincident block
and which blocks came “after.” For example, in Figure
3, nodes in N{1,1} which have received block B4 can
all agree that block B3 came before B4 even if they are
not mining B{1,1,1}.

This property of coincident blocks allows all nodes
in both N~v and parent(N~v) to agree on the existence
and ordering of all blocks prior to the coincident block
in either blockchain. In Section IV-G, we show that
this enables cross-blockchain state transitions to occur,
as nodes operating the destination blockchain can agree
on precisely if and when the state transition should be
applied to the destination state.

F. Inherited Work via Coincident Blocks

We argue that, for the sake of short term settlement,
blocks containing transactions of low economic value
may be secured with a fraction of the maximum work
available to the network, as the potential economic loss



from a successful attack is small. However, in the longer
term, this security level is not sufficient. If a block
containing a cross-blockchain state transition were to be
removed from the canonical chain of B ~vo , but the state
transition for that transaction had already been applied
to S ~vd , then an inconsistency in the overall application
state might arise.

The HLCR prevents this type of inconsistency by
requiring that the canonical chain of a child blockchain
must contain any coincident blocks that are shared with
its parent blockchain, regardless of the number of blocks
in any competing fork. In other words, a coincident
block is removed from the canonical chain of N~v if
and only if it is first removed from the canonical chain
of parent(N~v). The result is that N~v inherits the work
applied to parent(N~v), because an adversary attempting
to remove the block from N~v would need to have
sufficient mining power to remove it from parent(N~v).

G. State Updates

In order to guarantee consistent application state be-
tween nodes, it is sufficient that all nodes in N~v agree
on the initial state (which can be defined in the genesis
block) and then apply the same state updates to S~v in
the same order. This is simple for transactions with the
same origin and destination, as the state updates can be
applied in the order that they are referenced by that
blockchain. For transactions with different origin and
destination, the state transition must be handled in two
steps. First, S ~vo is updated according to the transaction
(e.g., the removal of an asset from the origin state) as
soon as it is included in a block in the canonical chain
of B ~vo . S ~vd , however, cannot be updated immediately,
as there is initially no way for nodes operating B ~vd to
agree upon when the state transition should be applied.
Protocol Rule 4 describes the criteria which must be met
for a state transition to be applied to S ~vd , and Protocol
Rule 5 describes the order in which all state updates are
applied when a block is processed.

Protocol Rule 4. Let tx be a transaction with origin
~vo and destination ~vd, and let ~va be the highest order
common ancestor between ~vo and ~vd. The state transi-
tion pertaining to S ~vo is applied as soon as the block
containing tx is a part of the canonical chain of B ~vo .
The state transition pertaining to S ~vd , however, is only
applied after a coincident block is found which is shared
by B ~vo and B ~va and, if order(B ~vd) > order(B ~va), a
subsequent coincident block is found which is shared
by B ~vd and B ~va .

Intuitively, a chain of coincident blocks must be
constructed which link ~vo and ~vd through predecessor
references, and if ~vo and ~vd are in different branches of
the tree, the chain must travel “up” and then “back down”

the hierarchy until that chain is established. Nodes in
N ~vd can verify that the block containing tx is in the
canonical chain of B ~vo because of the coincident block
between B ~vo and B ~va , and they can also agree upon the
existence of the coincident block between B ~vd and B ~va
and the updates to S ~vd which result from that coincident
block.

The next rule defines the order in which eligible state
updates are to be applied, as all nodes must apply updates
in the same order to guarantee consistent state.

Protocol Rule 5. The state transitions for a given block
B in B~v are applied to S~v in the following order. First, if
B is a coincident block, all transactions with destination
~v which are eligible to be applied to S~v according to
Protocol Rule 4 are applied in order by highest origin
order to lowest origin order. Transactions with the same
origin order are applied in order of the blockchain index
(i.e., from left to right in the tree) at that order, and
transactions with the same origin index are applied in
chronological order according to their inclusion in their
origin blockchain. After that, all transactions directly
referenced by B are applied to S~v in the order in which
they are referenced by B.

Protocol Rules 3, 4, and 5 guarantee that all nodes
in the same sub-network perform state transitions in the
same order, meaning any two nodes which agree on the
canonical chain will have consistent local state. This is
formalized by Theorem IV.1.

Theorem IV.1. For any given blockchain B~v, any two
correct nodes in N~v which agree on the canonical chain
of B~v will agree on S~v.

We prove Theorem IV.1 inductively, first remarking
that any two correct nodes must agree upon the genesis
block and the associated state when the blockchain is
instantiated. We then show the inductive step—for each
block in the canonical chain of B~v, both nodes must
apply the same state updates to S~v and in the same order.
We prove this via contradiction, showing on a case by
case basis that regardless of the origin and destination of
a transaction, if one node applies the state update for that
transaction and the other does not, then at least one of the
nodes breaks a protocol rule. Therefore both nodes agree
on the initial state and each subsequent state update, and
the statement follows. Due to space constraints, we omit
the full proof from this paper.

As a corollary of Theorem IV.1, all correct nodes
in N{1} which agree on the canonical chain of B{1}
also agree on S{1}. This ensures that all nodes in the
system agree upon the state of the root blockchain in
BlockReduce, thereby achieving similar guarantees to
that of a single-blockchain system.



V. ANALYSIS

In this section we show that BlockReduce achieves
transaction throughput that scales superlinearly with the
number of blockchains in each order.

A. Decreased Propagation Delay via Network Partition-
ing

Sub-networks of order r > 1 (i.e., all but the root sub-
network) have a network delay ∆r which is strictly less
than ∆1, where ∆1 is analagous to the ∆ experienced
by a traditional blockchain operated by a full network
of N nodes. This is due to the decreased size of the
sub-networks and the ability for nodes to select the sub-
network with which they share low-latency peer connec-
tions in order to reduce the overall block propagation
time that they experience.

It is clear from Equation 3 that a smaller network
naturally has lower propagation delays than a larger
network. In order to enhance this intuition, if we assume
that there are q sub-networks of order r and each sub-
network is of equal size, then we can bound ∆r as
follows:

∆r < δrCd ln
(N
q

)
(4a)

< ∆1 − δrCd ln q (4b)

Then the propagation delay for any order will be
strictly increasing with the number of sub-networks in
that order.

Additionally, we remark that under the distribution of
node-to-node latencies in Bitcoin as measured by [15],
latency between nodes can vary significantly from one
pair to the next. We assume that in the absence of a
protocol mechanism requiring nodes to join a particular
sub-network, each node will elect to mine in the sub-
network which minimizes their peer-to-peer latencies to
reduce the probability that their blocks are lost due to
network forks. As a result, we argue that in each sub-
network of order greater than 1, the average per-link
propagation delay δr between nodes in order r sub-
networks will be smaller than the delay between nodes in
N{1}—i.e., δr < δ1 for all r > 1. While we do not use
this result in our proof, it nonetheless further supports
the claim in Theorem V.1.

Overall, the network propagation delay within each
sub-network will be much smaller than that of the
network as a whole (i.e., the network delay of a similar
system such as Bitcoin), and as a result the rate of block
generation can be much higher within each sub-network.

B. Aggregate Throughput

In this section, we show that within each order in the
hierarchy, the total transaction throughput increases as

the number of blockchains in that order increases even
if the PoW efficiency remains fixed for each blockchain.
Moreover, we show that the increase is superlinear with
the number of blockchains in each order, as each addi-
tional blockchain further partitions the network and thus
reduces the propagation delay experienced by nodes in
each sub-network. We state this property of BlockReduce
more formally in the following theorem.

Theorem V.1. The aggregate transaction throughput of
each order in the BlockReduce protocol scales super-
linearly with the number of blockchains in that order,
and all blockchains in the hierarchy have identical PoW
efficiency.

We prove this theorem by showing that the effective
block generation rate of an order r > 1 blockchain grows
as the number of order r blockchains increases.

Proof. Recall that λr is the total block generation rate
of a blockchain of order r, then the effective block
generation rate is λ∗r = λr

1+λr∆r
, and the PoW efficiency

is Er = 1
1+λr∆r

. It suffices to show that if q is the
number of blockchains of order r, λ∗r increases as q
increases.

We hold the PoW efficiency fixed between all
blockchains to that of the root blockchain, i.e.,

1
1+λ1∆1

= 1
1+λr∆r

Substituting the results from Equa-
tion 4, we get

1

1 + λ1∆1
>

1

1 + λr(∆1 − δrCd ln q)
, (5)

which simplifies to

λr >
λ1∆1

∆1 − δrCd ln q
. (6)

Then the effective block generation rate—i.e., the rate
at which blocks are appended to the canonical chain—
for an order r blockchain with the same PoW efficiency
as that of the root blockchain is

λ∗r >
λ1∆1

(∆1 − δrCd ln q)(1 + λ1∆1)
. (7)

Clearly, the right hand size of this equation increases
with q, meaning λ∗r does as well. Then because all blocks
are assumed to contain the same number of transactions,
the statement follows.

VI. DISCUSSION AND FUTURE WORK

BlockReduce is a PoW-based blockchain system
which achieves high transaction throughput through a
hierarchy of merged mined blockchains which each
operate a partition of the overall application state in
parallel. Critically, the full PoW available to the net-
work is applied to all blockchains in BlockReduce, and



cross-blockchain state transitions are enabled seamlessly
within the core protocol. In this section, we highlight
several discussion points and avenues for future work.

1) Self-selection of sub-network participation.: Min-
ing nodes in BlockReduce are allowed to mine any
vertical slice of blockchains within the PoW hierarchy
tree. However, because the vast majority of miners in
any PoW blockchain are economically motivated, most
miners will elect to mine the blockchains which grant
them the highest rewards. In this way, blockchains within
each order will be self-balancing as miners naturally
drift towards any available blockchains with reduced
competition. In the absence of competitive advantage in
mining power, miners will elect to mine the blockchains
with which they share the lowest latency connections in
order to minimize the probability that their blocks are
lost to network forks. We believe that this alignment of
incentives should result in the formation of low-latency
clusters of mining nodes which are able to achieve very
high PoW efficiency, although we leave the construction
of a suitable incentive mechanism and a game-theoretical
analysis to future work.

2) Low-value transaction security and settlement time
tradeoffs.: BlockReduce users have a high degree of
flexibility when transacting, as they can control both
the short-term security and the settlement time of their
transactions by selecting which blockchain to transact
in. Higher order blockchains have low settlement times
and low security in the short term, as the sub-networks
operating these blockchains have a high block generation
rate but only control a fraction of the overall mining
power. This is ideal for transactions of low economic
value, as the consequence of a low-value transaction
being removed from the canonical chain is minor. Users
desiring a higher degree of security might elect to
transact in lower order blockchains in order to utilize
a larger fraction of the PoW of the network despite the
tradeoff of longer settlement times. The precise charac-
terization of this tradeoff will be specific to a particular
implementation, and it is likely that any BlockReduce
implementation will provide a default wallet which is
capable of selecting the appropriate transaction location
in an automated fashion.

3) Expected hierarchy structure and future implemen-
tation.: Although we have designed BlockReduce to
support an arbitrary hierarchy tree, real-world hardware
and network infrastructure as well as timing require-
ments of a functional blockchain network will limit both
the number of orders and the number of blockchains per
order that are realizable in practice. As the number of
blockchains in the BlockReduce hierarchy increases, the
time required for a cross-blockchain state transition also
increases due to the decreasing relative frequency of co-
incident blocks linking each blockchain. For example, if

a blockchain B has 3 child blockchains, then an average
of 1 in every 3 blocks in B will be coincident with each
child blockchain. If this number increases to 100 child
blockchains, the expected time required for a coincident
block to be found with one particular child increases
dramatically. Implementation and empirical testing will
be required to determine the optimal configuration for
any given use case and network topology.

4) Conclusion: We presented BlockReduce, a
blockchain system which operates a hierarchy of
blockchains in parallel, and showed that BlockReduce
achieves transaction throughput that scales superlinearly
with the number of blockchains operated by the system
without reducing the security of each transaction.
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