
Research Software Sustainability and Citation
Stephan Druskat∗, Daniel S. Katz§, and Ilian T. Todorov‡

∗Institute for Software Technology, German Aerospace Center (DLR), Berlin, Germany, ORCID: 0000-0003-4925-7248
§NCSA & CS & ECE & iSchool, University of Illinois, Urbana, IL, USA, ORCID: 0000-0001-5934-7525

‡Scientific Computing Dept., Science and Technology Facilities Council, Warrington, UK, ORCID: 0000-0001-7275-1784

Abstract—Software citation contributes to achieving software
sustainability in two ways: It provides an impact metric to
incentivize stakeholders to make software sustainable. It also
provides references to software used in research, which can
be reused and adapted to become sustainable. While software
citation faces a host of technical and social challenges, community
initiatives have defined the principles of software citation and are
working on implementing solutions.

Index Terms—software citation, research software, software
sustainability

I. INTRODUCTION AND CONTEXT

Software citation helps to make research software sustain-
able and attribute credit to its contributors. Citations provide
references to software used in, and/or created as part of,
research. Citations to research outputs are the primary impact-
related metric in academia, and it is more practical to fit
software into this system than to create a new one based on
alternative metrics. It is frequently assumed that the number
of citations correlates positively with the impact or importance
of a research output. Because of this, citation metrics are used
as a key factor in hiring, promotion and funding decisions.

Software citation has at least two effects (E) on research
software sustainability: E1) Citations to software as an impact
metric incentivize staff, projects, and institutions to make
software sustainable. E2) Citations to software as references
provide identification and traceability of software used in
previous research, which enables reuse and adaption. Soft-
ware citation also supports reproducibility: to understand and
reproduce research results, all parts of the research process
including software must be uniquely identifiable, e.g., through
citation. To fully realize reproducibility, the identified software
itself must also be sustainable or at least archived, so that
computations can be carried out to reproduce results.

The principles of software citation are defined as (P1) Im-
portance; (P2) credit and attribution; (P3) unique identification;
(P4) persistence; (P5) accessibility; (P6) specificity [1]. These
principles touch upon effects of software citation on both soft-
ware sustainability and reproducibility. Concerning E1, (P1)
is the baseline premise for research software sustainability:
that software is considered an important and integral part of
research that is crucial to sustain, and to fund in the future.
(P2) is required to create an attractive environment and career
paths for developers and maintainers of research software.
Concerning E2, (P3) is the baseline requirement for software

identification which can lead to reuse and adaptation. (P4) is its
own aspect of software sustainability: that the unique identifier
(P3) for software, and “metadata describing the software [. . .]
should persist — even beyond the lifespan of the software
they describe.” (P5) is required to reuse and/or adapt software.
Concerning reproducibility, (P6) is required to facilitate access
to the specific software version that was used in a research
process.

II. SOFTWARE CITATION CHALLENGES

Useful and usable software citation faces the following chal-
lenges. Software citation is not yet a standard part of the re-
search workflow for authors or software developers. Software
also is still not always published in a way that enables citers to
link to it in a citation. Furthermore, the curation and quality of
citation-relevant metadata cannot yet be reliably ensured, while
software citation is lacking adequate support from publishers,
funders, and identifier and citation infrastructures. Central to
these challenges is the fact that software is not yet fully
recognized as valuable research outcome, and the lack of
realization that software work warrants credit through citation.
There is also no consensus on what contributions and roles
are sufficient for credit, especially in larger, dynamic research
software projects. These challenges need to be tackled at the
policy, practice, and tooling levels, which is the subject of
separate and future work.

The FORCE11 Software Citation Implementation Working
Group is pursuing the implementation of the software citation
principles, and has identified further fundamental issues for
software citation, and challenges for working with stakehold-
ers [2]. Some concern the different types and status of research
software, and different means of identification for open or
closed source software concepts as well as unpublished and
published software. Others concern the scope, curation, for-
mat, and storage of software citation metadata, for all of which
good working practices have not yet been found, decided upon,
or established. A challenge for establishing software citation
in the scholarly culture is to address relevant stakeholders:
research domains mostly need guidance; publishers need poli-
cies, metadata schemas for software citation, and guidance for
their own stakeholders; repositories need solutions for mixed
software/data packages, and suitable metadata schemas and
infrastructure to support software deposits; indexers need type
systems for identifying software as such, and a concept and
metrics for counting citations with respect to software versions
and overarching concepts. Furthermore, research software that2021 IEEE/ACM International Workshop on Body of Knowledge for

Software Sustainability (BoKSS)
978-1-6654-4460-6/21/$31.00 ©2021 IEEE
DOI: 10.1109/BoKSS52540.2021.0000

is not user-facing, such as dependencies, is often neglected
in software citation, as researchers are not aware of their use
of them. These challenges are both social and technical, and
most challenges are interdependent: social challenges can best
be overcome with the help of technical solutions, and technical
solutions cannot be accomplished without a strong enough
social mandate, which in turn requires a change in scholarly
culture in the first place.

III. EXISTING SOLUTIONS

Implementations and solutions that serve some of the software
citation principles exist. (P1) and (P2) are served by ongoing
arguments for the importance of software for research [3],
which find their way into policy [4]. (P3) and (P6) are served
by existing platforms which publish software versions with a
DOI [5]. (P4) and (P5) are served by platforms and software
registries that retain code, unique identifiers, and/or software
metadata, and that publish software [5, 6].

Guidance exists for specific challenges, e.g., on software
citation for (paper) authors [7] and (software) developers [8].
Software papers are a more conservative, paper-like alternative
to publication of software objects [9]. Solutions to making
dependencies visible and accessible for citation and credit
are being developed, where users cite only the packages
they use and those packages cite their dependencies [10] [1,
“Derived software”]. Metadata schemas [11] and formats [12],
as well as citation formats for software have been developed.
And the FORCE11 Software Citation Implementation Working
Group continues to work with stakeholders to establish good
practices, and build a social mandate for the implementation
of software citation.

A. Weaknesses

The ongoing implementation of and experience with solutions
for software citation have exposed some weaknesses. Firstly, it
is hard to create consensus about solutions across disciplines
and stakeholders, implement them, and promote take-up.
While the software citation needs of communities are known,
the implementation of solutions is taking longer than has
been hoped for. Some particular solutions also have their own
weaknesses. For example, research software often does not
have a final product that can be published; It is developed dy-
namically across many versions that each can be used and each
may have their own correct set of (citation) metadata. This
creates substantial overhead for developers and maintainers
for the curation of software metadata. Simultaneously, unique
identifiers cannot be assigned automatically to every revision
and recorded in metadata before the revision is committed.
This makes it hard to sync versions and metadata. This can
partly be solved by archiving software with Software Heritage,
which assigns unique identifiers to every revision/commit.
With regard software citation metadata formats, there is no
agreement which of the existing solutions [12, 11] should be
used when and by which stakeholder group: While one aims
to provide only citation-relevant metadata and targets mainly
human users, the other is more generic and optimized for

compatibility with web standards. This can be solved through
compatibility, and existing conversion software.

B. Strengths

Many solutions for software citation address real needs.
Better software citation practice can close gaps in representing
real world relations between research outputs, their impact,
and the allocation of credit [10]. This can lead to better career
options for software developers and maintainers in academia,
prevent brain drain towards industry, and thus sustain research
software projects. Many solutions are developed by and for
the community. For example, the FORCE11 Working Group
is made up of software citation stakeholders and practitioners
who know the needs of their communities and/or experience
them first-hand. This will ideally lead to solutions that target
the needs of communities. Finally, software citation can show
and reward the impact of software on research, and incentivize
the creation and maintenance of sustainable research software,
which will enable replicability and reproducibility of research
results.

REFERENCES

[1] A. M. Smith et al., “Software citation principles,”
PeerJ Computer Science, vol. 2, no. e86, 2016. doi:
10.7717/peerj-cs.86

[2] D. S. Katz et al., “Software Citation Implementation
Challenges,” May 2019. [Online]. Available: http:
//arxiv.org/abs/1905.08674

[3] H. Anzt et al., “An environment for sustainable research
software in Germany and beyond: Current state, open
challenges, and call for action,” F1000Research, vol. 9,
p. 295, Apr. 2020. doi: 10.12688/f1000research.23224.1

[4] Deutsche Forschungsgemeinschaft, “Guidelines for safe-
guarding good research practice. code of conduct,” Sep.
2019. doi: 10.5281/zenodo.3923602

[5] S. van de Sandt et al., “Practice meets principle:
Tracking software and data citations to Zenodo DOIs.”
[Online]. Available: http://arxiv.org/abs/1911.00295

[6] R. Di Cosmo et al., “Software Heritage: Why and How
to Preserve Software Source Code,” in iPRES 2017,
Kyoto, Japan, Sep. 2017, pp. 1–10. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01590958

[7] N. P. Chue Hong et al., “Software Citation Checklist for
Authors,” Oct. 2019. doi: 10.5281/zenodo.3479199

[8] ——, “Software Citation Checklist for Developers,” Oct.
2019. doi: 10.5281/zenodo.3482769

[9] A. M. Smith et al., “Journal of Open Source Software
(JOSS): Design and first-year review,” PeerJ Computer
Science, vol. 4, p. e147, Feb. 2018. doi: 10.7717/peerj-
cs.147

[10] S. Druskat, “Software and Dependencies in Research
Citation Graphs,” Computing in Science & Engi-
neering, vol. 22, no. 2, pp. 8–21, Mar. 2020. doi:
10.1109/MCSE.2019.2952840

[11] M. B. Jones et al., “CodeMeta: An exchange schema
for software metadata. Version 2.0,” 2017. doi:
10.5063/schema/codemeta-2.0

[12] S. Druskat et al., “Citation File Format (CFF),” Aug.
2018. doi: 10.5281/zenodo.1003149

