
The Elephant in the Room – Educating Practitioners
on Software Development for Sustainability

The Karlskrona Alliance
FHNW & University of Zurich

Switzerland
norbert.seyff@fhnw.ch

Abstract—Software engineering as a discipline has recognized
that software systems can have an impact on sustainability and
researchers have started to investigate this topic. New knowledge
is being created and methods and tools that support software
engineering for sustainability are emerging. Several universities
have started to train their students in software engineering for
sustainability. But what about the millions of SE practitioners
who are already designing and developing future software sys-
tems – how would they know about making systems sustainable?
Currently, there is a lack of consolidated guidance. In this paper,
we promote the idea of developing a standardized curriculum and
handbook as a basis for training and certification of practitioners
in sustainable software development. This would not only increase
their market value, but would also have a positive impact on
their companies and could help to satisfy customers who demand
sustainable software systems.

I. CONTEXT

The high dependency of modern society on software sys-
tems has led to the increasing importance of sustainability in
the field of software engineering, with at least two different
perspectives: sustainable software and software engineering
for sustainability (SE4S). The former addresses the principles,
practices and processes that contribute to the longevity of
software, i.e. technical sustainability, while the latter focuses
on software systems to support one or more dimensions of
sustainability that address issues outside the software systems
themselves. This is a view supported by Hilty and Aebis-
cher [1], who postulate that two things are essential to make
ICT work in favour of sustainability: a) To stop the growth of
software systems’ own footprint and b) find ways to use ICT
as an enabler to reduce the footprint of society’s production
and consumption. When designing software for sustainability
the requirements are the key as they build the basis of the
system under design [2]. The overlapping fields of software
engineering and systems engineering both depend heavily on
the quality of the requirements elicited and specified. Both
fields have existing published bodies of knowledge SWE-
BOK [3] and SEBoK [4] but their treatment of engineering for
sustainability is minimal, with SEBoK having a short section
on Environmental Engineering.

II. THE CHALLENGE

While traditional SE methods and tools within various SE
disciplines such as requirements engineering (RE) do not ex-
plicitly facilitate discussion of sustainability-related concerns,
research suggests that existing SE techniques, approaches and

methods can serve as a starting point for practitioners to
integrate sustainability into their practice [5]. Chitchyan et
al. [6] identified several techniques that help support sustain-
ability in RE and demonstrated the application of some of
these techniques through two case studies. Although several
novel approaches are emerging, software professionals lack,
for example, tools and methodological support to integrate
the analysis of sustainability impacts of ICT products and
services into software development practices [7]. Furthermore,
evidence suggests that software engineers still generally lack
the awareness that ICT products and services have an impact
on sustainability [6]. Realising this knowledge gap, the central
challenge addressed in this paper is therefore how to train
practitioners in software engineering for sustainability.

III. THE ANTICIPATED SOLUTION

The anticipated solution is a syllabus and handbook that
enables training providers to come up with 2 to 3 day training
course for practitioners to make them familiar with essential
and industry-relevant content on software engineering for
sustainability. Identifying this content is challenging. The main
contribution of this Extended Abstract, besides recognizing
this particular challenge, is to identify potential content for
such a training course. A draft outline of its content consisting
of several modules is discussed below and was identified
through brainstorming and discussions by the authors of this
paper:

Definition of Sustainability and Scoping of System’s
impact: We can only sustain something if we clearly define
what it is, for whom we sustain it, for how long, and at
what cost [8], and therefore we need a clear definition and
a template for scoping of system’s impact. In addition, we
define the dimensions of sustainability across time [2], [9].
This is the foundation for the following parts of the course.

Business Cases and Sustainability: To strengthen the
argumentation for integrating sustainability into software de-
velopment, we provide a review of success case examples for
sustainable businesses and point towards methods that help
phrase and specify a business case for sustainability, e.g. [10].

Stakeholders for Sustainability: We give a wider view of
stakeholders, of the advocates and opponents for sustainability,
affected and decision makers, that all need to be included
for maximizing the understanding around the sustainability
impacts of a system [11].



Information sources: A wide range of sources of informa-
tion is available and requires consideration for the dimensions
of sustainability, e.g. legal frameworks, constraints, etc. This
part encompasses an overview of types of standards and ref-
erence frameworks for sustainability, e.g. ISO standards [12],
[13], Doughnut Model [14].

Ethical Considerations for Sustainability: This part in-
troduces value sensitive design [15] from a perspective of
sustainability and suggests concrete tools to work with, e.g.
ethicalexplorer [16]. In a broader context, the EU Responsi-
ble Research and Innovation (RRI) toolkit addresses similar
issues [17].

Sustainability Analysis: To get a preliminary assessment
of potential positive and negative impacts of a system, we
propose to use an analysis framework that systematically
breaks down the sustainability concerns that could arise for a
small, growing, and extrapolated large user base. We illustrate
such an analysis using SusAF [9] and the SDG impact
assessment tool [18].

Sustainability Visioning: From a preliminary analysis, we
can develop narratives that help in illustrating benefits and
risks of a system, such that they can be explained adequately
to diverse sets of stakeholders. This may include the use of
design fiction [19].

RE Methods: Concrete requirements engineering methods
can easily be adapted to explicitly include sustainability. We
are demonstrating this with Easy Win Win for Sustainabil-
ity [20].

Architecture: For evaluating design on the architecture
level, we refer to the use of models like SAF [21] as well
as the works around technical debt [22].

Quality models: This module presents the use of quality
models that focus on sustainability and adequate KPIs for
assessing the impacts of taken measures, for example [23].

Continuous evolution and iterative assessment: Finally,
sustainability is like balance - it is not a static state, it is
dynamic and always evolving, therefore subject to continuous
adaptation and iterative assessment [24].

IV. DISCUSSION & CONCLUSION

The paper makes a first proposal on content that could
become part of a syllabus and handbook for a training course
on software engineering for sustainability for practitioners.
The content was derived by brainstorming and discussions
of the authors. With this first proposal, we hope to stimulate
the discussion on what is essential knowledge about software
engineering for sustainability for practitioners. The proposed
content needs to be validated and discussed with fellow
researchers and practitioners to better understand its relevance
also from an industrial perspective. Furthermore, support from
organisations that promote training in industry, such as IREB
(International Requirements Engineering Board), is needed to
make our vision a reality. We believe that the time is ripe for
such standardised training and foresee that certification will
become important in this regard. Certification will help par-
ticipants to elevate their careers and with them as employees,

companies can communicate their competence in this topic.
In addition, we expect that users, customers of software, will
ask for software developed by developers who know about
software engineering for sustainability.

REFERENCES

[1] L. M. Hilty and B. Aebischer, “Ict for sustainability: An emerging
research field,” in ICT innovations for Sustainability. Springer, 2015,
pp. 3–36.

[2] C. Becker, S. Betz, R. Chitchyan, L. Duboc, S. M. Easterbrook,
B. Penzenstadler, N. Seyff, and C. C. Venters, “Requirements: The key
to sustainability,” IEEE Software, vol. 33, no. 1, pp. 56–65, 2015.

[3] P. Bourque and R. E. Fairley, “Guide to the Software Engineering Body
of Knowledge, Version 3.0,” http://www.swebok.org, 2014.

[4] BKCASE Editorial Board, “Guide to the Systems Engineering Body of
Knowledge (SEBoK),” https://www.sebokwiki.org, 2020.

[5] Cabot et al., “Integrating sustainability in decision-making processes: A
modelling strategy,” in 2009 31st International Conference on Software
Engineering-Companion Volume. IEEE, 2009, pp. 207–210.

[6] R. Chitchyan, S. Betz, L. Duboc, B. Penzenstadler, S. Easterbrook,
C. Ponsard, and C. Venters, “Evidencing sustainability design through
examples,” 2015.

[7] S. Oyedeji and B. Penzenstadler, “Karlskrona manifesto: Software
requirement engineering good practices.” in RE4SuSy@ RE, 2018, pp.
15–23.

[8] J. A. Tainter, “Social complexity and sustainability,” ecological com-
plexity, vol. 3, no. 2, pp. 91–103, 2006.

[9] Duboc et al., “Requirements engineering for sustainability: an awareness
framework for designing software systems for a better tomorrow,”
Requirements Engineering, vol. 25, no. 4, pp. 469–492, 2020.

[10] M. Hoveskog, F. Halila, M. Mattsson, A. Upward, and N. Karlsson,
“Education for sustainable development: Business modelling for flour-
ishing,” Journal of Cleaner Production, vol. 172, pp. 4383–4396, 2018.

[11] B. Penzenstadler and C. Venters, “Software engineering for sustain-
ability: Tools for sustainability analysis,” in Digital Technology and
Sustainability: Engaging the Paradox. Routledge, 2018, pp. 103–121.

[12] A. S. Morris, ISO 14000 environmental management standards: Engi-
neering and financial aspects. John Wiley & Sons, 2004.

[13] R. Frost, “Iso 26000 putting social responsibility to work,” in Interna-
tional Trade Forum, no. 3. International Trade Centre, 2010, p. 28.

[14] T. P. Hughes, S. Carpenter, J. Rockström, M. Scheffer, and B. Walker,
“Multiscale regime shifts and planetary boundaries,” Trends in ecology
& evolution, vol. 28, no. 7, pp. 389–395, 2013.

[15] B. Friedman, P. H. Kahn, and A. Borning, “Value sensitive design and
information systems,” The handbook of information and computer ethics,
pp. 69–101, 2008.

[16] Omidyar Network, “Ethical Explorer,” https://ethicalexplorer.org/, p. 1,
2020.

[17] RRI Tools Consortium, “Welcome to the RRI Toolkit,” https://www.rri-
tools.eu/-/ethical-os-toolkit, p. 1, 2019.

[18] “sdgimpactasses tool,” https://sdgimpactassessmenttool.org/, accessed:
2021-1-19.

[19] A. Dunne and F. Raby, Speculative everything: design, fiction, and social
dreaming. MIT press, 2013.

[20] Seyff et al., “Tailoring requirements negotiation to sustainability,” in
26th IEEE International Requirements Engineering Conference, RE
2018, Banff, AB, Canada, August 20-24, 2018. IEEE Computer
Society, 2018, pp. 304–314. [Online]. Available: https://doi.org/10.
1109/RE.2018.00038

[21] P. Lago, “Architecture design decision maps for software sustainability,”
in 41st Intl. Conference on Software Engineering: Software Engineering
in Society (ICSE-SEIS). IEEE, 2019, pp. 61–64.

[22] F. Albertao, J. Xiao, C. Tian, Y. Lu, K. Q. Zhang, and C. Liu, “Measuring
the sustainability performance of software projects,” in 2010 IEEE 7th
International Conference on E-Business Engineering. IEEE, 2010, pp.
369–373.

[23] N. Condori-Fernandez and P. Lago, “Characterizing the contribution of
quality requirements to software sustainability,” Journal of systems and
software, vol. 137, pp. 289–305, 2018.

[24] Penzenstadler et al., “Iterative sustainability impact assessment: When
to propose?” under review.


