
Bots Don’t Mind Waiting, Do They?
Comparing the Interaction With Automatically and

Manually Created Pull Requests
Marvin Wyrich∗, Raoul Ghit†, Tobias Haller‡ and Christian Müller§

Institute of Software Engineering, University of Stuttgart
Stuttgart, Germany

∗marvin.wyrich@iste.uni-stuttgart.de, †raoul.ghit@gmail.com, ‡tobias haller@outlook.de, §muellercn@posteo.de

Abstract—As a maintainer of an open source software project,
you are usually happy about contributions in the form of pull
requests that bring the project a step forward. Past studies
have shown that when reviewing a pull request, not only its
content is taken into account, but also, for example, the social
characteristics of the contributor. Whether a contribution is
accepted and how long this takes therefore depends not only on
the content of the contribution. What we only have indications for
so far, however, is that pull requests from bots may be prioritized
lower, even if the bots are explicitly deployed by the development
team and are considered useful.

One goal of the bot research and development community is to
design helpful bots to effectively support software development
in a variety of ways. To get closer to this goal, in this GitHub
mining study, we examine the measurable differences in how
maintainers interact with manually created pull requests from
humans compared to those created automatically by bots.

About one third of all pull requests on GitHub currently come
from bots. While pull requests from humans are accepted and
merged in 72.53% of all cases, this applies to only 37.38% of bot
pull requests. Furthermore, it takes significantly longer for a bot
pull request to be interacted with and for it to be merged, even
though they contain fewer changes on average than human pull
requests. These results suggest that bots have yet to realize their
full potential.

Index Terms—software bot, human-agent interaction, open
source, pull request, github mining study

I. INTRODUCTION

Software bots are great: they are the interactive and intel-
ligent interface to services designed to improve developers’
everyday lives [1], [2]. Already in 2017, about 26% of open
source projects have used bots that supported other developers’
work, and most developers perceive bots as helpful [3].
Whether for updating dependencies, automatic bug fixes, or
optimizing images, many bots primarily work directly on a
project’s content and propose their changes to the development
team in pull requests for review.

In a recent study, we deployed an autonomous bot to
automatically refactor code smells [4] for 41 days in a student
development team and qualitatively investigated the perception
and acceptance of this bot in an interview study [5]. Again, our
experience was that all participants recognized the usefulness
of the bot and expressed a desire to use it in future projects.

This introductory hymn to the success of software bots,
however, is followed by another observation from this same

study: very few team members felt responsible for the bot,
which meant that proposed pull requests by the bot sometimes
remained open for one or more weeks [5]. Human team
members had the advantage in finding reviewers for their own
pull requests that they could persistently approach other team
members and persuade them to review. The bot did not have
this ability to be intrusive, which put it at a disadvantage
according to the team members. As a result, the full potential
of the bot was not exploited and fewer code smells were
removed from the code base than would have been possible
with negligible additional effort.

Since this was a case study, we could not be sure if the
finding was solely indicative of a problem with this student
team and with this particular bot, or if there was a systemic
issue where bots are generally disadvantaged in a project by
their limited abilities and by a potential lack of social pressure
to engage with the contributing bot. Most would probably
agree that making a human contributor wait feels different
than ignoring a bot.

For this reason we aim to complement the findings from
the qualitative study with a quantitative investigation. We
conducted a GitHub mining study to exploratively investi-
gate the following research question: How does maintainer
interaction with pull requests differ between manually and
automatically created pull requests?

II. RELATED WORK

In this paper, we focus on DevBots as defined by Erlenhov
et al. [2], i.e., those bots that support software development.
Different taxonomies exist to classify bots (e.g. [2], [6]). Most
of the facets listed there do not form a relevant criterion for
our work to exclude bots based on them. For example, which
concrete goal the respective bot has, how much it has been
given human-like traits or how well it can adapt remains aside
at this stage. Simply put, we are interested in bots that are pull
request authors on GitHub.

The pull-based development model [7] allows anyone with
access to a software project to propose changes to the files in
the repository, which are then in most cases asynchronously
reviewed by the project’s maintainers. For several years now,
bots have also been among the contributors. In 2017, Wessel et
al. [3] analyzed 351 popular GitHub repositories and identified

ar
X

iv
:2

10
3.

03
59

1v
1 

 [
cs

.S
E

] 
 5

 M
ar

 2
02

1



the usage of bots in 93 of them (26%). The majority of bots
seem to frequently perform similar tasks, mainly updating
configuration, documentation and data [8].

The main driver for the adoption of bots, according to
a study by Erlenhov et al. [9], is to increase productivity,
although this aspect is seen differently by different DevBot
users. We already knew from a study by Meyer et al. [10] that
developers perceive their workday as productive if they could
complete tasks without significant interruptions. Interestingly,
all DevBot users in Erlenhov’s study had to some extent issues
with interruptions or noise produced by bots: “A good bot
waits until a developer is ready for feedback” [9].

Even if bots eventually behave as other project members
would like them to, this does not guarantee that their contri-
butions will be treated equally to those of other contributors.
We know that useful contributions are not only evaluated on
their content, but also on the social characteristics of the
contributor [11], [12] and that identifying the contributor as
bot can be sufficient to observe a negative bias compared to
contributions from humans [13].

Apart from this, there are also initial findings about which
other factors influence the review latency and acceptance of
pull requests. Gousios et al. [7], [14] found that changes
of good quality, to recently modified files and matching
the roadmap have a higher chance of being accepted. Pull
requests (PRs) would be closed without merging mainly due to
concurrent modifications (27%), uninteresting changes (16%)
or errors in the implementation (13%) [7]. Tsay et al. [15] add
that the strength of the social connection between submitter
and project manager plays a role in the evaluation of PRs
and that well-established projects are more conservative in
accepting PRs. Finally, Wessel et al. [16] found the adoption
of code review bots to increase the number of monthly
merged pull requests and to decrease communication among
developers.

The time to merge is influenced by many factors, including
a developer’s previous track record [7], size of the project [7],
the size of the pull request [14], [17], delay to first human
response [17], and urgency of the pull request [14].

In our own study [5], pull requests by a refactoring bot
were not processed for long periods of time, according to the
team members interviewed, primarily because the bot did not
actively seek reviewers sufficiently. We explained this circum-
stance, among other things, with diffusion of responsibility,
a sociopsychological phenomenon in which a person may
feel less responsible for actions or inactivity when others are
present [18]. There were also no short-term consequences to
simply making the bot wait.

The observation that DevBots are not yet realizing their
full potential and are occasionally perceived by developers as
more distracting than helpful has recently led to a number
of publications dealing with successful bot design and bot
interaction support, e.g. [19]–[22]. Our study is intended to
further motivate the desired improvement in bot design and to
show, using objectively measurable numbers, how effectively
DevBots are currently being used.

III. METHODS

We conducted an exploratory GitHub mining study to
compare the interaction with pull requests created by bots and
those created by humans using initially defined and objectively
measurable comparison criteria. “Exploratory research cannot
provide a conclusive answer to research problems [. . . ], but
they can provide significant insights to a given situation” [23,
p. 64]. The insights gained in this work should help future
work hypothesize how maintainers interact with bots and how
bots can be better designed to realize their full potential.

Fig. 1 illustrates the steps taken to answer the research
question. Following, each step is explained to justify the design
decisions and to be able to replicate the approach.

A. Comparison Criteria

We chose the comparison criteria based on the assump-
tion motivated in the introduction that pull requests by bots
would be accepted less frequently and processed more slowly.
Therefore, the following four proxy variables for maintainer
interaction in terms of acceptance and interaction effort with
a pull request are considered: acceptance rates, time until first
human interaction (i.e., first comment or closing), time until
merge by a human and number of comments by humans.

B. Data Retrieval and Data Transformation

We used GHTorrent [24] as data source and limited the
dataset to entries from January 1, 2019 to May 31, 2020 to
focus on the most recent data and keep the dataset manageable.
From early July 2019 to early January 2020, there is a gap in
the GHTorrent data that we cannot explain, but that we also
do not suspect will have a large impact on the results.

GHArchive [25] was considered as an alternative to GHTor-
rent. However, we found that GHArchive had only captured
4,395,331 unique pull requests during the specified time pe-
riod, compared to 20,623,320 unique pull requests on GHTor-
rent with the gap mentioned above. We therefore chose the
dataset from GHTorrent for this study.

We first filtered the MongoDB dumps for relevant event
types and attributes to reduce their size. The GitHub
Events API provides a variety of events, such as push-
ing to a repository (PushEvent) and creating an is-
sue (IssueEvent). For our study we only needed
all PullRequestEvent, IssueCommentEvent, and
PullRequestReviewCommentEvent with their associ-
ated attributes. We then used a self-developed tool1 to trans-
form these data and load them into a PostgreSQL database.

C. Bot Detection

Among all GitHub users in our dataset, we now had to
identify the bots. The combination of three approaches turned
out to be effective in this context.

First, we looked at the usernames. There are bots marked
as such by the GitHub API with a [bot] suffix that applies
only to bots, since square brackets are forbidden characters in

1Supplemental materials: https://github.com/c-mueller/pr-extractor



Comparison Criteria
Data Retrieval
& Data Transformation

Bot Detection Data Analysis

GHTorrent dataset

Fig. 1. Overview of the research methodology

usernames. This results in no false positives, but still a large
number of unidentified bots, as this method of bot registration
has only recently been implemented [26], [27] and it may still
be more intuitive for developers to simply create a new user
account for a bot instead. With only this approach we identified
1,295 bots that have either created or merged at least one pull
request or have at least written one comment on a pull request.

To improve bot detection by username we then consid-
ered the expression matching approach proposed by Dey et
al. [28]. We used the following filter rules: 1) ’%bot’ and
’%robot’, 2) ’%-bot-%’ and ’%-robot-%’, 3) ’bot-%’
and ’robot-%’. Exploration has shown that these patterns are
very common among bots but quite uncommon among human
users. However, it is clear that this type of bot detection comes
with the risk of false positives. Together with the previously
identified bots, we had identified 4,409 bot accounts at this
point.

Second, we requested the list of users considered human,
who created or merged at least 900 pull requests, or wrote
more than 1,500 comments within our specified time frame.
Each profile was manually inspected according to a predefined
protocol, and a user was classified as a bot if at least one of the
following was true: the profile description states that the user
is a bot or the contributions did not look like contributions by
a human. The latter criterion was further refined to arrive at
a decision as objectively as possible. For example, users with
more than 10,000 contributions per year or with a continuous
contribution pattern were almost always bots, as were users
who frequently made identical or very similar contributions.
Through this exploration, we identified an additional 96 bot
accounts.

Third, we used the dataset of known bots which resulted
from the study by Dey et al. [28], [29]. Their dataset included
all commits from users they identified as bots, with at least
1000 commits, using the commit message, commit association,
and author name to identify the bot. The data was provided
in a CSV file, which we processed to obtain the GitHub
login names. Hereby we were able to identify another 149
bot accounts.

During the investigation, we came across seven users who
seem to be running a bot using their own personal account.
These hybrid users were added to the bot list, as most of their

TABLE I
TOP 12 BOT ACCOUNTS BY NUMBER OF PULL REQUESTS

Bot # of PRs
dependabot[bot] 3,022,938
dependabot-preview[bot] 1,222,893
pull[bot] 1,005,816
renovate[bot] 487,672
pyup-bot 148,615
greenkeeper[bot] 134,218
snyk-bot 104,628
imgbot[bot] 52,255
github-learning-lab[bot] 39,886
everypoliticianbot 35,851
depfu[bot] 34,408
scala-steward 32,045

contributions are most likely created automatically. The final
list of bot accounts contains 4,654 distinct bot login names.

D. Data Analysis

At that point, we had a relational database that we could
run SQL queries on and we knew which accounts in the
dataset were bots. For all four comparison criteria there are
two groups of pull requests: those created by bots and those
created by humans. Differences in proportions between these
two groups, i.e. acceptance rates, were tested for statistical
significance using a Chi-squared test. To examine differences
in the values to the other three comparison criteria, we used
a t-test to measure statistical significance and Cohen’s d to
estimate effect sizes.

E. Data Availability

We refer the interested reader to our supplemental
materials1, which deal in particular with the technical details of
data retrieval and transformation and include all SQL queries
used.

IV. RESULTS

To investigate how maintainer interaction with pull requests
differs between manual and automatically generated PRs, we
analyzed a total of 20,623,320 pull requests created from Jan 1,
2019 to May 31, 2020. While 1,791,640 human user accounts



TABLE II
PULL REQUEST (PR) ACCEPTANCE AND INTERACTION STATISTICS BY TYPE OF AUTHOR

PR author Total Merged Avg. Time Until Merge With Comments Avg. # Comments Avg. Time Until First Interaction
Human 13,770,280 72.53% 14 minutes 23.36% 2.52 13 minutes
Bot 6,853,040 37.38% 10.09 hours 2.22% 0.06 12.3 hours

are responsible for about two-thirds of the pull requests, the
remaining third was created by only 4,654 bots. Even though
the average number of created pull requests per bot is very
high, more than 80% of them were created by the four most
active bots. Table I shows the number of pull requests for the
top bot contributors in our dataset. Additionally, pull requests
from bots are smaller than those of humans. Bots add on
average about 673 lines and delete 343, while humans add
an average of 4,280 lines and delete 1,824.

Table II provides an overview of the acceptance and inter-
action statistics grouped by creator type, i.e. bot and human.
Total includes all PRs in the dataset ignoring their current
status. Pull Requests were counted as merged if they were
marked as such, regardless of whether human or bot merged
it. The results show that bot pull requests are significantly
less likely to be merged (37.38%) than human created pull
requests, which were merged 72.53% of the time (p < .001).

The time it takes humans to merge a pull request also differs
significantly between the two groups. The mean time it takes
for a bot pull request to get merged is 10.09 hours, while pull
requests created by humans were merged after 14 minutes on
average (p < .001, d = .13). Looking at how long it takes for
bots to merge pull requests with respect to the type of author,
it is the other way around: bot pull requests got merged after
only 12 seconds, while human pull requests got merged after
an average of 5.42 hours.

When reporting on comments, this includes all human
created regular discussion comments under a pull request
as well as all human created review comments on a pull
request. Both for human pull requests and bot pull requests, the
majority have no comments at all. Pull requests from bots have
significantly, but not substantially, fewer comments compared
to human-generated pull requests (p < .01, d = .0008).

It takes an average of 13 minutes from pull request creation
to the first interaction with a human pull request, whereas it
takes significantly longer, 12.3 hours, for a human to respond
to a bot pull request (p < .01, d = .06). While the maximum,
excluding outliers, for bot pull requests was 298.46 hours to
receive a comment, the maximum time for human pull requests
was about nine times smaller at about 32.71 hours.

V. DISCUSSION & CONCLUSION

It is interesting to see that one third of all pull requests
on GitHub originate from bots. Unfortunately, only a third of
them are accepted and it takes longer than with human pull
requests until the first interaction and the merge take place.
While the time variables in their effect size indicate only a
small practical difference, the combination of low acceptance
rate and significantly longer processing times of bot pull

requests suggests that there is potential for improvement,
especially since bot pull requests are significantly smaller and
could thus be processed faster [14], [17].

To answer the question in the title, no, bots do not mind
waiting for their pull request to be merged, but maintainers
should care. Bots can only work effectively if someone feels
responsible and interacts with the proposed changes in a timely
manner. The findings of this study provided indications that
bots are not yet being used to maximum effect. Furthermore,
evaluation studies of individual bots in terms of their ac-
ceptability should take note of our findings on differences
in interaction with bots if benchmarking is done with human
contributions. An excellent bot could already be one that is
just as well accepted as an average human contributor.

If bots make important contributions, they should receive
as much attention as other contributors. Whether this means
developers should change their behavior in dealing with bots,
or bots need to be designed differently, and if necessary,
be more intrusive to maximize their potential and force the
development team to do what is best for them, remains a
philosophical question that the bot community can explore
in the near future. Some approaches to help prioritize pull
requests, with which some integrators seem to struggle [14],
and to accelerate the review process already exist (e.g. [30]).

The main limitation of our study is that we can only describe
the differences in interaction, but not explain them. Addition-
ally, note that in most bot pull requests dependencies were
updated while the PRs of the comparison group were more
diverse. This difference in goals acts as a confounding factor.
It is possible that bots contribute less urgent changes and are
therefore prioritized lower [14]. We also know that for some
DevBot users bots are not essential, but only supportive [9].
As a consequence, bots like dependabot then close their own
pull requests after a while because they have become obsolete,
leading to a lower acceptance rate. We leave the assessment
of the importance of dependency updates to the developers of
the respective projects, but the explanation for the differences
in interaction may simply lie in the different content of the
pull requests.

Future work can explore the dataset in more depth and,
for example, apply the comparison criteria to individual bots
to learn if and why individual bots might perform better than
others. Likewise, the bots could be divided into groups accord-
ing to existing taxonomies [2], [6] and correlations between
interaction patterns and the presence of different facets could
be examined. Future research could also investigate whether
contributions that are comparable in content are treated the
same regardless of the type of contributor, or if the differences
seen in our study can be found in this case as well.



REFERENCES

[1] C. Lebeuf, M.-A. Storey, and A. Zagalsky, “Software bots,” IEEE
Software, vol. 35, no. 1, pp. 18–23, 2017.

[2] L. Erlenhov, F. G. de Oliveira Neto, R. Scandariato, and P. Leitner,
“Current and future bots in software development,” in 2019 IEEE/ACM
1st International Workshop on Bots in Software Engineering (BotSE).
IEEE, 2019, pp. 7–11.

[3] M. Wessel, B. M. De Souza, I. Steinmacher, I. S. Wiese, I. Polato,
A. P. Chaves, and M. A. Gerosa, “The power of bots: Characterizing
and understanding bots in oss projects,” Proceedings of the ACM on
Human-Computer Interaction, vol. 2, no. CSCW, pp. 1–19, 2018.

[4] M. Wyrich and J. Bogner, “Towards an autonomous bot for automatic
source code refactoring,” in 2019 IEEE/ACM 1st International Workshop
on Bots in Software Engineering (BotSE). IEEE, 2019, pp. 24–28.

[5] M. Wyrich., R. Hebig., S. Wagner., and R. Scandariato., “Perception
and acceptance of an autonomous refactoring bot,” in Proceedings of
the 12th International Conference on Agents and Artificial Intelligence
- Volume 1: ICAART,, INSTICC. SciTePress, 2020, pp. 303–310.

[6] C. Lebeuf, A. Zagalsky, M. Foucault, and M.-A. Storey, “Defining and
classifying software bots: a faceted taxonomy,” in 2019 IEEE/ACM
1st International Workshop on Bots in Software Engineering (BotSE).
IEEE, 2019, pp. 1–6.

[7] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of
the pull-based software development model,” in Proceedings of the 36th
International Conference on Software Engineering, 2014, pp. 345–355.

[8] T. Dey, B. Vasilescu, and A. Mockus, “An exploratory study of bot
commits,” Proceedings of the IEEE/ACM 42nd International Conference
on Software Engineering Workshops, Jun 2020.

[9] L. Erlenhov, F. G. d. O. Neto, and P. Leitner, “An empirical study
of bots in software development: characteristics and challenges from a
practitioner’s perspective,” Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Nov 2020.

[10] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann, “Software
developers’ perceptions of productivity,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2014, pp. 19–29.

[11] J. Terrell, A. Kofink, J. Middleton, C. Rainear, E. Murphy-Hill,
C. Parnin, and J. Stallings, “Gender differences and bias in open source:
Pull request acceptance of women versus men,” PeerJ Computer Science,
vol. 3, p. e111, 2017.

[12] D. Ford, M. Behroozi, A. Serebrenik, and C. Parnin, “Beyond the code
itself: How programmers really look at pull requests,” in Proceedings
of the 41st International Conference on Software Engineering: Software
Engineering in Society, ser. ICSE-SEIS ’19. Piscataway, NJ, USA:
IEEE Press, 2019, pp. 51–60.

[13] A. Murgia, D. Janssens, S. Demeyer, and B. Vasilescu, “Among the ma-
chines: Human-bot interaction on social q&a websites,” in Proceedings
of the 2016 CHI Conference Extended Abstracts on Human Factors in
Computing Systems, 2016, pp. 1272–1279.

[14] G. Gousios, A. Zaidman, M.-A. Storey, and A. Van Deursen, “Work
practices and challenges in pull-based development: the integrator’s
perspective,” in 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, vol. 1. IEEE, 2015, pp. 358–368.

[15] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in github,” in Proceedings of the 36th
international conference on Software engineering, 2014, pp. 356–366.

[16] M. Wessel, A. Serebrenik, I. Wiese, I. Steinmacher, and M. A. Gerosa,
“Effects of adopting code review bots on pull requests to oss projects,”
in 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2020, pp. 1–11.

[17] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait for
it: Determinants of pull request evaluation latency on github,” in 2015
IEEE/ACM 12th working conference on mining software repositories.
IEEE, 2015, pp. 367–371.

[18] S. Kassin, S. Fein, H. R. Markus, K. A. McBain, and L. Williams, Social
Psychology Australian & New Zealand Edition. Cengage AU, 2019.

[19] C. Brown and C. Parnin, “Sorry to bother you: designing bots for effec-
tive recommendations,” in 2019 IEEE/ACM 1st International Workshop
on Bots in Software Engineering (BotSE). IEEE, 2019, pp. 54–58.

[20] ——, “Sorry to bother you again: Developer recommendation choice
architectures for designing effective bots,” in Proceedings of the

IEEE/ACM 42nd International Conference on Software Engineering
Workshops, 2020, pp. 56–60.

[21] M. Wessel and I. Steinmacher, “The inconvenient side of software bots
on pull requests,” in Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops, 2020, pp. 51–55.

[22] S. Urli, Z. Yu, L. Seinturier, and M. Monperrus, “How to design a
program repair bot? insights from the repairnator project,” in 2018
IEEE/ACM 40th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP). IEEE, 2018,
pp. 95–104.

[23] K. Singh, Quantitative social research methods. Sage, 2007.
[24] G. Gousios, “The ghtorent dataset and tool suite,” in 2013 10th Working

Conference on Mining Software Repositories (MSR). IEEE, 2013, pp.
233–236.

[25] I. Grigorik. GH Archive. [Online]. Available: https://www.gharchive.org/
[26] K. McMinn. (2016) Integrations Early Access. [Online]. Available: https:

//developer.github.com/changes/2016-09-14-Integrations-Early-Access/
[27] K. Daigle. (2017) Introducing GitHub Marketplace and more tools

to customize your workflow . [Online]. Available: https://github.blog/
2017-05-22-introducing-github-marketplace-and-more-tools-to-customize-your-workflow/

[28] T. Dey, S. Mousavi, E. Ponce, T. Fry, B. Vasilescu, A. Filippova,
and A. Mockus, “Detecting and characterizing bots that commit code,”
Proceedings of the 17th International Conference on Mining Software
Repositories, Jun 2020.

[29] ——. (2020) A dataset of bot commits. [Online]. Available:
https://doi.org/10.5281/zenodo.3694401

[30] C. Maddila, S. S. Upadrasta, C. Bansal, N. Nagappan, G. Gousios, and
A. van Deursen, “Nudge: Accelerating overdue pull requests towards
completion,” 2020. [Online]. Available: https://arxiv.org/abs/2011.12468

https://www.gharchive.org/
https://developer.github.com/changes/2016-09-14-Integrations-Early-Access/
https://developer.github.com/changes/2016-09-14-Integrations-Early-Access/
https://github.blog/2017-05-22-introducing-github-marketplace-and-more-tools-to-customize-your-workflow/
https://github.blog/2017-05-22-introducing-github-marketplace-and-more-tools-to-customize-your-workflow/
https://doi.org/10.5281/zenodo.3694401
https://arxiv.org/abs/2011.12468

	I Introduction
	II Related Work
	III Methods
	III-A Comparison Criteria
	III-B Data Retrieval and Data Transformation
	III-C Bot Detection
	III-D Data Analysis
	III-E Data Availability

	IV Results
	V Discussion & Conclusion
	References

