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Abstract—Student experiences in large undergraduate Com-
puter Science courses are increasingly impacted by automated
systems. Bots, or agents of software automation, are useful for
efficiently grading and generating feedback. Current efforts at
automation in CS education focus on supporting instructional
tasks, but do not address student struggles due to poor behaviors,
such as procrastination. In this paper, we explore using bots to
improve the software engineering behaviors of students using
developer recommendation choice architectures, a framework
incorporating behavioral science concepts in recommendations
to improve the actions of programmers. We implemented this
framework in class-bot, a novel system designed to nudge
students to make better choices while working on programming
assignments. This work presents a preliminary evaluation inte-
grating this tool in an introductory programming course. Our
results show that class-bot is beneficial for improving student
development behaviors increasing code quality and productivity.

I. INTRODUCTION

Enrollment in undergraduate Computer Science (CS)
courses is growing rapidly, and these classes are quickly evolv-
ing to accommodate the significant increase of students [18].
To handle the large influx of students, researchers and practi-
tioners have developed a variety of bots to automate instruc-
tional tasks. For instance, tools such as CoderAssist [17], Web-
CAT [9], and AutoGradr1 are useful for grading programs and
providing feedback on students’ code. Furthermore, Wilcox
shows using automated tools to facilitate student learning in
programming courses is valuable for improving performance,
increasing submissions, and saving instructional time [30].

Despite increasing enrollment in CS courses, research shows
the dropout rate in programming classes is also increasing
rapidly, especially among first and second year students [3].
Studies suggest the inability to maintain students in CS will
lead to a “crisis” in the software industry with necessary
computing-related jobs going unfilled.2 Consequently, under-
represented minorities and female students disproportionately
account for those underperforming in early programming
courses and dropping out of the CS major [21], [2], leading
to a lack of diversity in industry.3

1https://autogradr.com
2https://www.itexico.com/blog/how-to-handle-the-crisis-of-software-

developer-shortage-in-the-u.s
3https://news.gallup.com/reports/196331/diversity-gaps-computer-

science.aspx

Automated systems are beneficial for providing feedback
efficiently, however they lack the ability to support students.
The goal of this work is to explore using bots to retain students
in CS. While not solely due to a lack of effort, Beaubouef and
Mason suggest one reason for high withdrawal in program-
ming courses is poor behavior on coding assignments [3].
Decision-making is an important skill in software engineer-
ing,4 however students in programming courses frequently
make poor choices and adopt bad programming behaviors
when writing code for projects. For example, students often ig-
nore software development processes, which leads to increased
frustration, lower grades, and eventually abandoning CS [3].

Our prior work proposes using nudge theory to improve the
reception of automated recommendations to developers from
bots [6], [7]. Nudge theory is a behavioral science concept
for improving human behavior by influencing the environ-
ment surrounding decisions, or choice architecture, without
providing incentives or banning alternative choices [26]. We
introduced developer recommendation choice architectures, a
novel framework for designing recommender bots to nudge
software engineers towards better development practices [7].
In this work, we explore implementing this framework in
an innovative system to improve the software engineering
behaviors of students on programming projects.

To discover the impact of this approach on student behavior,
we performed a study implementing class-bot, a system
that utilizes developer recommendation choice architectures to
recommend beneficial software engineering behaviors to stu-
dents on projects for a university-level introductory program-
ming course. We evaluated the effectiveness of this system
by examining the code quality of projects and productivity of
students. Our results suggest automated nudges with developer
recommendation choice architectures improved student behav-
ior by increasing performance on assignments and encouraging
students to make more substantial changes to their code and
start work earlier. The contributions of this research are a
novel bot to recommend software engineering practices to
students and a preliminary evaluation examining the impact of
developer recommendation choice architectures on improving
the software engineering behaviors of programmers.

4https://hackernoon.com/decision-making-the-most-undervalued-skill-in-
software-engineering-f9b8e5835ca6/
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II. BACKGROUND

A. Nudge Theory
Behavioral science research suggests nudges are effective

for improving human decision-making. For example, studies
show placing healthy options near the front of a cafete-
ria encourages students to purchase and consume healthier
options [13]. In this case, students are not rewarded for
making healthy decisions nor banned choosing from junk
food. Furthermore, integrating nudge theory in digital choice
environments is known as digital nudging [29]. Prior work
suggests digital nudges can encourage better privacy and
security decisions of users online [1] and improve student
learning and motivation [22]. We aim to explore using digital
nudges to improve the programming behaviors of students on
coding assignments to improve their code quality, productivity,
and ultimately increase retention among early CS students.

Nudges are useful for improving human behavior because
of their ability to influence the context and environment
surrounding decisions, or choice architecture [27]. Brown and
colleagues propose developer recommendation choice archi-
tectures, a framework that applies concepts from nudge theory
into automated bots to create effective developer recommenda-
tions [7]. We incorporate this framework into class-bot to
make recommendations encouraging students to adopt better
programming behaviors while working on projects. Our goal
is to discover the impact of developer recommendation choice
architectures on the decision-making and behavior of students
by analyzing code quality and development productivity on
programming assignments in introductory CS classes.

B. Computer Science Education
CS education researchers have evaluated a variety of sys-

tems useful for automating instructional tasks. For example,
Kaleeswaran et al. found CoderAssist grades C programs and
provides feedback to students on their code in an average of
1.6 seconds [17]. Prior work also outlines strategies for incor-
porating automated grading tools on coding assignments [31].
Moreover, Heckman suggests incorporating real development
tools in courses can improve software engineering skills [14]
while Hu shows integrating GitHub pull request bots on project
repositories provides fast and useful feedback to students [16].
In this work, we seek to use bots as a means to enhance
development behaviors in introductory programming courses.

Researchers have also explored improving student behavior
in CS courses. For example, Edwards and colleagues summa-
rize effective and ineffective student behaviors on program-
ming assignments [10]. Studies also show that non-automated
approaches, such as in-class labs [15], agile practices [23],
pair learning [32], and other instructional techniques improve
student behavior and learning in undergraduate CS courses.
Additionally, prediction models [12] and automated tools such
as DevEventTracker [19] are useful for observing student
programming habits to predict bad behaviors, such as procras-
tination. This research explores using automated notifications
from bots to improve the decision-making of students while
developing code on programming assignments.

III. CLASS-BOT

The class-bot system nudges students by automatically
generating and updating GitHub issues on project repositories
(see Figure 1). We implemented our bot using the GitHub
issue tracker because this system is useful for managing bugs,
enhancements, and feedback on repositories,5 and research
suggests they are useful for making recommendations to
developers [4]. To improve student programming behaviors,
class-bot encouraged them to complete the software de-
velopment process, or set of activities necessary to program
software application. Beaubouef and Mason suggest students’
failure to follow development processes factors into the high
attrition rate in early programming courses, noting the typical
student method “minimally includes the processes of analysis,
design, coding, testing, and documentation...Unsuccessful stu-
dents often want to skip analysis and design and begin typing
in code immediately.” [3, p. 105]

Each class-bot issue contains sections for each software
development process phase (i.e. in Figure 1 represents
the Requirements phase) and listing relevant project rubric
items for that phase. Specific tasks differed based on the
assignment. In general: Requirements (Rq) focuses on under-
standing project specifications and functionality; Design (Ds)
relates to project structure; Implementation (Im) centers on the
code; Testing ensures students added passing unit tests (Ut)
and functional test cases (St); and Deployment (Dp) verifies
the repository is ready for submission and grading based on
submission instructions. We compared our system to a baseline
approach using an online rubric with a similar organization.

The class-bot issue updates fit the definition of a
nudge because they do not provide rewards for completing
tasks nor prevent students from ignoring items. To improve
student programming behaviors, we designed class-bot
using the three principles of developer recommendation choice
architectures: Actionability, Feedback, and Locality [7]. Here,
we explain how class-bot incorporates each principle to
recommend better development process behaviors to students.

a) Actionability: Actionability involves reducing user ef-
fort by automating tasks to facilitate the adoption of useful be-
haviors. We implemented class-bot to incorporate action-
ability by automatically analyzing repositories to determine if
development process tasks are completed and update GitHub
issues based on code changes. However, the baseline approach
requires students to manually seek information online.

b) Feedback: Feedback refers to the clarity of informa-
tion provided to users. Our system provides a simple feedback
mechanism, displaying a red x ( ) if the requirements for an
item are not met and a green check mark ( ) if the task
is completed. For instance, in the Deployment phase of the
class-bot example in Figure 1, the repository contains a
.gitignore file but the code does not compile. With the the
baseline approach, students are forced to check if project
expectations are met themselves.

5https://help.github.com/en/articles/about-issues



Fig. 1. Example class-bot recommendation

c) Locality: Locality focuses on the setting of a rec-
ommendation, or when and where automated interventions
occur. For spatial locality, class-bot recommendations are
located in an issue on the repository situated with the project.
For temporal locality, or notification timing, class-bot
provides automated daily updates on software development
processes based on students’ code contributions. On the other
hand, students are forced to search for information in an ad
hoc manner at a separate location from their repository using
the online rubric.

IV. METHODOLOGY

A. Experiment Design

1) Participants: We integrated class-bot in an introduc-
tory Java programming course. All participants were under-
graduate students with varying majors and levels of program-
ming experience. For consistency in our data, we eliminated
students who eventually dropped the class. Overall, we ana-
lyzed the behavior of 35 out of the initial 42 enrolled students.
We use five phases to define the software development process:
Requirements, Design, Implementation, Test, and Deployment,
as presented to students in the course curriculum.

2) Projects: The course consisted of seven programming
assignments, six projects and a final comprehensive exercise.
Projects 3-5 made up the control group to avoid beginning
assignments, and class-bot was introduced on the final two
assignments. All projects were submitted to individual GitHub
repositories. In total, we analyzed a 151 project repositories.

B. Data Collection

To determine the impact of class-bot on student behav-
ior, we mined project repositories to observe the quality of
their work and development productivity. Data analysis and
collection lasted over the course of approximately six weeks.

1) Quality: We evaluated quality by observing the grades
and number of points deducted for project submissions. In
the course, project grades were determined using realistic
industry code quality metrics such as passing unit tests,
functional test cases, and Checkstyle6 static analysis tool
warnings. Additionally, students who failed to meet certain
project requirements had additional points subtracted from
their grade. For instance, submitting an assignment within 24
hours after the deadline resulted in a -10% late penalty. We
aim to discover if class-bot impacts student behavior by
improving the quality of their projects.

2) Productivity: We measured productivity by observing
the total number of commits, code churn, time until the first
commit, and time of the last commit. GitHub commits record
specific changes to project files,7 and prior work explores using
repository commits to predict student performance [25] and
gamify contributions to projects [24]. Research also suggests
code churn, or the number of lines added, deleted, or modified
in commits, is useful for measuring developer effort and code
change impact [20]. Moreover, prior work shows students who
start assignments earlier receive significantly higher grades
while those who procrastinate often perform worse [10]. To
further study productivity, we measured the time until the first
commit on repositories and the amount of time between the
last commit and the assignment deadline.

We use these quality and productivity metrics to investigate
the impact of bots incorporating developer recommendation
choice architectures on the software engineering behaviors of
students working on programming projects.

6https://checkstyle.sourceforge.io/
7https://docs.github.com/en/desktop/contributing-and-collaborating-using-

github-desktop/committing-and-reviewing-changes-to-your-project#about-
commits

https://checkstyle.sourceforge.io/


TABLE I
QUALITY RESULTS

Nudge? Mean Median p-value

Grade*** No 74.29 87.66 -
Yes 76.89 95 0.0097***

Deductions No -20.71 -5 -
Yes -9.43 0 0.0672

Quality metrics for projects with and without class-bot
*** denotes statistically significant results (p-value < 0.05)

TABLE II
PRODUCTIVITY RESULTS

Nudge? Mean Median p-value

Commits No 9.84 7 -
Yes 12.64 9 0.1646

Code Churn*** No 205.03 4 -
Yes 1101.57 11 0.0348***

First Commit*** No 8.32 7.41 -
(days) Yes 1.99 5.94 < 0.0001***
Last Commit No -21.72 -1.60 -
(hours) Yes -9.67 -2.47 0.7909

Productivity metrics for projects with and without class-bot
*** denotes statistically significant results (p-value < 0.05)

V. RESULTS

The Mann-Whitney-Wilcoxon test (α = .05) was used to
compare project quality and student productivity metrics for
assignments with and without nudges from class-bot.

A. Project Quality

To observe the impact of class-bot on code qual-
ity, we analyzed the grade and points deducted on student
assignments. These findings are presented in Table I. We
discovered students received significantly higher scores on
projects with automated nudges, indicating notifications from
our system improved the quality of programming assignments.
Additionally, while there was not a significant difference, we
noticed projects without automated nudges lost an average of
11 more points than those with class-bot interventions.

B. Student Productivity

To discover the impact of class-bot on student produc-
tivity, we analyzed total commits, code churn, first commit
time, and last commit time. Our results in Table II show
nudges improved the productivity of students by significantly
increasing the number of lines of code modified in commits
and encouraging students to start development on program-
ming assignments earlier. Additionally, we found that on
average projects with automated nudges had more commits
to the repositories and projects were submitted earlier with
class-bot notifications.

VI. DISCUSSION

Our preliminary results suggest bots incorporating developer
recommendation choice architectures can improve develop-
ment behavior. By encouraging students to follow software en-
gineering processes, we found class-bot improved project
quality and student productivity by boosting grades, increasing

code churn, and preventing procrastination. We believe these
automated nudges are a step towards reducing the attrition
rate in CS. Furthermore, these results provide implications
for software engineers in industry where developers also
ignore development processes and underestimate the time
and effort required to complete coding tasks [5]. Despite
the advantages of bots for automating programming tasks,
developers find recommendations from bots ineffective and
intrusive [6]. To gain insight for improving bots to effectively
recommend beneficial programming behaviors, we analyzed
feedback from students and found increased project validation
as well as more frequent updates as reported improvements
for the class-bot system.

a) Validation Frequency: Even though they started as-
signments approximately six days earlier with class-bot,
students still reported waiting until the end of the project to
validate their work met project expectations. For example,
one student noted “I didn’t really check them until the final
day” and another mentioned “I checked it once at the end to
make sure everything was correct but thats it”. This indicates
a need to encourage students to validate their code more
frequently, which research shows improves code quality [28].
class-bot provides automated updates for students to pas-
sively check their progress, however future systems can be
improved by incorporating interactive mechanisms, such as
checklists [11], to encourage students to validate their code
more frequently during the development of their projects.

b) Update Frequency: Students also desired more fre-
quent updates from class-bot, saying they “would like it
more if it could be updated more often, or maybe later in
the day” and “the class bot didn’t update frequently enough”.
While class-bot incorporated temporal locality by updat-
ing issues daily, students desired more frequent feedback to
support them in their work. Prior work in software engi-
neering shows that presenting recommendations to developers
at “diff time” during code reviews encouraged developers
to fix more bugs compared to less frequent notifications,
i.e. after overnight builds [8]. Based on this feedback for
class-bot, future systems can be improved by providing
frequent notifications based on student actions, such as im-
mediately after commits, to provide convenient and persistent
recommendations for useful software engineering behaviors.

VII. CONCLUSION

This work explores using bots to improve student software
engineering behaviors in introductory programming courses.
We introduce class-bot, a novel system that incorporates
developer recommendation choice architectures to create au-
tomated recommendations with clear feedback in a conve-
nient setting to encourage students to adhere to software
development process phases. Our results show this system
significantly improved code quality and student productivity
by raising grades, increasing coding activity, and encouraging
students to start earlier. We conclude by providing implications
for improving class-bot and designing future automated
systems to recommend beneficial behaviors to programmers.
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