Feature-based Surface Decomposition for Correspondence and
M or phing between Polyhedra

Arthur Gregory,

Andrei State, Ming C. Lin, Dinesh Manocha, Mark A. Livingston

Department of Computer Science,
University of North Carolina at Chapd Hill
{ gregory,andrei,lin,dm,livingst} @cs.unc.edu
http://www.cs.unc.edu/~geom/3Dmorphing

Abstract

We present a new approach for establishing
correspondence between two homeomorphic 3D
polyhedral models. The user can specify corresponding
feature pairs on the polyhedra with a simple and
intuitive interface. Based on these features, our
algorithm decomposes the boundary of each polyhedron
into the same number of morphing patches. A 2D
mapping for each morphing patch is computed in order
to merge the topologies of the polyhedra one patch at a
time. We create a morph by defining morphing
trajectories between the feature pairs and by
interpolating them across the merged polyhedron. The
user interface provides high-level control as well as
local refinement to improve the morph. The
implementation has been applied to several complex
polyhedra composed of thousands of polygons. The
system can also handle non-simple polyhedra that have
holes.

1 Introduction

Image and object morphing techniques have gained
increasing importance in the last few years. Given two
objects, metamorphosis involves producing a sequence
of intermediate objects that gradually evolve from one
object to another. The techniques have been used in a
number of applications, including scientific
visualization, education, entertainment, and computer
animation. Morphing involves establishing a
correspondence between the graphical objects and
interpolating between them, in conjunction with
blending their colors or textures.

Main Contribution: We present a new approach for
establishing correspondence between two homeomorphic
polyhedra. Initially the user selects some corresponding

elements called feature pairs. Although we borrow this
term from previous morphing algorithms for images or
3D volumetric models [2, 24], our concept of a feature is
closer to the sparse control mesh used in [10]. Our
algorithm includes a simple and intuitive user interface
for feature specification and automatically generates a
feature net. Based on the feature nets, the algorithm
decomposes the boundary of the polyhedra into
morphing patches, computes a mapping for each
morphing patch to a 2D polygon, merges them, and
constructs a merged polyhedron whose topological
connectivity is a combination of the topological
connectivity of the input polyhedra The merged
polyhedron has a morphing trajectory for each vertex to
move along from one input polyhedron to the other. The
overall complexity of the algorithm is O(K(m+n)),
where K is a user-defined constant and m,n correspond to
the number of verticesin the two input polyhedra.

2 Related Work

Similar problemsin 2D have been extensively studied
in computer graphics. The set of algorithms can be
classified into those that operate on raster images such as
[2, 9, 23, 35, 36] and those that operate on geometric
representations [14, 31, 32, 34]. There is considerable
literature on morphing between 3D volumetric models
[7, 8, 15, 24, 29].

Several approaches related to establishing
correspondence between 3D polygonal objects for shape
transformation and metamorphosis have been proposed.
Graphics techniques based on deformations [1, 33] and
particle systems [30] can be used for object
metamorphosis. Hong et al. [17] present an approach for
polyhedral models that matches the faces whose

centroids are closest. Chen and Parent [6] present an
algorithm to transform piecewise linear 2D contours and
extend it to 3D cylindrical objects. Bethel and Uselton
[4] add degenerate vertices and faces to two polyhedra
until they have a common vertex neighborhood graph.
Kaul and Rossignac [19] transform a pair of polyhedra by
using their Minkowski sums. Hodgins and Pollard [16]
have presented an algorithm for interpolating between
control systems of dynamic models. Wyvill [37] has
described an approach for implicit surfaces. Parent [27]
has presented an approach that splits the surface of the
model into pairs of sheets of faces and recursively
subdivides them until they have the same topology.
Parent [27, 28] has aso described a method for
deformation of polyhedral objects based on implicit
functions. Kent et al. [20, 21] have presented a shape
transformation algorithm for genus-0 polyhedra that
involves projecting the models onto a sphere. Chen et al.
[5] have produced 3D morphs of cylindrical images.
Galin and Akkouche [12] have presented an algorithm
for blob metamorphosis based on Minkowski sums.
Lazarus and Verroust [22] have proposed a method
based on skeletal curves. Kanai et al. [18] have presented
an algorithm for shape transformation of genus-0
polyhedra using harmonic maps. DeCarlo and Gallier
[10] have proposed a morphing technique that
establishes correspondence by allowing the user to
divide the surface into triangular and quadrilateral
patches which can be projected onto a plane. Our overall
approach shares their theme. However, we improve upon
several restrictionsin their technique making it easier for
the user to specify correspondence between complicated
models. For example, we remove the requirement that
the user must subdivide the surfaces of the input
polyhedra into patches that can each be directly
projected onto a plane.

3 Terminology

The term polyhedron refers to an arrangement of
polygons such that two and only two polygons meet at an
edge. It is possible to traverse the surface of the
polyhedron by crossing its edges and moving from one
polygonal face to another until all polygons have been
traversed by this continuous path [26]. Topology refers to
the vertex/edge/face connectivity of a polyhedron.
Smple polyhedra are al polyhedra that can be
continuously deformed into a sphere. It is possible for a
polyhedron to have holes. Non-simple polyhedra are
topologically equivalent to a solid object with holesin it.
In this paper, we assume that each face of a polyhedron
is homeomorphic to a closed disk. The genus g of a
polyhedron is the maximum number of non-intersecting

loops that do not divide its surface into two regions.
Moreover, we assume that the given polyhedra satisfy
the Euler-Poincaré formula: v - e + f - 2(1 - g) = 0,
where v,ef and g are the number of vertices, edges,
faces and genus of the polyhedron respectively. The
genus of a simple polyhedron is zero.

4 Overview

Given two homeomorphic polyhedra, our goal is to
generate a morph that results in a smooth and gradual
transition from one polyhedron to the other. One key
aspect of our system is to allow the user to identify the
important features of each polyhedron and specify a
correspondence between them. The rest of the algorithm
consists of a combination of techniques that can produce
the desired result from the given user input.

The main components of our approach are:

e User Input: The user selects vertex pairs on each
polyhedron and defines a correspondence.

* Feature Net Computation: Given the vertex pairs,
the algorithm constructs a feature net for each
polyhedron. The feature net is a sub-graph of the
vertex/edge connectivity graph of each polyhedron.

* Decomposition into Morphing Patches. Based on
the feature nets, the algorithm decomposes the
surface of each polyhedron into the same number of
morphing patches, each being homeomorphic to a
closed disk.

* Mapping: A par of corresponding morphing
patches are mapped to a 2D polygon.

* Merging: The agorithm merges the topological
connectivity of morphing patchesin the 2D polygon.

* Reconstruction: Using the results from merging, the
algorithm reconstructs the facets for the new
morphing patch and generates a merged polyhedron
with the combined topol ogies of the original two.

 Local Refinement: The user can make local
changes to the feature net in some part of the model
and then re-compute the merged polyhedron.

5 Correspondence between Polyhedra

In this section we present the algorithm to compute
the correspondence between two homeomorphic
polyhedra, A and B. Their vertices are denoted as V" =
VA, VA, LV and VP = VR VR, L, VP L Superscripts
represent the corresponding polyhedron. The edges and
faces of the polyhedra are represented as E*, E®, F* and
F°. The output is a merged polyhedron with the topology
of both input models, for which each vertex has a
location on the two input models. The algorithm ensures

that each face of the input and output polyhedra is a
triangle. Given the polyhedra, the algorithm computes a
circularly ordered set of edges for each vertex. For each
edge, the algorithm stores the following information:
incident vertices, left and right adjacent faces, and
preceding and succeeding edge in counter-clockwise
order. We will use the symbols G" and G® to represent
the adjacency graph of two polyhedra. Furthermore, we
assign a weight to each edge of this graph. The weight
corresponds to the Euclidean distance between the two
vertices defining the edge. Based on the user's
specification, the correspondence algorithm marks some
of the vertices and edges in these graphs. To start with,
each edge and vertex in these graphsis unmarked.

We illustrate the correspondence algorithm described
in this section with Figs. 1 through 6. In our illustration,
polyhedron A corresponds to a model of an igloo and
polyhedron B corresponds to a model of a house (shown
in Fig. 1). Upper case letters denote objects in 3D and
lower case |etters represent objectsin 2D.

51 Specifying Corresponding Features

The user selects a pair of unmarked vertices on each
of the input polyhedra, denoted by {V*,, V" } and {V°,,
V®.} respectively (Fig. 1). The algorithm computes a
shortest path between the vertices on each polyhedron
using only unmarked vertices and edges in the adjacency
graph. Let the shortest paths correspond to: {V*, V*,
VA VALY and {V°,, V°, V°V°.}, asshown in Fig. 1.
All the intermediate vertices and edges on the shortest
paths in each graph are marked. We shall call such a
shortest path a chain, and the user-selected vertices are
referred to as the extremal vertices of achain. If no chain
can be computed using unmarked edges and vertices in
the adjacency graph, the feature pairs are not allowed.

A (Igloo) B (House)
B)
VB[Chain Vertex
VB XA
VAL Chain
A. vB.
A IZ/\)/A’jl. i1

y VBl 1

Figure 1. Input polyhedra with user-specified
correspondences.

1 EA\l “Extremal Vertices

The selected vertices and chains are used to formulate
a feature net for each polyhedron. We will represent the
feature nets as N* and N°. They are sub-graphs of G* and
G®, respectively. The user needs to specify a sufficient

number and arrangement of chains in order to partition
the boundaries of the polyhedra. Each extremal vertex
must be adjacent to at least two chains, and each chain
must have a connected patch on each side. As a result,
N* and N° have the same number of chains and extremal
vertices and the user has specified a mapping between
each extremal vertex and chain. In this way, the two
feature nets define a bijection.

52 Decomposition into Morphing Patches

The feature nets are used to decompose the boundary
of each polyhedron into the same number of morphing
patches. A morphing patch (shown in Fig. 2) issmply a
connected subset of a polyhedron which can be mapped
to a 2D polygon. The vertices and edges are partitioned
into interior and exterior vertices and edges. The
exterior vertices of the morphing patches are those on
the feature net (Fig. 3).

Exterior Edge
Extremal Vertex
B\
VZi2
VA, VB,
Interior A '
Edge V&g
B
i7 Vv
VAS A B
B VA Intefior Vertices * 17 VB,

Figure 2. Two selected morphing patches.

The decomposition algorithm has two steps. First, the
perimeter of a morphing patch is computed by traversing
the feature nets. Second, the remaining edges and
vertices and the faces, all of which are interior to a
morphing patch, are partitioned.

The computation of the perimeter uses the circular
ordering of edges at each vertex. Beginning from an
arbitrary vertex and chain of the feature net, the
algorithm walks through the tightest clockwise loop of
feature net verticesit can find. From the first vertex and
chain, it moves to the vertex at the other end of the
chain. Then it usesthe circular ordering of edges at that
vertex to proceed to the closest clockwise chain. Next it
follows that chain to the vertex at the other end. When it
comes back to the original vertex, it has traversed the
perimeter of a morphing patch. Note that thisis possible
because the chains may not cross. The bijective mapping
between the feature nets implies that this process when
performed on polyhedron A automatically selects the
corresponding chains on polyhedron B.

The interior of a morphing patch is computed with a
modified depth-first search algorithm. For a given
perimeter, it starts with an arbitrary edge on the chain. It
determines which adjacent face is interior to the patch

using the ordering of the exterior vertices. (If the faceis
on the interior, then the order must be consistently
clockwise or counter-clockwise.) We cross the face that
is on the interior of the morphing patch and recursively
search from its other two edges. The recursion stops
when the edge has already been traversed or the edge is
part of the chain.

Once this patch has been identified, the algorithm
selects another exterior vertex-chain pair and find
another perimeter. This process is repeated until all
vertices, edges, and faces of the original polyhedra have
been traversed. These morphing patches are represented
asP*,...,P", and P°,...,P°,. The algorithm ensures that
each morphing patch has no holes in the interior and is
homeomorphic to a closed disk. In other words, it is
bounded by a single loop of adjacent vertices.

Non-smple Polyhedron: For a genus zero
polyhedron, no morphing patch can contain a hole. If the
input polyhedron has a hole, the user must specify the
features in such a manner that each morphing patch is
homeomorphic to a disk. Such a decomposition is always
possible. An exampleisshown in Fig. 8 for a cup and a
torus.

53 Mapping

Given a morphing patch, our goal is to compute a
parameterization over a convex polygonal region in 2D.
Construction of a parameterization for complex shapes
over a simple domain is an important problem that
occursin different applications. A number of algorithms
have been proposed by Kent et al [20], Malliot et al [25],
and Eck et al [11]. The most obvious way to map to a 2D
polygon is to use a harmonic map. They minimize the
metric distortion and preserve the aspect ratios of the
triangle, but can introduce area compression [11]. Given
two triangular faces F, and F*, of a morphing patch, let
them map to the triangles f*, and f*, respectively, in the
2D polygon. Our goal, asdetailed in [13] isto produce a
mapping such that the ratio of the areas between F*, and
F* iscloseto that of f* and *,.

VTis VZie
Figure 3. The morphing patches are mapped to
regular 2D polygons.

Given a pair of morphing patches P* and P°, we
compute a mapping from the surface of the patch to a
regular 2D polygon. Let these morphing patches consist
of m extremal vertices. We map the morphing patch
onto a regular 2D polygon, inscribed in the unit circle,
with m edges. We represent the 2D polygon as p..

To compute a mapping, our algorithm first establishes
a bijection between the chains of the two feature nets by
splitting edges on the respective chains on the two
models. The splitting criterion is based on edge lengths.
After splitting, the algorithm has ensured that the
corresponding patches have the same number of exterior
edges and vertices.

The extremal vertices of the morphing patches are
mapped to the vertices of p,. Each chain of the morphing
patch is mapped to an edge of p. All the externa
vertices lying in the interior of a chain are mapped onto
the edges of p. The 2D coordinates of the vertices along
the chains are interpolated based on the arc length of the
chain.

The next step is to compute a 2D mapping for the
interior vertices of P*, and P®. We use a smple recursive
technique that tries to preserve the ratio of areas of the
triangles based on a greedy heuristic. The algorithm
divides a morphing patch by selecting two exterior
vertices V*, and V*, that do not lie on the same chain and
the corresponding exterior vertices, V°, and V°, on the
other morphing patch. Next it computes a shortest path
across the interior of each morphing patch, and then
optimizes it to preserve the area ratio on each side from
the 3D model to the 2D polygon. The vertices and edges
lying on these paths are mapped to the interior of p.
Using this path, the algorithm recursively divides the
morphing patch and maps the sub-patchesto p..

At this point the algorithm has computed a
parameterization for each morphing patch. Each
triangular face F', and F°, has been mapped to a
corresponding triangle, f*, and f°,, respectively, in p.

Given an interior vertex of P*, the algorithm locates
the triangle, say f° that contains the image of that
interior vertex. Furthermore, the algorithm computes the
corresponding point in f°, and represents it using
barycentric coordinates in terms of vertices of f°,. Finally
the barycentric coordinates are used to compute the
corresponding point on F°,.

54 Merging

The algorithm has so far produced mappings into p,
such that the vertices V*=> v*,, V° => Vv’ and edges E"
=> ¢, E’, => €. The edges €' and €’ will in general
intersect. We compute the intersections, split the
intersecting edges, and create new vertices (Fig. 4).

Vi2 Vi1

Vi3 vig
new
new eges <17 Vvem
Via Vi7

Vis Vie

Figure 4. The 2D polygons are combined into
one polygon with merged topology.

Motivated by simplicity and robustness, we used a
algorithm of complexity O(n?) which checks all edge
pairs for overlap. Since the intersection computations
can fail on edges that are co-incident, we handle the case
where edges lie on the same mapped path separately.
Furthermore, to avoid creating an invalid topology, we
calculate al the intersections, sort them and then create
the edges into which they were split. After intersection
computation and splitting, we denote the set of all
vertices and edgesin p, by x** and g**, respectively.

Figure 5. The output after the merging and
reconstruction steps.

Figure 6. The reconstructed merged polyhedron
has the combined topology of the two input
polyhedra.

55 Reconstruction

After computing the intersection of al the edges, the
algorithm produces a planar straight-line graph (PSLG)
[3] from those intersections. The PSLG is constructed

from the x** and g*°. We recursively subdivide the
connected edges and vertices from the merging step into
the smallest counter-clockwise cycles possible. Since the
nature of the intersections in the merging step guarantees
that these cycles are convex, from this point we can
triangulate the regions (Fig. 5). After this step has been
performed on all the morphing patches we get a merged
polyhedron containing each of the input geometries as
shown in Fig. 6.

6 Morphing

At the end of the merging and reconstruction process,
the merged polyhedron has the combined topological
connectivity of polyhedra A and B. Each vertex on
polyhedron A has a corresponding vertex on polyhedron
B. In this section, we briefly discuss issues for
interpolating between the two polyhedra in order to
generate a morph.

During morphing, the vertices travel from their
positions on A to their respective positions on B along
morphing trajectories. Kent et al. [20] represented the
paths using splines. In particular, they specified the
tangent directions at each extremal vertex and used
Hermite interpolation to compute the control points.
Similarly we allow the user to represent the trgjectory as
a Bézier curve for each pair of extremal vertices. The
system then interpolates the trgjectories for all other
vertices of the merged polyhedron using weighted
contributions of the morphing trajectories at the extremal
vertices. More detailsare givenin [13].

In addition to the morphing trajectories required by
the algorithm, other attributes of the input polyhedra
need to be interpolated to generate a good morph. These
include vertex colors, lighting coefficients, normal
vectors, etc. Interpolation of these surface attributes
occurs during the mapping and merging steps [13].

7 User Interface

The user interface is one of the most important
asgpects of a morphing system. Although it is easy for the
user to conceptualize a morph between two objects, it
can be rather difficult to design a system that allows the
user to express this easily. Our system achieves this goal
by alowing the user to draw the key correspondences on
the surfaces of the input models, and to specify the paths
that the corresponding features will follow during the
morph.

The user specifies corresponding chains of the feature
nets for input models A and B by selecting the chains
endpoints. In order to enforce a bijection between the
two feature nets, the system requires the user to specify

the feature net vertices in corresponding pairs. The
interior vertices of a chain are automatically computed
as shortest Euclidean paths along the edges of the
polyhedra. In some cases a path based on unmarked
vertices and edges, may not be available. In that case,
our system creates new vertices and edges by splitting a
face.

As a simple extension to creating a single pair of
corresponding chains, we also allow the user to create
“multi-chains’ and “loops’. When creating a multi-
chain, after specifying the first corresponding feature
vertex pair, each additional vertex pair the user specifies
creates a pair of chains connecting to the previous vertex
pair. A loop is simply a multi-chain with the property
that the last pair of corresponding vertices is connected
to the first pair by an additional pair of chains.

Once the corresponding pairs of chains have been
specified, we alow several techniques for local
refinement. These include splitting a chain into two
chains at a selected vertex on one of the input models,
removing a chain, and moving extremal vertices of the
feature net.

After a corresponding pair of extremal vertices has
been specified on polyhedron A and polyhedron B, the
user can control the morphing trajectory. The user does
this by positioning the tangents of a Bézier curve, whose
endpoints are the locations of the vertices on the two
input models.

8 Implementation and Performance

We have implemented the algorithm in C++ using the
OpenGL and Tcl/Tk libraries. In our polyhedral data
structures, each vertex has a list of edges stored in
counter-clockwise order, each edge contains the incident
vertices and two facets, and each facet contains three
vertices and three edges also stored in counter-clockwise
order. The system ensures that each polyhedron has
valid topology and that it satisfies the Euler-Poincaré
formula.

The merging algorithm described in Section 5.4
computes all intersections between the mapped edges of
each morphing patch. Based on the decomposition
algorithm described in Section 5.2, a morphing patch of
a large polyhedron may consist of many thousands of
edges. The number of intersections (and thereby the
combinatorial complexity of the merged polyhedra)
grows with the number of edges and in the worst case is
quadratic. As a result, the merging and reconstruction
steps can become a bottleneck in the overal
computation. To overcome this problem, we recursively
subdivide each morphing patch into smaller sub-patches,

using the same area preservation heuristic as in the
mapping algorithm described in section 5.3.

9 Analyssand Results

The running time is dependent on the size of the
morphing patches. For two polyhedra with m and n
vertices, let the number of extremal vertex pairs
specified by the user be k. The number of morphing
patches can be at most O(k). The computation of feature
nets and morphing patches is bounded by O(k(m+n)).
The user can set the subdivision algorithm to divide until
each patch has Q edges and the number of morphing sub-
patches can be O((m + n)/Q). The worst case complexity
of merging and reconstructing each pair of morphing
sub-patches is O(Q?). Q is typically small enough to be
regarded as a constant when compared with m and n.
Worst case interpolation takes O((n+n) k log Q) time.
As a result, the overall complexity of the algorithm is
O(K (m+n)), where K = max{k log Q ,Q}.

The visual “quality” of a morph created by our
system is quite subjective. It is mainly determined by the
number of extremal vertices. Beyond that, controlling
the morphing trajectories strongly contributes to the
appearance of the morph. Finally, morphs between
objects that are “similar” in appearance result in
smoother transitions than morphs between vastly
different objects (cf. human heads morph in Fig. 7 vs.
cup-donut morph in Fig. 8).

This system has been successfully created morphs
between a number of complex polyhedral models. These
include simple polyhedra (shown in Fig. 7 and 9) as well
as non-simple polyhedra corresponding to a torus and a
cup (shown in Fig. 8). We have presented the results in
Table 1. The animated morphs generated by this
algorithm are available at our WWW site.

10 Conclusion

We have presented a new approach for establishing a
correspondence between two homeomorphic polyhedra,
which includes a simple, intuitive user interface. It has
been successfully applied to a number of simple and
non-simple polyhedral models. We believe it is versatile
enough to produce visualy pleasing 3D morphs when
coupled with an effective method for specifying the
interpolation between the two models. More details
about our system are available in [13].

The specification of the feature net suffers from two
limitations: the feature net must be connected and the
chains connecting the feature net vertices are currently
restricted to lie on the edges of the source models.

It can be difficult to control the morphing
trajectories for complicated models. In order to have a
usable morphing system, a method which will alow the
user to sculpt the intermediate models is need. We are
currently working on removing these limitations.

11 Acknowledgements

This research has been supported in part by an Alfred
P. Soan Foundation Fellowship, ARO Contract
CAAHO04-96-1-0257, NSF Career Award CCR-9625217,
ONR young Investigator Award (N0014-97-1-0631),
Honda, Intel, and NSF/ARPA Center for Computer
Graphics and Scientific Visualization.

Thanks to Robert and Shirley Gregory for additional
funding, Rhinoceros for making the beta version of their
modeling program freely available, Scott Nelson for the
triceratops model we found on the web, Todd Gaul for
video editing, and Henry Fuchs.

12 References

[1] A. Barr. Global and local deformations of solid primitives.
ACM Computer Graphics, vol. 18, pp. 21--30, 1984.

[2T. Beier and S. Neely. Feature-based image
metamorphosis. In Computer Graphics (S GGRAPH '92
Proceedings), vol. 26, 1992, pp. 35--42.

[3]M. de Berg, M. van Kreveld, M. Overmars, and O.
Schwarzkopf. Computational Geometry: Algorithms and
Applications; Springer-Verlag, 1997.

[4] E. Bethel and S. Uselton. Shape distortion in computer-
assisted keyframe animation. In State of the Art in
Computer Animation, N. M.-T. a. D. Thalmann, Ed.:
Springer-Verlag, 1989, pp. 215-224.

[5]D. Chen, A. State, and D. Banks. Interactive Shape
Metamorphosis. Proc. of 1995 Symposium on Interactive
3D Graphics, pp. 43--44, 1995.

[6JE. Chen and R. Parent. Shape Averaging and its
Applications to Industrial Design. IEEE Computer
Graphics & Applications, val. 9, pp. 47-54, 1989.

[7]M. Chen, M. W. Jones, and P. Townsend. Methods for
Volume Metamorphosis. In Image Processing for
Broadcast and Video Production, Y. P. a S. Wilbur, Ed.,
1995.

[8]D. Cohen-Or, D. Levin, and A. Solomovici. Contour
Blending Using Warp-Guided Distance Field Interpolation.
In |EEE Visualization '96: | EEE, 1996.

[9)M. Covell and M. Withgott. Spanning the gap between
motion estimation and morphing. Proc. of IEEE
International Conference on Acoustics, Speech and Signat
Processing, vol. 5, pp. 213-216, 1994.

[10] D. DeCarlo and J. Gallier. Topological Evolution of
Surfaces. Prof. of Graphics Interface’96, pp. 229-235,
1996.

[11] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M.
Lounsbery, and W. Stuetzle. Multiresolution Analysis of
Arbitrary Meshes. In SGGRAPH'95, 1995, pp. 173--182.

[12] E. Galin and S. Akkouche. Blob Metamorphosis based
on Minkowski Sums. Computer Graphics Forum
(Eurographics'96), val. 15, pp. 143-153, 1996.

[13] A. Gregory, A. State, M. Lin, D. Manocha, and M.
Livingston. Feature-based Surface Decomposition for
Correspondence and Morphing between Polyhedra.
Department of Computer Science, University of North
Carolina Technical Report TR98-14, 1998.

[14] L. Guibas and J. Hershberger. Morphing Simple
Polygons. In Proc. 10th Annu. ACM Sympos. Compuit.
Geom., 1994, pp. 267--276.

[15] T. He, S. Wang, and A. Kaufmann. Wavelet-Based
Volume Morphing. Proceedings of IEEE Visualization, pp.
85-91, 1994.

[16] J. Hodgins and N. Pollard. Adapting Simulated
Behaviors for New Characters. SIGGRAPH'97 Conference
Proceedings, pp. 153-162, 1997.

[17] T. Hong, N. Magnenat-Thalmann, and D. Thalmann. A
general algorithm for 3D shape interpolation in a facet-
based representation. In Proceedings of Graphics Interface
'88, 1988, pp. 229--235.

[18] T. Kanai, H. Suzuki, and F. Kimura. 3D Geometric
Metamorphosis based on Harmonic Maps. Pacific
Graphics, pp. 97-104, 1997.

[19] A. Kaul and J Rossignac. Solid-interpolating
deformations: construction and animation of PIPs. In Proc.
Eurographics, 1991, pp. 493--505.

[20] J Kent, W. Carlson, and R. Parent. Shape
transformation for polyhedral objects. S GGRAPH '92
Conference Proceedings, pp. 47--54, 1992,

[21] J Kent, R. Parent, and W. Carlson. Establishing
Correspondences by Topological Merging: A New
Approach to 3-D Shape Transformation. Proceedings of
Graphics Interface '91, pp. 271--278, 1991.

[22] F. Lazarus and A. Verroust. Feature-based Shape
Transformation for Polyhedral Objects. Fifth Eurographics
Workshop on Animation and Simulation, 1994,

[23] S. Lee, K. Chwa, S. Shin, and G. Wolberg. Image
Metamorphosis Using Snakes and Free-Form Deformations.
SGGRAPH 95 Conference Proceedings, pp. 439--448,
1995.

[24] A. Lerios, C. Garfinkle, and M. Levoy. Feature-Based
Volume Metamorphosis. S GGRAPH 95 Conference
Proceedings, pp. 449--456, 1995.

[25] J. Maillot, H. Yahia, and A. Veroust. Interactive Texture
Mapping. SIGGRAPH'93 Conference Proceedings, pp. 27--
34, 1993.

[26] M. Mortensen. Geometric Modeling: John Wiley and
Sons, 1997.

[27] R. Parent. Shape Transformation by Boundary
Representation Interpolation: A Recursive Approach to
Establishing Face Correspondences. The Journal of
Visualization and Computer Animation, vol. 3, pp. 219-239,
1992.

[28] R. Parent. Implicit Function Based Deformations of
Polyhedral Objects. In Implicit Surfaces '95, 1995.

[29] B. Payne and Ar. Toga. Distance field manipulation of
surface models. IEEE Computer Graphics and
Applications, vol. 12, pp. 65--71, 1992.

[30] W. T. Reeves. Particle Systems -- a Technique for
Modeling a Class of Fuzzy Objects. ACM Trans. Graphics,
vol. 2, pp. 91--108, April 1983.

[31] T. Sederberg, P. Gao, G. Wang, and H. Mu. 2D Shape
Blending: An Intrinsic Solution to the Vertex Path Problem.
SIGGRAPH '93 Conference Proceedings, pp. 15--18, 1993.

[32] T. Sederberg and E. Greenwood. A physicaly based
approach to 2D shape blending. S GGRAPH '92
Conference Proceedings, pp. 25--34, 1992.

[33] T. Sederberg and S.. Parry. Free-Form Deformation of
Solid Geometric Models. Computer Graphics (S GGRAPH
'86 Proceedings), vol. 20, pp. 151--160, 1986.

[34] M. Shapira and A. Rappoport. Shape Blending Using
The Star-Skeleton Representation. |EEE CG&A, vol. 15,
pp. 44--50, March 1995.

[35] G. Wolberg. Skeleton-Based Image Warping. The
Visual Computer, vol. 5, pp. 95--108, 1989.

[36] G. Wolberg. Digital Image Warping: |[EEE Computer
Society Press, 1990.

[37] W. Wyvill. Metamorphosis of Implicit Surfaces.
SIGGRAPH'90 Course 23- Modeling and Animation with
Implicit Surfaces, 1990.

Models Triangles Feature Net Mor phing User Time Time to Compute Merged
Vertices Patches Polyhedron on R10000 CPU
House-Igloo (Fig. 3) 82 40 16 10 ~5min <1s
Human-Triceratops (Fig. 12) 5,660 | 17,528 176 86 ~6 hours 2.5min
Human Heads (Fig. 10) 3,426 4,020 134 67 ~3hours 30 seconds
Donut-Cup (Fig. 11) 4,096 8,452 63 50 ~4 hours 1min

Table 1: Performance of our algorithm on four different pairs of input polyhedra. The table shows
model complexity, the number of feature net vertices and morphing patches, the times to specify the
features and trajectories by the user and times to compute the merged polyhedron on a SGI Onyx 2

Figure 9. Human-triceratops feature net and morph.

'sdoee211) pue tewny usamiaq sydiow 11se (NdD 0000TH Ue uo ulw Gz xoidde ui paindwod) uoupayAjod

pabswi ay L (q) 'suondsselul-Jjes ploAe 01 Apybis 2. (jul,, 01 apewl Sem UYoIym ‘[1el Te|§ JBuTed sUl punoJe Ma) e 10} 10808 ‘saul| 1ybreuss a.e ss103os ke Buiyd.iow 150 eipayAjod oma ey

JO UJ80 U0 SA01BA [eWRIXS G8T JO SKU0D (paJ) Sieu aineajay | 'sajbuelll 099G Jo S1Sisuod sdoeeo il ayl 'sajbueln 825/ T Jo SlssuU0d tewny ay . ‘ydiow sdoreol-uewnH () T 24nbi4
()

";nuyBnop pue dno usemiag sydiow 11se (NdD 0000TH Ue uo ulw T “xoudde ul peindwiod) uoupayAjod pebiew

ayl (q) 'suoinssieul-4pes plore 01syred paaind Buoe ,paInod, Sem R LBRW aym ‘dnd ay) Jo Wil syl punote maje o) 1deoxs ‘saul| 1yb s a.e salio1ds feny Buiydiow 1so N eipayAjod

0M13Y] JO 4Jes U0 SSO1BA LR £9 JO 55U (pa1) Slpu ainea)ay] 'so|buelil 25 Jo Sisisuod dnoayl 'sajbue il 960 JO SISsU0D Inuybnop ay 1 'ydiow dna-inuybnoq () "'eT a4nbi4
[C)]

'speay ay1 usamieq sydiow 11se (NdD 0000TH Ue uo 33s Og "xoJdde ul paindwos) uopayAjod pabiew ayl (q) 'ssul| ybreJs ae oo feny Buiydiow || epayAjod oml ayy

4O 4OeS U0 SS0LBA [PUR.IXS FET JO S18U00 (Pa) Sieu 8nies} 8y | 's9|fue i) 020"y J0 SISISU0D pesy 3fews) a8y | 'sa|Bue Ll 9Z1'€ JO SISSU00 peay 8 ew ay | “yd.ow spesy vewnH (e) 'zt 8.nbi4
(a) (e)

