
Real-Time Simulation of Deformable Objects: Tools and Application

Joel Brown
Stanford University
Comp. Sci. Dept.

Stephen Sorkin
Stanford University
Comp. Sci. Dept.

Cynthia Bruyns
Stanford-NASA

Biocomputation Center

Jean-Claude Latombe
Stanford University
Comp. Sci. Dept.

Kevin Montgomery
Stanford-NASA

Biocomputation Center

Michael Stephanides
Stanford-NASA

Biocomputation Center

Abstract

This paper presents algorithms for animating de-
formable objects in real-time. It focuses on computing the
deformation of an object subject to external forces and de-
tecting collisions among deformable and rigid objects. The
targeted application domain is surgical training. This ap-
plication relies more on visual realism than exact, patient-
specific deformation, but requires that computations be per-
formed in real-time. This is in contrast with pre-operative
surgical planning, where computations may be done off-
line, but must provide accurate results. To achieve real-
time performance, the proposed algorithms take advantage
of the facts that most deformations are local, human-body
tissues are well damped, and motions of surgical instru-
ments are relatively slow. They have been integrated into
a virtual-reality system for simulating the suturing of small
blood vessels (microsurgery).

1. Introduction

Real-time simulation of deformable objects is needed in
many areas of graphic animation, for example to generate
cloth motions in interactive video games and to provide re-
alistic graphic rendering of soft human-body tissues in sur-
gical training systems. Deformable objects raise a complex
combination of issues ranging from estimating mechanical
parameters, to solving large systems of differential equa-
tions, to detecting collisions, to modeling responses to col-
lisions. See [10] for problems and techniques in cloth mod-
eling and [8] for issues arising in surgical simulation. Many
issues still lack adequate solutions, especially when simula-
tion must be real-time.

Here, we focus on two main problems: (1) computing
the deformation of a viscoelastic object subject to external
forces, and (2) detecting collisions among deforming and

rigid objects. Our main goal is to develop efficient data
structures and algorithms that can process large models at
a rate compatible with real-time graphic animation (30 Hz).
To achieve this goal, we exploit the fact that many deforma-
tions are local. By propagating forces in a carefully ordered
fashion through an elastic mass-spring mesh, we effectively
limit the computations to the portions of objects that un-
dergo significant deformations. To accelerate collision de-
tection, we pre-compute hierarchical representations for all
objects in the scene; when objects are being deformed, we
only update those parts of the hierarchies that need to be
modified.

We have used these algorithms, along with other tech-
niques, to build a system for microsurgical training. Micro-
surgery involves the repair of approximately 1mm vessels
and nerves under a microscope. Using a forceps, the sur-
geon maneuvers a suture (needle and thread) through the
two ends of a severed vessel and ties several knots to stitch
the two ends together. The two parts of the vessel undergo
deformations caused by their interactions with the suture
and the forceps. The surgeon receives only visual feedback,
as the vessel is too small to produce any perceptible reac-
tion force. Microsurgeons acquire their initial skills through
months of practice in an animal lab. Goals of our system
include a decrease in training time, objective evaluation of
the training, and an alternative to using lab animals. The
need for suture simulation has been previously addressed
in [8, 19].

Sections 2 and 3 present our simulation and collision-
detection algorithms. Section 4 describes the microsurgical
system. Section 5 discusses current and future work.

2. Computation of Object Deformations

Research on modeling deformable objects has increased
dramatically in the past few years. Most proposed 3D mod-
els fall into two broad categories, mass-spring meshes and



finite elements. A mass-spring mesh is a set of point masses
connected by elastic links. It represents the tissue geome-
try and is used to discretize the equations of motion. Mass-
spring models have been used in facial animation [25], cloth
motion [3], and surgical simulation [11], to cite only a few
works. They are relatively fast and easy to implement, and
allow realistic simulation for a wide range of objects, in-
cluding viscoelastic tissues encountered in surgery.

Finite element models (FEMs) use a mesh to decompose
the domain over which the differential equations of motion
are solved, but do not discretize these equations. The mesh
represents the domain initially occupied by the object and
the FEM technique computes a vector field representing the
displacement of each point in this domain. For example,
FEMs have been used to model facial tissue and predict
surgical outcomes [13, 15, 22]. They may be more accu-
rate than mass-spring models, but they are more computa-
tionally intensive, especially for complex geometries and
large deformations. Some systems use either mass-spring
or FEM techniques depending on the situation [16]. Others
use preprocessing steps to reduce FEM computation [4, 7],
and [21] extends the “tensor-mass” model of [7] to non-
linear elasticicty. Other examples of mass-spring models,
FEMs, and alternate models are too numerous to cite here.

Mass-spring meshes seem better suited for surgical train-
ing – the application domain considered in this paper –
which relies more on visual realism than exact, patient-
specific deformation, but requires that simulations be per-
formed in real-time. In contrast, FEMs may address bet-
ter the needs of other applications (e.g., pre-operative sur-
gical planning and predicting the long-term outcome of a
surgery), where computations can be done off-line, but must
provide accurate, patient-specific results.

2.1. Mass-spring elastic mesh

We represent the geometry of a deformable object by a
3D meshM of n nodes Ni (i = 1,...,n) connected by links
Lij , i, j ∈ [1, n], i 6= j. Each node maps to a specific point
of the object, so that the displacements of the nodes de-
scribe the deformation of the object. The nodes and links
on the object’s surface are triangulated, whereas the other
nodes and links are unrestricted, though it is often conve-
nient to arrange them in a tetrahedral lattice. Figure 1a
shows the surface and underlying links of a mesh represent-
ing a severed blood vessel; this mesh contains 98 nodes and
581 links. The more complex mesh in Figure 1b consists of
40,889 nodes and 212,206 links forming a tetrahedral lat-
tice.

The mechanical properties (viscoelastic, in most surgical
simulation applications) of the object are described by data
stored in the nodes and links ofM . A massmi and a damp-
ing coefficient ci are associated with each node Ni, and a

stiffness kij is associated with each link Lij . The internal
force between two nodesNi andNj is F ij = −kij∆ijuij ,
where∆ij = lij−rlij is the current length of the link minus
its resting length, and uij is the unit vector pointing from
Ni towardNj . The stiffness kij may be constant or function
of ∆ij . In either case, F ij is a function of the coordinate
vectors xi and xj of Ni and Nj . This representation can
describe objects that are nonlinear, non-homogeneous, and
anisotropic. We typically initialize the parameter values us-
ing available biomechanical data and tune them based on
comments given by surgeons interacting with our models.

At any time t, the motion/deformation ofM is described
by a system of n differential equations, each expressing the
motion of a nodeNi:

miai + civi +
∑

j∈σ(i)

F ij(xi,xj) = mig + F
ext
i (1)

where xi is the coordinate vector of Ni, vi and ai are its
velocity and acceleration vectors, respectively, mig is the
gravitational force, and F exti is the total external force ap-
plied to Ni. σ(i) denotes the set of the indices of the nodes
adjacent to Ni inM .

2.2. Simulation algorithm

We have developed a “dynamic” and a “quasi-static”
simulator. The dynamic simulator uses classical numeri-
cal integration techniques such as fourth order Runge-Kutta
to solve Eq. 1. However, in many situations encountered
in surgical simulation, a simpler algorithm based on quasi-
static assumptions gives realistic results at a much faster
rate. We describe this quasi-static simulator below.

Assumptions. We refer to the nodes ofM that are sub-
ject to external forces as the control nodes. We assume that
the position of each such node is given at any time. In our
surgical simulation system, the control nodes correspond to
the portions of tissue that are pulled or pushed by surgical
instruments or held fixed by bone structures or clamping
tools. The positions of the displaced control nodes are ob-
tained online by reading the positions/orientations of track-
ing devices. We also assume that the velocity of the con-
trol nodes is small enough so that the mesh achieves static
equilibrium at each instant. This is a reasonable assump-
tion for soft objects with relatively high damping parame-
ters, which is the case for most human-body tissues. When
these assumptions do not hold, the dynamic simulator must
be used.

Quasi-static algorithm. Under the above assumptions,
we neglect dynamic inertial and damping forces. The shape
of M is defined by a system of equations expressing that
each non-control nodeNi is in static equilibrium:

∑

j∈σ(i)

F ij(xi, xj)−mig = 0. (2)



(a) (b)

Figure 1. Mesh examples

Let I be the set of indices of all the non-control nodes of
M , and let δ be a constant time step (in our implementation
δ is set to 1/30 s). At each time t = kδ, k = 1, 2, ..., the
quasi-static simulator solves Eq. 2 for the positions of all
the non-control nodes. To achieve real-time animation, it
returns these positions within time δ. The algorithm is the
following:

Algorithm QSS:
1. Acquire the positions of all the control nodes
2. Repeat until time δ has elapsed

For every i ∈ I
(a) f i ←

∑
j∈σ(i) F ij −mig

(b) xi ← xi + αf i

Step 2 computes the residual force applied to each node
and displaces the node along this force. A conjugate-
gradient-style method can also be used by moving the node
along a combination of the old and the new forces. Ideally,
the value of the scaling factor α should be chosen as large
as possible such that the iteration converges. This choice
typically requires experimental trials.

The timeout condition of Step 2 guarantees that QSS op-
erates in real-time even as the size of the meshM increases.
Hence, Step 2 is not guaranteed to reach exact equilibrium
at every step, that is, some Ni’s will have a non-zero force
f i acting on them after δ amount of time. As mesh size in-
creases, each iteration of Step 2 will take longer, and thus
fewer loops will be possible in the allowed time. By com-
paring the positions computed by QSS to the actual equilib-
rium positions (computed without timeout), we can measure
how the accuracy of the simulation degrades as the mesh
complexity increases.

Step 2(b) updates the position of each non-control node
using the most recently computed positions of the adjacent
nodes, rather than those computed at the previous iteration
of Step 2. This scheme is most advantageous when the
nodes are processed in a wave-propagation order starting
at the displaced control nodes and expanding towards the

Figure 2. Simulation of a cutting operation

nodes farthest away from any displaced node. This order-
ing is computed by a breadth-first scan of the meshM :

Algorithm NODE-ORDERING:
1. Initialize I to the empty list
2. Mark the displaced control nodes inM to be at level 0
3. For k = 1, 2, ..., mark the unmarked nodes adjacent to
a node at level k − 1 to be at level k, and store them in I ,
until all non-control nodes have been marked.

The displaced nodes may be arbitrarily distributed over
the mesh. The outcome of NODE-ORDERING is a list I
of nodes such that if index i appears before index j in I
then the level ofNi is less than or equal to that ofNj . QSS
processes the nodes as they have been ordered in I .

Node ordering enables another major computational sav-
ings. During an iteration of Step 2, if the positions of all
the nodes at some level k are modified by less than a small
pre-specified amount, then the algorithm stops propagating
the deformation further. In this way, the number of levels
treated at each iteration adjusts automatically. This compu-
tation cutout is especially useful when object deformations
are local.

While QSS is being executed, any change in the
set of displaced nodes only requires re-invoking NODE-
ORDERING to compute a new ordered set I . Similarly, the
mesh’s topology may change at any time. For example, in



Figure 2 a cutting operation is being performed. Links are
removed from the mesh as they are crossed by the scalpel,
so that the mesh used by QSS changes frequently. (In prin-
ciple, such a cutting operation violates assumptions made
above, and a dynamic simulator should be used. Never-
theless, QSS, which was used to produce Figure 2, gives
realistic results.)

Performance evaluation. The above algorithms are
written in C++ and run on a 450 MHz processor on a Sun
Ultra 60 workstation with 1 GB RAM. To address visual
realism, we asked surgeons to verify that the deformations
were similar in shape and velocity to those encountered in
clinical operations. Figure 6 shows such deformations.

We did other experiments to quantitatively evaluate the
performance of QSS. In particular, we created a regular
mesh whose nodes form a rectangular lattice. Each node
is linked to its neighbors in the x, y, and z directions. It is
also diagonally linked to neighbors in the xy, xz, and yz
planes. All links are given the same constant stiffness. Our
meshes ranged from a 3x3x3 box (27 nodes and 64 links) to
a 20x20x20 box (8000 nodes and 66120 links).

Given one such mesh, we fix the nodes of the bottom
face, and displace the middle node of the top face upwards
by one unit. We then run QSS, but instead of running Step
2 for a fixed amount of time, we do a fixed number k of
iterations (k = 100, 50, 20, 10, or 5), where an iteration
involves updating f i and xi for all the non-control nodes.
We repeat several times this cycle of displacing the control
node (by an additional unit) and doing k iterations, and after
each cycle we record the position of each node. Errors are
computed as the distances between these positions and the
actual equilibrium positions. The equilibrium positions are
found by running QSS until the force on each non-control
node is zero.

Figure 3a shows maximum and average errors for the
different mesh sizes for 5 consecutive cycles of unit dis-
placement followed by k = 10 iterations. We see that errors
increase slightly as the box grows from 27 to 216 nodes,
but then minimally as size increases to 8,000 nodes. The
larger boxes have many nodes which may be moving hardly
at all, which contribute to lowering the average error. How-
ever, the maximum error follows the same pattern at about
twice the average error, and remains at most about 10% of
the magnitude of the displacement of the control node for
all mesh sizes.

Figure 3b shows maximum error after one unit displace-
ment for different numbers k of iterations. It compares QSS
with and without the computation cutout described previ-
ously. The plots for two different boxes are shown together,
and we can see that errors are quite low in all cases, even for
the largest box and the lowest number of iterations. When
using the cutout, errors do not strictly drop off to 0 as the
number of iterations increases, but the more important dif-

ference is the sharp decrease in the time required per iter-
ation. Table 1 displays the number of iterations that QSS
performs while maintaining a 30 Hz update rate, without
and with cutout.

These experiments demonstrate that for the objects
given, we can reasonably maintain a small relative error
given only 10 or fewer iterations of QSS Step 2 per time
interval. Furthermore, the cutout method can complete
these iterations in the appropriate 1/30 second, and scale to
meshes containing thousands of nodes with no significant
performance penalty.

3. Collision Detection

Research on collision detection between rigid objects
has a long history in robotics, graphics, and solid mod-
eling. Two main families of methods have been pro-
posed: feature-based (e.g. [1, 17, 18]) and hierarchical
(e.g. [6, 9, 14, 20, 23]). A feature-based method exploits
temporal and spatial coherence in the geometric model to
maintain the pair of closest features. A hierarchical method
pre-computes a hierarchy of bounding volumes for every
object. During a collision test, the hierarchies are used to
quickly discard large subsets of the object surfaces that are
too far apart to possibly collide. Hierarchies using various
primitive volumes have been proposed. While some vol-
umes allow closer-fit approximation, they also yield more
costly intersection checks. Spheres give good results over a
broad range of objects.

Although each approach has distinct advantages, the hi-
erarchical approach is better suited when objects are highly
concave. The main issue in using it with deformable objects
is that pre-computed hierarchies may become invalid when
objects deform, while re-computing new ones at each colli-
sion query would be too time consuming. Below, we pro-
pose an algorithm that does not modify the topology of the
hierarchy representing an object, but only updates the size
and location of the primitive volumes labeling the nodes of
this hierarchy. Our algorithm derives from the one proposed
by Quinlan [23] for rigid objects.

Fewer works exist for deformable objects (e.g. [2, 26,
11, 24, 27]). The algorithm in [26] is the closest to ours.
It also builds a tree of fixed topological structure. But this
tree is not balanced (which may seriously increase the cost
of collision queries) and its nodes are AABBs. The main
difference, however, is in the tree-maintenance algorithm.
Unlike [26], our algorithm exploits the locality of most de-
formations to minimize the number of node updates. The
algorithm in [27] is specifically aimed at detecting self-
collisions of cloth-like objects, an issue that we have not
carefully studied so far.



Figure 3. (a) Maximum (solid lines) and average (dashed lines) error vs box size (b) Maximum error
without (solid lines) and with (dashed lines) computation cutout vs number of iterations

Mesh Nodes Edges Iterations at 30 Hz Iterations at 30 Hz
without cutout with cutout

6x6x6 216 1440 24 24
8x8x8 512 3696 9.5 13

10x10x10 1000 7560 4.6 8
15x15x15 3375 27090 1.2 7
20x20x20 8000 66120 0.4 6

Table 1. Effect of computation cutout on simulation rate

3.1. Quinlan’s algorithm

Sphere tree of an object. Let A be a (rigid) object rep-
resented by its triangulated surface S. Quinlan’s algorithm
covers every triangle in S with small spheres of predefined
radius ε and constructs an approximately balanced binary
tree T that has one leaf per sphere of radius ε. Each other
node N in T is a sphere that encloses all the leaf spheres
of the sub-tree rooted at N . T is constructed by recursively
partitioning the set E of leaf spheres contained in a sub-tree
(initially the set of all leaf spheres in T ) into two subsetsE1
andE2 of equal cardinality, until each subset contains a sin-
gle leaf sphere. The partitioning operation tries to minimize
the intersection and the radii of the two spheres that respec-
tively enclose the leaf spheres in E1 and E2. A technique
to partition the set E first computes the box that is aligned
to the object’s coordinate frame and contains the centers of
the leaf spheres in E. It then divides the leaf spheres along
the longest side of this box.

Collision detection. Let T1 and T2 be the respective
sphere trees of two (rigid) objects A1 and A2. A collision
query is specified by the position and orientation ofA1 rela-
tive to A2. Collision detection is performed by a depth-first
traversal of T1 and T2 during which pairs of spheres from

the two trees are examined. If two intermediate spheres
have null intersection, then the leaf spheres they contain
cannot possibly intersect, and the traversal is pruned; oth-
erwise the children of one of the two nodes are examined.
If two leaf spheres intersect, the two triangles tiled by these
spheres are explicitly tested for collision. For N1 and N2,
the root spheres of T1 and T2, respectively, the following
algorithm returns 1 if it detects a collision, and 0 otherwise:

Algorithm COLLISION(N1, N2):
1. IfN1 andN2 have null intersection then return 0
2. Else

(a) If both N1 and N2 are leaf spheres then test the
corresponding two triangles for collision; return 1 if
they collide and 0 otherwise
(b) IfN2 is smaller thanN1 then switch N1 andN2
(c) If COLLISION(N1,left-child(N2)) = 1 then re-
turn 1

Else if COLLISION(N1,right-child(N2)) = 1 then
return 1

Else return 0



3.2. Application to deformable objects

To use COLLISION, we must maintain the sphere tree
of every deforming object. We propose a new sphere tree
whose balanced structure is computed only once. When an
object deforms, the structure of its tree remains fixed, i.e.,
no sphere is ever added or removed; only the radii and po-
sitions of some spheres are adjusted. Moreover, the mainte-
nance algorithm performs adjustments only where they are
needed.

Construction of a sphere tree. Let S be the triangulated
surface of a deformable object A in some initial shape. The
pre-computed tree T for A differs from the one in [23] in
two ways:

(1) Instead of tiling the triangles of S with small equal-
sized spheres, we assign each triangle a single leaf sphere of
T – the smallest sphere enclosing the triangle. Hence, when
S undergoes a deformation, the number of leaf spheres of
T remains constant. Moreover, updating the radius and po-
sition of the sphere enclosing a deforming triangle is faster
than computing a new tiling.

(2) The approximately balanced structure of T is still
generated by recursively partitioning the leaf spheres into
two subsets of equal size. But the radius and position of
each non-leaf sphere is computed to enclose the sphere’s
two children. This yields a slightly bigger sphere than the
one computed to contain the descendant leaf spheres, but
the computation is much faster.

Collision detection. COLLISION is used unchanged.
Maintenance of a sphere tree. Each deformation of

one triangle of S requires adjusting the radius and position
of the corresponding leaf sphere and of all its ancestors up
to the root of T . Our algorithm performs those changes only
prior to processing a query. The operation is done bottom-
up, using a priority queueQ of spheres sorted by decreasing
depths in T . Q is initialized to contain all the leaf spheres
that enclose triangles that have been deformed since the last
update of T . It is then used as follows:

Algorithm MAINTENANCE:
While Q is not empty do

1. w ← extract(Q)
2. Adjust the radius and position of w
3. Insert(Q,parent(w))

The only spheres that are modified are those that contain
at least one deformed triangle. Each such sphere is modified
only once, even if it contains several deformed triangles.

Clearly, MAINTENANCE will perform better when de-
formations are local than when they are scattered through-
out S. More specifically, a local deformation of S affecting
k � s triangles, where s is the total number of triangles in
S, results in a total update time of O(k + log s). Instead, if
the k triangles are spread over the leaves, this cost can be

Figure 4. Collision-detection performance

O(k log s). However, in the worst case, if many triangles
have changed shape, the maintenance operation only takes
time O(s).

3.3. Performance evaluation

The above algorithms were implemented in C++. We
give results of experimental performance tests on an Intel
400-MHz Pentium II processor, with 256-MB memory and
running Windows 2000.

Sphere tree construction. The pre-computation of an
object’s sphere tree need not be particularly efficient, since
it is done only once per object, prior to any simulation. Our
software runs in time proportional to the number of triangles
and takes on the order of 0.1 milliseconds per triangle.

Sphere tree maintenance. To evaluate MAINTE-
NANCE we considered a surface S initialized to a flat hor-
izontal 100x100 grid, with each square split into two tri-
angles. Hence, S consists of 20,000 triangles. To create
a local deformation of S, we pick a vertex V , a radius ρ
of deformation between 1 and 10, and a direction (upward
or downward), all at random. Each vertex within distance
ρ of V is translated by a distance inversely proportional to
its distance to V . To create scattered deformations of S,
we repeat this process several times. After computing the
sphere tree for the flat surface, we ran MAINTENANCE to
update this tree after various deformations. We measured
a running time for MAINTENANCE of 0.06 milliseconds
per deformed triangle.

Collision queries We considered two objects. One is
modeled as a flat square mesh of 8 by 8 units tessellated
with 8,192 triangles. The other object is a spherical ball, 2
units in diameter and tessellated with 1,024 triangles. We
moved the ball along a straight path though the center of
the square mesh, from 64 units separation to one unit pen-
etration. The query times for different relative positions of
the objects are shown in Figure 4. When the objects are
far apart, each query is extremely fast and takes on the or-
der of tenths of a millisecond. When they get closer than 1
unit together, query time grows quickly (dark curve) to an



Figure 5. Setup for microsurgery

asymptote of just under 60 milliseconds, as more spheres
in the trees had to be examined to rule out a possible colli-
sion. Once the objects are in collision, the query time drops
sharply to under 10 milliseconds (grey curve). This sharp
drop suggests that a timeout could be imposed on COLLI-
SION, with a relatively minor risk of not detecting a col-
lision once in a while. We did similar experiments after
deforming the two objects and updating their sphere trees
using MAINTENANCE. We observed no significant degra-
dation of the query times, even for rather large deformations
of the objects.

4. Microsurgical Simulation System

System Overview. Figure 5 shows a user interacting
with our system, by manipulating real surgical instruments
(here, forceps) mounted on electromagnetic tracking de-
vices. The positions/orientations of the trackers are read
at 100 Hz, and the opening and closing of the forceps is
obtained online by reading a sensor. The instruments are
rendered on the graphic display, along with the deformable
objects (in microsurgical simulation, a severed blood vessel
and a suture made of a needle and thread). The graphic dis-
play is updated at 30 Hz. The user has complete control of
the viewpoint and may use stereo glasses.

The simulator QSS of Section 2 computes the deforma-
tions of the vessel, while the suture’s deformations are com-
puted as described below. All collisions are handled using
the algorithm of Section 3. The most frequent collisions are
between the forceps and the vessel, the needle and the ves-
sel, the thread and the vessel, the thread and the forceps, the
thread with itself, and one half of the vessel with the other.
Our implementation on a dual-processor machine (Sun Ul-
tra 60, two 450 MHz processors) allows the processing of
deformations and collision detection to not conflict with the
rendering.

Models. Each half of the vessel is modeled as a trun-
cated double-hulled cylinder (Figure 1a). The inner and
outer cylinders are modeled by several layers of nodes, with
the layers evenly spaced, and each layer consisting of sev-

eral nodes evenly spaced around a circle. Each node is con-
nected by deformable links to its neighbors within a layer
and in neighboring layers. There are also connections be-
tween the nodes of the inner and outer cylinders. One end
layer of each vessel is fixed in space, representing the fact
that the vessels are clamped down during surgery, and only
a portion of their length can be manipulated. When the
two parts of the vessel touch one another, their meshes are
merged (we assume sticking contact) and QSS computes the
deformation of this new mesh.

Simulation of the suture. The thread is deformable,
but not elastic. We model the suture as an articulated ob-
ject with 200 short straight links sequentially connected at
nodes acting as spherical joints. Any node of the suture
may be constrained by another object. For example, one
node might be grasped by a forceps, and thus its position
is constrained by the forceps. If the suture has pierced
through a vessel, a node will be constrained by the position
of the vessel. The motion of the suture is calculated using a
“follow-the-leader” technique presented in [5]. Pulling on
one or both ends of the suture always results in deforming
the thread, except when there is no remaining slack and the
suture has pierced through the vessel; then the displacement
causes the vessel to deform.

Examples of interactions. Figures 6a and 6b show de-
formations generated by forceps holding one or two parts
of the blood vessel. In Figures 6c and 6d the suture is
pierced through a vessel, and pulls down first on one end
of the vessel and next on both ends to bring them together.
Figures 6e and 6f show an example where the suture is
wrapped around a forceps and another where it collides with
itself and the vessel. In these examples, the full set of com-
putations (deformation, collision detection, tool simulation,
etc.) is done at 30 Hz. Note the diversity of deformations
achieved by the vessels.

5. Conclusion and Future Work

We have designed new fast algorithms for simulating the
deformations of soft objects and detecting collisions among
deforming and rigid objects. These algorithms take ad-
vantage of several characteristics of surgical training: (1)
visual realism is more important than accurate, patient-
specific simulation; (2) most deformations are local; (3)
human-body tissues are well damped; and (4) surgical in-
struments have relatively slow motions. Our simulator ex-
ploits these characteristics to solve quasi-static equations
using a “wave-propagation” technique that has an automatic
computation cutout when deformations become insignifi-
cant. The collision algorithm exploits deformation locality
to minimize the number of updates in the hierarchical rep-
resentations of the deforming objects.

These algorithms have been integrated into a virtual-



Figure 6. (a),(b) Forceps deforming severed vessel, (c) Suture pulling vessel down, (d) Suture pulling
two vessels together, (e) Suture wrapped around forceps, (f) Suture colliding with self and vessel
end

reality system for simulating the suturing of small blood
vessels. This system has been used by plastic and recon-
structive surgeons in our lab and at various exhibits, and
deemed realistic and potentially very useful. Our next step
is experimental and clinical verification, by having surgeons
who are learning the procedure use this tool, and assess-
ing the quality of their virtual repairs through measurements
such as angle and position of vessel piercing. We will then
try to establish quantitatively how practicing with the simu-
lator affects future quality of real vessel repairs.

We are also investigating other surgical applications.
While force feedback is irrelevant in microsurgery, it is crit-
ical in many other applications [8]. QSS can compute the
force applied to each displaced control node in an elastic
mesh. But it does not achieve an update rate compatible
with haptic interaction (roughly 1000 Hz). To connect our
simulator to haptic devices, we are developing fast tech-
niques to interpolate between forces computed by QSS. The
elastic mesh model does not allow the explicit representa-

tion of incompressibility constraints often encountered in
human-body tissues. A technique proposed in [12] to over-
come this limitation is to apply artificial corrective forces
to surface nodes to keep the object’s volume approximately
constant. Extending our collision-detection module to effi-
ciently detect collisions of an object with itself is another
short-term goal.

There are many other issues to consider, such as the de-
tection of mesh degeneracies (e.g., when a link crosses an-
other) and the modeling of collision responses. As more is-
sues are addressed in a simulation system, more algorithms
will run concurrently, and their efficiency will become even
more critical.

Acknowledgments: This research was conducted in the Stanford-
NASA Biocomputation Center. It was supported by grants from the Na-
tional Aeronautics and Space Administration (NAS-NCC2-1010), the Na-
tional Science Foundation (IIS-9907060), and the NIH National Libraries
of Medicine (NLM-3506). It has also benefited from equipment gifts made
by Sun Microsystems and Intel. This paper was improved by discussions
with Frédéric Mazzella. Yanto Muliadi produced some of the performance
data for the collision-detection algorithms.



References

[1] D. Baraff. Curved surfaces and coherences for non-
penetrating rigid body simulation. Computer Graphics,
24(4):19–28, 1990.

[2] D. Baraff and A. Witkin. Dynamic simulation of non-
penetrating flexible bodies. Computer Graphics, 26(2):303–
308, 1992.

[3] D. Baraff and A. Witkin. Large steps in cloth simulation. In
ACM SIGGRAPH 98 Conference Proceedings, pages 43–52,
1998.

[4] M. Bro-Nielsen and S. Cotin. Real-time volumetric de-
formable models for surgery simulation using finite elements
and condensation. Computer Graphics Forum (Eurographics
’96), 15(3):57–66, 1996.

[5] J. Brown, K. Montgomery, J.-C. Latombe, and
M. Stephanides. A microsurgery simulation system. In
Fourth International Conference on Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI 2001),
Oct. 2001.

[6] J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi. I-
COLLIDE: An interactive and exact collision detection sys-
tem for large-scale environments. In Proceedings of ACM
Interactive 3D Graphics Conference, pages 189–196, 1995.

[7] S. Cotin, H. Delingette, and N. Ayache. A hybrid elastic
model allowing real-time cutting, deformations and force-
feedback for surgery training and simulation. The Visual
Computer, 16(8):437–452, 2000.

[8] H. Delingette. Towards realistic soft tissue modeling in med-
ical simulation. In Proceedings of the IEEE : Special Issue
on Surgery Simulation, pages 512–523, Apr. 1998.

[9] S. Gottschalk, M. C. Lin, and D. Manocha. OBB-tree: A
hierarchical structure for rapid interference detection. In
ACM SIGGRAPH 96 Conference Proceedings, pages 171–
180, 1996.

[10] D. H. House and D. E. Breen, editors. Cloth Modeling and
Animation. A.K. Peters, Ltd., 2000.

[11] A. Joukhadar and C. Laugier. Dynamic simulation: Model,
basic algorithms, and optimization. In J.-P. Laumond and
M. Overmars, editors, Algorithms For Robotic Motion and
Manipulation, pages 419–434. A.K. Peters, Ltd., 1997.

[12] E. Keeve, S. Girod, and B. Girod. Craniofacial surgery sim-
ulation. In Proceedings of the 4th International Conference
on Visualization in Biomedical Computing (VBC ’96), pages
541–546, Sept. 1996.

[13] E. Keeve, S. Girod, P. Pfeifle, and B. Girod. Anatomy-based
facial tissue modeling using the finite element method. In
Proceedings of IEEE Visualization ’96, 1996.

[14] J. T. Klosowski, M. Held, J. S. Mitchell, H. Sowizral, and
K. Zikan. Efficient collision detection using bounding vol-
umes hierarchies of k-DOPs. IEEE Transactions On Visual-
ization and Computer Graphics, 4(1):21–36, 1998.

[15] R. M. Koch, M. H. Gross, F. R. Carls, D. F. von Büren,
G. Fankhauser, and Y. I. H. Parish. Simulating facial surgery
using finite element models. In ACM SIGGRAPH 96 Confer-
ence Proceedings, pages 421–428, 1996.

[16] U. G. Kühnapfel, H. K. Çakmak, and H. Maaß. Endoscopic
surgery training using virtual reality and deformable tissue
simulation. Computers & Graphics, 24:671–682, 2000.

[17] M. C. Lin and J. F. Canny. A fast algorithm for incremental
distance calculation. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, pages 1008–
1014, 1991.

[18] B. Mirtich. V-clip: Fast and robust polyhedral collision
detection. ACM Transactions on Graphics, 17(3):177–208,
1998.

[19] R. V. O’Toole, R. R. Playter, T. M. Krummel, W. C. Blank,
N. H. Cornelius, W. R. Roberts, W. J. Bell, and M. Raibert.
Measuring and developing suturing technique with a virtual
reality surgical simulator. Journal of the American College of
Surgeons, 189(1):114–127, July 1999.

[20] I. J. Palmer and R. L. Grimsdale. Collision detection for
animation using sphere-trees. Computer Graphics Forum,
14(2):105–116, 1995.

[21] G. Picinbono, H. Delingette, and N. Ayache. Non-linear
and anisotropic elastic soft tissue models for medical simu-
lation. In Proceedings of the IEEE International Conference
on Robotics and Automation, May 2001.

[22] S. D. Pieper, D. R. Laub, Jr., and J. M. Rosen. A finite-
element facial model for simulating plastic surgery. Plastic
and Reconstructive Surgery, 96(5):1100–1105, Oct. 1995.

[23] S. Quinlan. Efficient distance computation between non-
convex objects. In Proceedings of the IEEE International
Conference On Robotics and Automation, pages 3324–3329,
1994.

[24] A. Smith, Y. Kitamura, H. Takemura, and F. Kishino. A
simple and efficient method for accurate collision detection
among deformable polyhedral objects in arbitrary motion. In
Proceedings of the IEEE Virtual Reality Annual International
Symposium, pages 136–145, 1995.

[25] D. Terzopoulos and K. Waters. Physically-based facial mod-
elling, analysis, and animation. The Journal of Visualization
and Computer Animation, 1:73–80, 1990.

[26] G. van den Bergen. Efficient collision detection of complex
deformable models using AABB trees. Journal of Graphics
Tools, 2(4):1–13, 1997.

[27] P. Volino and N. Magnenat-Thalmann. Collision and self-
collision detection: Efficient and robust solutions for highly
deformable surfaces. In Eurographics Workshop on Anima-
tion and Simulation, 1995.


