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Abstract
Combinatorial Hybrid Systems

This thesis treats the theory of hybrid systems and presents the reader with a unified
framework for modelling hybrid systems; the framework accepts natural limitations of
not only the system itself, but also limitations on the possible inputs to the system. The
framework uses a fully discrete abstraction of the continuous dynamics of the hybrid
system, however consepts from classical continuous control theory are preserved.

Previous ideas in this direction comes from the works of Tabuada and Pappas on
Model Checking LTL on controllable linear systems, where it is shown that model check-
ing, as known in computer science, can be used for checking properties of linear systems,
and from van Schuppen, Collins and Habets, who have shown sufficient conditions that
guarantee an affine system to cross a given hyper-plane in finite time. These two ideas
will be discussed and examplified in the first part of this thesis.

Based on this, the desired properties for a new modeling framework are derived and
presented in the second part of this thesis. Amongst other properties, some of the require-
ments to the framework are, that such consepts as vector fields, flow lines and Lyapunov
functions should be preserved. From these requirements and based on the theories de-
veloped by R. Forman two similar frameworks have been developed and are presented.
The first framework preserves some of the topological properties of Forman’s work which
results in a nice mathematical formulation, whereas the second framework is purely ge-
ometric oriented, which allows for more freedom in the mathematical formulation and
thereby gets a better and more intuitive relation to the original underlying dynamical sys-
tem.

In practice a discrete equivalent of the continuous dynamics is derived, by splitting the
continuous state space into a polyhedra complex, and on each of its polytopes approximate
the dynamics with an affine system on which the possible flows to the polytopes facets
can be expressed. Thereby control is abstracted into a selection of which subset of facets
of a given polytope should be considered as exit facets. Thus a purely discrete abstraction
of the entire hybrid system can be found and tools from computer science can be applied
directly.

In the final part ways of extending the work are discussed. Amongst others it is
discussed how optimal control can be included in the work along with possible ways
of refining the division of the system dynamics.
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Synopsis

Kombinatoriske Hybridsystemer

Denne afhandling behandler teorien bag hybridsystemer og præsentere læseren for en
forenet modelleringsramme for hybridsystemer; denne modelleringsform faciliterer natur-
lige begrænsninger af ikke kun systemet, men også input begrænsninger af systemet.
Modelleringsformen bruger en fuldtud diskret abstraktion af hybridsystemets kontinuerte
dynamik, dog på en sådan måde, at koncepter fra klassisk kontinuert reguleringsteori er
bevaret.

Tidligere ideer i denne retning kommer fra Tabuada og Pappas arbejde med model-
tjekkende LTL på kontrollerbare lineære systemer, hvor det er vist at modeltjekning, som
det er kendt i computer science, kan anvendes til at undersøge egenskaber ved lineære
systemer, og fra van Schuppen, Collins og Habets, som har vist tilstrækkelige betingelser
til at garantere at et affint system vil krydse et givent hyperplan i endelig tid. Disse to
ideer vil blive diskutteret og eksemplificeret i afhandlingens første del.

Baseret på dette bliver de ønskede egenskaber for en modelleringsformalisme udledt
og præsenteret i den anden del af afhandlingen. Nogle af egenskaberne, som bør be-
vares er koncepter såsom vektor felter, flow linier og Lyapunov funktioner. På basis af
disse krav og baseret på teorier udviklet af R. Forman er to lignende modelleringsforma-
lismer blevet udviklet og præsentert. Den første modelleringsformalisme bevarer nogle
af de topologiske egenskaber i Formans arbejde, hvilket resulterer i en pæn matematisk
formulering, hvorimod den anden formalisme er rent geometrisk orienteret, hvilket giver
mere frihed i den matematiske formulering og derved muliggør en tættere og mere intuitiv
relation til det oprindelige underlæggende dynamiske system.

I praksis bliver den diskrete ækvivalent af systemet lavet ved at opdele det kontinuerte
tilstandsrum i et polyhedralt kompleks, og på hver af polyhederne tilnærme systemets
dynamik med et affint system, hvorpå det er muligt at udlede hvike facetter af polytopen
som der kan styres til. Herved bliver kontrollen abstraheret til et valg af hvike facetter
som man gerne vil forlade polytopen igennem. Herved kan man lave en ret diskret ab-
straktion af hele hybrid systemet og værktøjer fra computer science kan direkte anvendes
til kontrolsyntese og -validering.

I den sidste del af afhandlingen bliver forskellige udvidelsesmuligheder behandlet.
Bl.a. diskuteres der hvordan optimal kontrol kan blive indkorporeret samt muligheder for
at rafinere opdelingen af systemet.
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Part I

Introduction

This part gives a general introduction to the background and motivation of this research.
A review of the literature in the different fields examined in this thesis is given and a
general methodology combining the contributions is presented.
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Chapter 1

Introduction

In the very heart of modern society lies control. One of the earliest usages of feed back
control is probably the use for regulating flow in water clocks in the 16th century B.C.
Later on it played a key role during the industrial revolution with Watts invention of the
flyball governor, which lead to a wide spread use of manufacturing machines. Such simple
proportional feed back regulation systems are omnipresent today, from the mechanical
thermostats in house hold radiators to fuel level control in car carburators.

Today, most of such simple controllers are still implemented purely mechanical due
to costs, but as the price for micro controllers capable of handling the tasks are continuing
to go down in price more and more control areas are taken over by a digital controller of
some form, one example of such is the afforementioned carburator, which in all newer
cars today is replaced by an electronic fuel injection system, with added sensors and a
micro controller for steering the motor revolutions.

All such controllers have traditionally been single set-point controllers working in
a homogenious environment. For instance, a house hold radiator thermostat is put at a
certain temperature and keeps it there. Likewise the fuel injection system gets a set-point
from the throttle and tries to generate a fuel consumption proportional to this. However,
as the processing capabilities of embedded micro controllers and the societies demands
goes up, the possibilities, and the demands for more advanced control does the same.

Some of these areas are for instance the desires to develop autonomous robots, this
being either under water, on land or in the air and development of supervisory control
systems/strategies for manufacturing and processing plants under possible changes in it
sensor, actuator and dynamic structure.

Such requirements can formally be captured within the modelling capabilities of hy-
brid systems which this chapter will seek to introduce some of the basic concepts of.

First of all a clarification is needed. Since the word hybrid has become a much hyped
buzz word during the last few years, especially in connection with hybrid cars and hybrid
approaches, hybrid systems in this context means a connection of dynamical systems.
Another, probably more correct word for the type of systems dealt with would be switched
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dynamical systems. However, this definition is often used when talking about purely
deterministic systems, which is not the case in general.

In the remainder of this work this is what is to be understood as a hybrid system:

Definition 1. A Hybrid System is a system composed of

- A finite set of dynamic systems defined on manifolds.

- A finite set of transfer maps, which maps a subset of one manifold to another.

Such systems appear everywhere in almost any system. One good example of a hybrid
system is a normal car with a manual transmission. Driving the car along in 1st gear, and
the car has one specific dynamic. Changing the gear into 2nd suddenly gives another
and different dynamic. This is what is known as a hybrid system with external events (the
driver changing gear). Taking again the same car, but now with an automatic transmission,
then there would still be a different dynamical system for each gear, however, the gearbox
will be switching between them according to a set of rules, such as: if speed > 20km

h
switch to second. Such hybrid system with a controller included is sometimes referred to
as a hybrid system with internal events.

Other examples of situations, where hybrid systems naturally occur:

- Manufacturing systems

- Fermentation processes

- Batch processes

- Electrical networks

- Rigid body interaction

These are just a few of the cases in which hybrid modeling techniques are used to
express the dynamics of the system. Even though a given system might appear to be
linear, then it is normally only valid in a small interval around a given operating point.
Going beyond the validity of the models operating range various extra phenomena needs
to be included, and in general hybrid systems occurs, when trying to extend linear models
with natural limitations, such as:

- Saturation - i.e. power supply limitations, end point limitations, rate of change
limitations

- Hysteresis - i.e. slip in gears, delays before actuation

- Faults - i.e. a sensor or actuator fails to work correctly

4



Chapter 1: Introduction

It is now possible to put a bit more structure on definition 1. However - the more
structure which is put on the definition the more we can reason about it, but it come at
the cost of describing a narrower system. An often used approach for adding structure to
such systems is in the form of [Henzinger, 1996a], which describes a hybrid automaton
as:

Definition 2. A hybrid automaton H is a collection H = (Q,X, Init, f, J, E, G,R),
where:
- Q: set of discrete variables, also sometimes called locations and Q is countable, i.e.
q ∈ Q ⊂ Z
- X: set of continuous variables, i.e. x ∈ X ⊆ Rn , n ∈ N
- Init ⊆ Q×X is a set of initial states
- f : Q × X → T (X) is a Lipschitz vector field where T is a tangent bundle of the
manifold X describing the continuous dynamics
- J: Q → P (X) invariants,assigns to each q ∈ Q a domain
- E ⊂ Q×Q is a collection of discrete transitions from q to q′

- G: E ×X → P (X) assigns to e = (q, q′) ∈ E a guard, g(e, x)
- R: E × X → P (X) assigns to (e, x), where e = (q, q′) ∈ E and x ∈ X , a reset
relation, r(e, x)

An example of a system modelled as a hybrid system is given in the following and is
based on the supervisory control system for a ship-mounted satellite tracking antenna.

The overall strategy for controlling the antenna is illustrated in figure 1.1(a) along
with the overall control states. Initially the system will enter the upper-right state, where
initialization and Power On Self Test (POST) will be conducted. If the system passes the
POST it will start to search for a satellite. This searching can be conducted in a number of
ways which will be discussed later. If a satellite signal is found the “Optimize strength”
state will be entered. This is done to ensure maximum satellite strength reception. If,
during this process the signal should be lost again the system will return back to the
search state. Otherwise it will go to the “Track satellite” state, where the current attitude
in the SCESF1 frame will be maintained. With a regular interval, or when the signal
strength has dropped a bit, the system will reenter the “Optimize strength” state to ensure
that the received signal is optimal. Should the received signal however be lost abruptly2

the antenna will maintain its attitude in the SCESF frame. This will be done either until
the signal has been received again or a timeout is reached.

The overall system, as described in connection with figure 1.1(a), can be reformulated
in a hybrid system context. There are two interesting signal levels in this context, that is
the lower threshold where the signal is detectable, sd, and the upper threshold where the
signal strength is sufficiently close to the optimal, ss. The timeout for passing under a
bridge is defined to be t1 = 30s and the strength optimization timeout is selected to be

1Ship Centered Earth Surface Fixed reference frame
2Passing under a bridge or similar
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(b) The control strategy as a hybrid system

Figure 1.1: Illustration of the overall control strategy described intuitively on the left side
and as a hybrid system on the right side

t2 = 10s. The system can now be described as:
Cont. states X = {x|x =

[
θ φ s t

]T
, θ ∈ R, φ ∈ 0 ≤ φ ≤ 120 deg ⊂ R,

s ∈ R, t ∈ R+}
Disc. states Q = {Initialize, Search, Optimize, Track, Maintain}

= {q0, q1, q2, q3, q4}
Initial state Init = {(q, x)|q = q0, x ∈ X}
Invariants J(q0) = {x ∈ X|

[
θ φ

]T 6= 0} J(q1) = {x ∈ X|s < sd}
J(q2) = {x ∈ X|s < ss ∧ s > sd} J(q3) = {x ∈ X|s > ss ∧ t < t2}
J(q4) = {x ∈ X|s < sd ∧ t < t1}

Transitions E = {e0 = (q0, q1), e1 = (q1, q2), e2 = (q2, q1), e3 = (q2, q3),
e4 = (q3, q2), e5 = (q3, q4), e6 = (q4, q1), e7 = (q4, q2)}

Guards G = {g(e2) = (s < sd), g(e3) = (s > ss),
g(e4) = (t > t2 ∨ sd < s < ss), g(e5) = (s < sd), g(e6) = (t > t1),
g(e7) = (s > sd)}

Resets R = r(e0) = r(e1) = r(e2) = r(e3) = r(e4) = r(e5) = r(e6) = r(e7)

=
[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

]
x

Using this formulation the figure, 1.1(a), becomes the system described by figure 1.1(b).
As can be seen from the continuous state definition then the antenna bore axis is de-
scribed by the spherical coordinate pair, [θ, φ]T , since this is sufficient to describe the
antenna orientation. Thus the inverse kinematics used to translate between the SCESF
spherical coordinates and the joint space is handled at a lower level.

As can be seen from the example, then even though the problem in question, e.g.
the supervisory control challenge, can be rater difficult to formulate by words, and even
impossible using classical control terminology, then it is possible to express the precise
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Chapter 1: Introduction

behavior of the system using a hybrid systems formalism.

1.1 Outline of the Thesis

The remaining part of this part consists of the following:

- Chapter 2 gives a brief overview of different ways of modelling deterministic hybrid
systems.

- In chapter 3 an example of how hybrid control and verification of a real-world plant
using the theories of Tabuada and Pappas, and implemented in UPPAAL is shown.
This chapter has been presented at the 10th International Conference on Hybrid
Systems: Computation and Control, and is published in Lecture Notes in Computer
Science nr. 4416.

- Another examle is given in chapter 4, where modelling of satellite formation fly-
ing is performed using piece wise affine hybrid systems theory. This paper was
presented at the 3rd International Symposium on Formation Flying, Missions and
Technologies and published in the conference proceedings by the ESA Communi-
cation Production Office.

- Finally chapter 5 gives an overview of the ideas behind the framework, which will
be presented in the second part of this thesis. This paper has been accepted for
presentation at the 7th International Workshop on Robot Motion and Control and
publication in Lecture Notes in Control and Information Sciences.

Part II of this thesis introduces the concept of a combinatorial hybrid system in the
following way:

- Chapter 6 gives a short introduction to previous work in the direction of combina-
torial dynamics and an introduction to the two proposed frameworks for combina-
torial hybrid systems. Finally this chaper consists of a comparative analysis of the
different methods presented.

- Chapter 7 introduces the first framework. This work has been presented at the 9th

IEEE International Conference on Computer-Aided Control Systems and published
in the associated proceedings.

- This framework is further elaborated on in chapter 8, where the framework is shown
applied to fault tolerant control for autonomous satellites. The content of this chap-
ter was presented at the The F. Landis Markley Astronautics Symposium and pub-
lished in the Vol. 132 of Advances in the Astronautical Sciences.

- Chapter 9 contains the second framework. This framework carries over many of
the ideas of the first framework, however, it is more intuitive in its formulation and

7



Section 1.1: Outline of the Thesis

the resulting flowlines have nicer properties. This work was presented in a reduced
form at the 17th IFAC World Congress and is currently under review for publication
in Nonlinear Analysis: Hybrid Systems, published by Elsevier.

The final part III contains the conclusions of the report along with a presentation of
possible ways of extending the work to also include optimal control and ways of simpli-
fying the combinatorial hybrid systems.
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Chapter 2

Overview of Hybrid Systems

Over the years a number of different hybrid systems modelling languages have been de-
veloped for handling deterministic hybrid systems, each with their particular strengths
and weaknesses. A few of such modelling frameworks are:

- Mixed Logic Dynamics

- Linear Complementory

- Max-Min-Plus-Scaling

- Piecewise Affine

which briefly will be touched upon in the following.

2.1 Mixed Logic Dynamics

Mixed Logic Dynamics is a technique for modelling systems through the physical laws of
the system, logic rules and operating constraints. It is inherently capable of handling both
continuous and discrete inputs and state variables, thus making it suitable for modelling
not only hybrid systems, but also sequential logical systems and constrained linear sys-
tems, just to name a few. A more detailed overview of the capabilities of MLD is given in
[Bemporad and Morari, 1999a].

Each component of the system is modelled as an inequality, e.g. a linear dynamical
system can be modelled as

x(t + 1) = Ax(t) + B1u(t) + B2δ(t) + B3z(t)
y(t) = Cx(t) + D1u(t) + D2δ(t) + D3z(t)

E2δ(t)+ E3z(t) ≤ E1u(t) + E4x(t) + E5

9
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with x =
[

xc

xl

]
describing the combined continuous and logic state space, with xc ∈

Rnc and xl ∈ {0, 1}nl , y being the corresponding combined output vector, w is a dis-
turbance vector containing both continuous disturbances (such as noice and measuring
errors) along with binary disturbances (such as faults). Finally δ ∈ {0, 1}rl and z ∈ Rrc

contains additional information used to introduce logic propositions as linear inequalities,
which are expressed in the third line of the mode [Morari et al., 1999; Bemporad and
Morari, 1999b].

Instead of going into the details of the modelling language an example of how it
works will be given instead. The example is equivalent to the one shown in [Bemporad
and Morari, 1999a].

Given the piecewise linear system, which could be seen as a model of a car which, for
x ≥ 0 is going down a hill and for x > 0 goes up a hill:

ẋ1 = 0.5x + u, for x ≥ 0
ẋ2 = −0.4x + u, for x > 0,

with state constraint −100 ≤ x ≤ 100 and input constraint −5 ≤ u ≤ 5. Introducing the
binary value δ and letting it express, that x ≥ 0, i.e. δ = 1 ↔ x ≥ 0, which means, that
the state constraints needs to fulfil

−mδx ≤ x−m
−(M + ε)δ ≤ −x− ε,

where m = minx and M = maxx, and ε > 0 is a small alowable tolerance.
Then the differential equations describing the two systems can be written together into

one as:
ẋ = 0.9δx− 0.4x + u

Here, however, a product term appears in the form of δx. This is handled by introducing
the new variable z = δx, which has the following properties:

z ≤ Mδ
z ≥ mδ
z ≤ x−m(1− δ))
z ≥ x−M(1− δ))

Thus through this transformation the combined system can be expressed as:

ẋ = 0.9z − 0.4x + u.

This formulation has the nice property, that it is computationally sound, i.e. it is
closely related to a form in wich a computer would be able to handle it.

Typical questions, which such modells are used to answer are:

10
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- Given a set of initial conditions, x(0) ∈ X , verify, that ∀w ∈ W : x(t) 6∈ Xu,
where Xu is an unsafe set. Such problems are often encountered when checking a
system for security, or a progam for dead-locks. This checking can be done through
Mixed-Integer Feasibility Testing.

- Given a set of initial condition , x(0) ∈ X , maximize a given cost function which
is linear with respect to x,w, δ, z under the constraints of the given system, which
is a classical optimal control problem, in this case solvable using Mixed-Integer
Programming.

2.2 Linear Complementory Systems

Linear complementary systems are systems governed by

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

y(t), u(t) ≥ 0 ∧ y(t)T u(t) = 0.

By this it is possible to describe systems, which have single bounds. Such systems have
been studied in [Heemels et al., 2000], and the papers refered within it.

LC systems are good to describe systems, which has only one constraint, such as e.g.
unlateral constrained rigid body, ideal diodes, relays Coulomb fricition.

A super class of these systems are the Extended Linear Complementory Systems,
which looks like

ẋ(t) = Ax(t) + B1u(t) + B2d(t)
y(t) = Cx(t) + D1u(t) + D2d(t)

E1x(t)+ E2u(t) + E3d(t) ≤ g4,

with d(t) being an auxiliary variable.

2.3 Max-Min-Plus-Scaling

As a further extention to ELC systems [Schutter and van den Boom, 2001] introduces the
Max-Min-Plus-Scaling expression f of the variables x1, . . . , xn is given by the grammar

f := xi|α|fk ∨ fl|fk ∧ fl|fk + fl|βfk,

with i ∈ {1, . . . , n}, ∧ and ∨ denoting maximization and minimization respectively, and
where fk and fl are again MMPS expressions. |means ”or” in this formulation. It is worth
noticing, that this formulation is quite broad in its formulation capacity, in the sense that
it is recursively, i.e. the expression can either be variable, constants or the maximum
or the minimum or the sum of two MMPS expressions or even a scalar multiple of an
expression.

11
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Typical examples of systems modelled as MMPS systems are telecommunication and
computer networks, digital circuits and manufacturing plants with one of its main advan-
tages being that it directly includes constraints on inputs and outputs.

2.4 Piecewise Affine

Piecewise affine systems have been studied extensively during the past 30 years since it
is one of the ”simplest” extentions of linear systems to also be able to model non-linear
systems and hybrid systems with arbitrary accuracy.

Such systems are modelled as

ẋ = Aix(t) + Biu(t) + ai

y(t) = Cix(t) + Diu(t) + ci,

for x(t) ∈ Γi and u(t) ∈ Λi, with all Γi and Λi being convex polytopes.
An entire system can thus be modelled by a collection of PWA systems by having ∪Γ

and ∪Λ forming a complete cover of the state and input space respectively.

2.5 Equivalense Between Models

In [Heemels et al., 2001], all the models described above are compared, and it is shown
how it is possible to transform systems described within one framework into a model in
another framework. The main result from the article is shown in figure 2.1.

*
MLDPWA ELC MMPS

LC

*

*

*

Figure 2.1: Graphical overview between the relations of the modelling frameworks. An
arrow going from A to B means that A is a subset of B, furthermore, the star next to
some arrows indicates, that additional conditions are required to establish the inclusion.
[Heemels et al., 2001]

2.6 Outro

In the following three chapters, three different approaches to modelling of hybrid systems
will be introduced along with examples showing how they work and what they can be
used for.
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In chapter 3, it is shown how a switched dynamical system can be modelled and
transformed into a Brunovsky normal form. It is further shown that having this, it is
possible to specify the control objectives for the system as an LTL formulation, which
was shown to be possible to validate automatically through the use of UPPAAL.

A completely different approach is shown in chapter 4, where it is shown how the
randevouz problem of two satellites can be modelled as a PWA hybrid system, where the
possible control actions are abstracted into a finite set of feed-back control laws guaran-
teeing exit through a given facet of one of the partitions. The system can then be abstrated
into a finite automata on which the control objective can be formulated as a discrete game.

The final chapter of this part, i.e. chapter 5 introduces the framework of combinatorial
control systems. Combinatorial control systems (CCS) carries over some of the ideas
introduced in chapter 5, that is, the division of the system in question into a finite number
of partitions, each with a PWA system on it. However, the systems are now considered
purely combinatorial, leading to a greater abstraction of the system and towards a more
computationally efficient paradigm for automatic control synthesis.
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Chapter 3

Hybrid Control and Verification
of a Pulsed Welding Process

Currently systems, which are desired to control, are becoming more and more complex
and classical control theory objectives, such as stability or sensitivity, are often not
sufficient to cover the control objectives of the systems. In this chapter it is shown how
the dynamics of a pulsed welding process can be reformulated into a timed automaton
hybrid setting and subsequently properties such as reachability and deadlock absence
is verified by the simulation and verification tool UPPAAL.

3.1 Introduction

The lack of analytical methods for design of hybrid control systems can often result in
excessive testing and validation, which is time consuming and even then might not guar-
antee that the system will meet the control objectives under all operating conditions. To
overcome the design and implementation problems which may result from the deficient
use of an analytical approach, a notation of hybrid automaton has been introduced in
[Henzinger, 1996a].

Most algorithmic verification and synthesis tools for hybrid systems today are lim-
ited to systems exhibiting simple continuous dynamics, such as piecewise-affine hybrid
systems[Bemporad et al., 2000; Collins and van Schuppen, 2004] or timed automata[Feng,
2002; Alur and Dill, 1994; Alur and Madhusudan, 2004]. One of the main objective in
[Tabuada and Pappas, 2003b] was to enlarge this class of systems to all linear controllable
systems, which is continued in this paper by showing how this theory apply in practice
to the Gas Metal Arc Welding (GMAW) process. By restricting the observations for the
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system to a finite set of partitions, enables a bisimulation of the system to be modeled
using simple timed automata.

With a bisimilar model of the system built with the use of timed automata, it is pos-
sible to use a verification tools such as UPPAAL to simulate and verify different system
properties. Especially questions such as reachability, liveliness and possibilities of dead-
locks are new questions, which are of great interest to the designer of the supervisory
system and which previously needed to be guessed by simulations or ad-hoc methods.

3.1.1 Gas Metal Arc Welding

In the GMAW process the electrode is consumable and is fed continuously at a certain
rate by the pistol to the welding pool. The weld is protected from the surrounding air by
a gas which is also fed by the pistol. Normally argon or argon/CO2 is used as shielding
gas. The current between the workpiece (cathode) and the welding pistol (anode) causes
an arc and an electromagnetic field. The strong current makes the electrode melt and drop
into the welding pool.

The GMAW process can be divided into three modes; short arc mode, spray mode and
a mixed mode of the two, of which only the spray mode will be considered in this paper.
In spray mode the electrode should never touch the workpiece in order to obtain the best
weld quality.

The melting process can be described by two contributions, anode heating and ohmic
heating. When the current rises, the temperature of the arc rises and the tip of the electrode
is heated. The energy from the arc, which contributes to melting the electrode, is known
as anode heating. The second contribution to the melting process is the ohmic heating,
which is the heat energy resulting from the ohmic resistance in the electrode. The high
current also creates a higher electromagnetic field which contributes, together with the
gravitational force, to detachment of the drop.

While the tip is melting, a liquid drop of metal is formed. This drop is detached from
the tip of the electrode when the surface tension on the drop, is too small to resist the
gravitational- and the electromagnetic forces. Also the aerodynamic drag force from the
shielding gas, contributes to the detachment of the drop. After detachment, a small liquid
drop is left at the tip of the electrode and the process repeats.

A submode of the spray mode is the pulsed GMAW method, which is similar to spray
mode, but in addition to the steady current between the cathode and the anode, current
pulses causes the drop to detach in intervals. The advantage of using pulsed GMAW
is a lower heat development in the weld pool. Furthermore the current pulses makes it
possible to control the drop detachment [Thomsen, 2004].

3.1.2 Weld Quality Criteria

As described in the introduction, one of the objectives of this paper is to integrate a control
structure for the GMAW process into a hybrid framework. The nature of the GMAW
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Chapter 3: Hybrid Control and Verification of a Pulsed Welding Process

process makes classic control theory specifications, such as stability, inadequate. Instead
control objectives focusing on obtaining the best weld quality is desirable. The quality of
a weld depends on several factors, which will be discussed in the following.

Basically a high-quality weld is characterized by a good penetration, which is essential
for a strong weld, as it allows a larger area of the workpiece edges to join.

A good penetration is a necessary, but not a sufficient, condition for a good weld. If
the work piece becomes too hot and cools down too quickly, the material can loose some
of its characterizing properties, e.g. heat-treated metals or metal alloys, such as stainless
steel, can loose its characterizing properties. [Storer, 2004, ch. 5]
The facts described in the latter are related to the weld pool and are the minimum cri-
teria, which must be fulfilled to obtain a high-quality weld and is defined as direct weld
quality influencing factors. More indirectly an additional number of factors influences the
quality of a weld. The following quality influencing factors will be referred to as indirect
quality influencing factors. Specific for pulsed GMAW welding, the quality of the weld is
influenced by the control of the drop detachment, meaning that the current pulses should
ideally detach one drop per pulse to obtain the best weld possible. It is also desirable
to obtain a uniform drop size, in order to achieve a homogeneous weld. An additional
control objective is to keep a short arc length, since it is easier for the operator to work
with. Moreover the energy input into the workpiece should be minimized.

The indirect quality influencing factors are related to the control of the electrode and
the arc.

3.1.3 Delimitation of Control Tasks

As described in the latter the control can be separated into control of the weld pool, and
control of the arc and electrode. As it is only hand held welding which will be the focus
on this paper, the weld pool control is handled by the operator. Figure 3.1 describes the
control structure [Thomsen, 2004]. The outer control loop is handled by the operator and
the inner loop is handled by the welding machine. The rest of this paper will concentrate

Outer Control 
(Weld pool) 

Operator

Inner Control 
(Electrode and 

Arc)

GMAW 
process

Outer control settings Inner control settings

Figure 3.1: Control structure for the GMAW process.

on controlling the indirect quality influencing factors in the inner loop.
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I

time

Full period

Base period Pulse period

Base period is variable

Pulse period is fixed

0t 1t 2t

(a) Pulse by pulse method.

{ar al l−

{ar al l−arl

( )a

( )b

( )c

Arc

Electrode

(b) Arc length control scenarios.

Figure 3.2: Left figure: The pulse by pulse method - the base current is fixed but the base
period is variable. Right figure: The different arc length control scenarios - (a) the arc is
too long (b) the arc is too short (c) the arc has the desired length lar

3.2 System Dynamics

The pulsed GMAW process is governed by the pulsing current, which is seen in figure
3.2(a). In order to control the pulsing, the base period, which is the time interval in which
the electrode is melted, is variable, thus it becomes possible to control the amount of
melt detached in each pulse. If the arc length between the work piece and the electrode
becomes too big or too small, as shown in figure 3.2(b), then it is likewise possible to
adjust the arc length, i.e. if the arc has become too small then by decreasing the base
period, thus increasing the amount of electrode consumed the arc length will become
longer. This is however done on the cost of a smaller drop size and is only possible within
a small distance, the main part is still controlled manually.

The pulse condition can then be described as; a pulse should occur if the arc length is
below the reference and the drop size is above minimum or if the arc length is longer than
the reference and the drop size is bigger than the maximum, which can be written as:

Pulse if:
(la < lar ∧ xmb ≥ xmb min)

∨
(la > lar ∧ xmb ≥ xmb max) (3.1)

Where la is the arc length, lar is the arc length reference and xmb is the current drop size
with the indices min and max providing the bound on the desired drop size. The values
of the bound can be regarded as weighting parameters for the controller design.

The weld process controller can thus be depicted as in figure 3.3, where an additional
mode; Short Circuit Handling, is shown, which will not be discussed further in this paper.
In the following the overall control strategy and dynamics of the underlying process will
be presented. The model used in this paper, is derived in [Thomsen, 2004].

18



Chapter 3: Hybrid Control and Verification of a Pulsed Welding Process

Arc Length
Control

Metal 
Transfer 
Control

Current 
Control

GMAW 
Process
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arl

Supervisor

Short circuit 
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Figure 3.3: Supervisory system for the GMAW process.

Drop Dynamics

The drop dynamics, i.e. the drop growth, can be expressed as the length of melted elec-
trode, which is a function of the welding current and the electrode length:

xm =

t1∫
t0

vm(I, ls)dt (3.2)

where vm is the velocity of melted electrode given by

vm = k1I + k2I
2ls (3.3)

where ls = 0.0115, k1 = 3.6733 · 10−4 and k2 = 6.6463 · 10−4 for the considered
GMAW welding application.

Arc Length Dynamics

The governing equation for the arc length dynamics can be seen in (3.4).

l̇a = k1I + k2I
2 · (lc − la)− ve (3.4)

where k1 and k2 are constants, lc is the length from the contact tip to the workpiece, la is
the length of the arc (ls = lc − la) and ve is the velocity of the electrode.

Equation (3.5) shows the current dynamics.

İ = − 1
τi

I +
1
τi

Ir (3.5)
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where τi = 66.7µs is a constant that characterizes the dynamics. I is the welding current
and Ir is the current reference.

3.3 Hybrid System Modeling

The GMAW system, as described in the previous two sections, can be formulated as the
following hybrid automaton using a commonly used formalism for hybrid systems, as
presented in [Henzinger, 1996a; Asarin et al., 2000b], with the dynamics in each state as

mx  :=0
Drop detachment pulse

mx  :=0

Drop detachment pulse

shortPulse
pulseI:=I

mx  :=0
Drop detachment base

pulseI:=Ibase
I:=I

base
I:=I

Ignition Pulse done

PulsePulse done

Arc LengthShort Circuit Metal Transfer

Figure 3.4: Hybrid automaton for the controlled GMAW process, divided into the three
control modes: Arc length, Metal transfer and Short circuit

described in the previous section. All transitions have a label, which is used for synchro-
nization and a reset map, which in the “Drop detachment” case is the amount of melted
wire which is set to xm := 0, and in the “Pulse” and “Pulse done” case it is the current,
which is set to the pulse and base current respectively.

As previously mentioned, the goal of this paper is to reformulate the hybrid system
into a network of timed automata in order to expand the possibilities of verifying the
system properties using an automated verification tool, such as UPPAAL[Behrmann et al.,
2001]. This is essentially done because even though the system is exhibiting a nice and
stable performance in each state, then it is possible by the right combination of switching
to render the system unstable, of which a classical example can be seen in [Decarlo et al.,
2000].

3.3.1 Shift Register Form

In order to rewrite the dynamics of the system into shift register form, it is first put on
Brunovsky normal form[Tabuada and Pappas, 2003b], for which a controllable linearized
form of the system is needed.

To linearize equation (3.4) it is first rewritten into an operating point, [Ī , l̄a], and
deviations from this, [Î(t), l̂a(t)], where the cubed current term is split into a varying part
and an operating mode part given by Iop:

l̇a = k1

(
Ī + Î (t)

)
+ k2

(
Iop ·

(
Ī + Î (t)

)
·
(
lc −

(
l̄a + l̂a (t)

)))
(3.6)
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The linearization is done around the point where ve is equal to vm thus ve can be omitted
from this equation. After multiplying (3.6) out and neglecting the product of time varying
terms, an expression of the constant terms can be found as

k1Ī + k2 ·
(
Iop ·

(
Ī ·

(
lc − l̄a

)))
(3.7)

which, subtracted from (3.6), gives

l̇a = Î (t) ·
(
k1 + k2IopĪ ·

(
lc − l̄a

))
− l̂a (t)

(
k2IopĪ

)
(3.8)

The linearized system can now be written in state space form as[
l̇a

İ

]
=

[
−k2IopĪ k1 + k2IopĪ(lc − la)

0 − 1
τi

][
la

I

]
+

 0
1
τi

u (3.9)

Although there are several operating points for the system only a single point will
be used throughout this paper. This is done in order to simplify the presentation and is
sufficient to prove the concept of the method.

The operating point used for the system is: Iop = Ī = 175A, lc = 15mm, l̄a =
3.5mm, which inserted into (3.9) and discretized using ZOH and a time step of 0.1s
gives (3.10). [

l̇a

İ

]
=

[
0.1306 0.0020

0 0

][
la

I

]
+

[
9.5612
1.000

]
u (3.10)

The controllability matrix for this system has full rank, which shows that the system is
controllable, thus the condition for getting the system into Brunovsky normal form is
satisfied.

Following the method described in [Tabuada and Pappas, 2003a] the system is trans-
formed into the normal form shown in (3.11) through the state transformation, x = Tz:

z(t + 1) = T−1ATz(t) + T−1Bu(t) ⇔
z(t + 1) = Azz(t) + Bzuz(t) (3.11)

where

Az =
[

0 1
α1 α2

]
=

[
0 1
0 0.3659

]
, Bz =

[
0
1

]
, T =

[
0.392 0.143
−2.73 0.001

]
The final step for getting the system into shift register form is to get the bottom row of the
Az matrix to be zeros, which is done through the following feedback transformation

uz = u + α1z1 + α2z2 =
[

F
1

]T
 z1

z2

u

 (3.12)
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which gives the final system on shift register form as

z(t + 1) = Ãzz(t) + B̃zuz(t) (3.13)

where

Ãz =
[

0 1
0 0

]
, B̃z =

[
0
1

]
, uz =

[
F
1

]T [
z
u

]
, F =

[
0

0.366

]T

, T =
[

0.392 0.143
−2.73 0

]
The principle of the above computations is shown in figure 3.5.

F

System
(shift register)

+
Tzuu z x

Figure 3.5: Block diagram of the shift register transformation

3.3.2 State Space Partitioning

A discrete state space Z2 of R2 is now introduced, as described in [Tabuada and Pappas,
2003b], in order to form the space in which the shift-register form system operates. The
3 domains in which the system operates is, with reference to figure 3.4, the Arc Length
Control (q1), the Metal Transfer Control (q2) and the Short Circuit Control (q3).

• Domains

Dom(q1) = {(la, I) ∈ R2| 0 ≤ la ≤ 0.01 ∧ 40 ≤ I ≤ 60}
Dom(q2) = {(la, I) ∈ R2| 0 ≤ la ≤ 0.01 ∧ 290 ≤ I ≤ 310}
Dom(q3) = {(la, I) ∈ R2| 0 ≤ la ≤ 0.01 ∧ 290 ≤ I ≤ 310}

where la [m] and I [A]. The values are specified from the normal operation of a GMAW
welding machine.

These domains are then transformed into shift register form by [z1 z2]
T = T [la I]T

which gives the new domains

Dom(q1) = {(z1, z2) ∈ R2| 0 ≤ z1 ≤ 8596 ∧ 0 ≤ z2 ≤ 0.0643}
Dom(q2) = {(z1, z2) ∈ R2| 4.18 · 104 ≤ z1 ≤ 4.44 · 104 ∧ 0.307 ≤ z2 ≤ 0.328}
Dom(q3) = {(z1, z2) ∈ R2| 4.18 · 104 ≤ z1 ≤ 4.44 · 104 ∧ 0.307 ≤ z2 ≤ 0.328}
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The relation between the new domain space and the original one can be seen from figure
3.6, where the two regions of interests are marked, one being to the left in I ∈ [40− 60],
which is the base period, and the region to the right, I ∈ [290 − 310], being the pulse
period. As it is seen from the figure then the domains of interest are no longer square.

1z

2z

: 40 60I −

400 AI =

0 AI =

0 m

0.005 m

0.01 m

a

a

a

l

l

l

=
=
=

: 290 310I −

44.4 10⋅

0.328

Figure 3.6: Plot of state transformation: [la I]T 7→ z

This deficiency is however remedied by relaxing the arc length constraint, which again
makes the spaces of interest squares.

As described in [Tabuada and Pappas, 2003b] the partitioning needs to be equidistant,
which would seem rather cumbersome for these domains due to the large ratio between
z1 and z2, thus a scaling transformation is introduced, Si, which transform each domains
into a sufficiently equiproportional domain. In this case it is only desirable to divide the
spaces into a 3 by 3 grid to prove the concept, thus a transformation that scales the 3
domains into squares are used. Following this the drop forming dynamics is modelled as
a 5 state timed automaton as shown in figure 3.7. The shifting time between the drop sizes
dependents only on the current. Estimated shifting values for different current intervals
are shown in table 3.1. The drop formation always starts in state 1 and will propagate
through the states over time. State 3 is the reference state, i.e. the state in which it is
desirable to do a drop detachment.

3.3.3 Control System Imposed on Z2

In section 3.3.2 a new state space Z2 was introduced. Utilizing that the system is in shift
register form, insures a well defined controlled dynamics between the partition blocks.
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1 2 53
ref

4

Reference drop size

2partIx time≥
2partIx time≥
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3partIx time≥
3partIx time≥

3partIx time≥
3partIx time≥

1I part==
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Figure 3.7: The drop dynamics timed automaton. The automaton structure for the drop
dynamics is the same in each domain q1 and q2.

Current Current Time Between Current Time Between
Partition Interval [A] Partitions [s] Interval [A] Partitions [s]

1 40.0 - 46.6 9.9 10−3 290 - 296.6 3.9 10−4

2 46.6 - 53.3 8.0 10−3 296.6 - 303.3 3.7 10−4

3 53.3 - 60.0 6.6 10−3 303.3 - 310 3.5 10−4

Table 3.1: Estimated time between drop size partitions in dom(q1) to the left and dom(q2)
and dom(q3) to the right.

This means that under appropriate inputs the blocks will move into other partitions of
equal division. To insure such appropriate inputs, a control law is needed.

The control law is constructed as described in [Tabuada and Pappas, 2003b] by starting
with (3.11) and realizing that from a given position (z1, z2)=(p, q) the reachable set in one
step is (z1, z2)=(q, r), where r ∈ Z is dependent on the input, thus it can be seen that the
control law only has to ensure that z2 will be within a control section of height δ, which
is ensured by the control law:

uz(k) = z2(k) + δy(k) , y ∈ Z (3.14)

which inserted into (3.11) results in the following system:

z1(k + 1) = z2(k)
z2(k + 1) = z2(k) + δy(k) (3.15)

which is not on shift register form any longer. This is however easily remedied by intro-
ducing the control law:

ε(k) = z2(k) + δy(k) (3.16)

Which results in the system given by[
zε1(k + 1)
zε2(k + 1)

]
=

[
0 1
0 0

]
z(k) +

[
0
1

]
ε(k) (3.17)
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3.4 Example of Implementation in UPPAAL

UPPAAL is a validation- and verification tool[Behrmann et al., 2001; Larsen et al., 1997].
The tool consists of two main parts: A graphical user interface and a model checker
engine. The idea in this paper is to model a system using timed automata, simulate it and
then verify the system properties on it.

A system consists of a network of automata which are running in parallel. It is pos-
sible to step through the system, in order to check if the system behaves as intended and
the system can be checked by the verifier to verify that it satisfies certain temporal speci-
fications, such as if a certain state is reachable or if there is any deadlocks in the system.
More generally speaking, the verifier can check all possible dynamical behaviors of a
system[Larsen et al., 1997].

3.4.1 The Controlled GMAW Process in UPPAAL

An overview of the implemented system is shown in figure 3.8, where the supervisor
automaton controls the underlying automata, the drop dynamics automata and the GMAW
dynamics automata. The supervisor decides by its two transitions which control mode the
GMAW process should be in by a parallel composition with a shared label space in the
sense of Milner[Milner, 1989], which is illustrated in figure 3.8. As pointed out in the
previous section then the GMAW dynamics is only partitioned into 9 parts. This leads to
a timed automaton for the arc length dynamics as shown in the middle of figure 3.8 with
some of the possible transitions displayed. The automaton consists of 9 states, where
each state represents a partition of the state space. The transitions between the states are
decided by the shift register form, which is derived in the previous section.

In order to include disturbances into the model a disturbance automaton is included
as shown in figure 3.9(a). It is designed to give a disturbance in the arc length in the
base period. If the disturbance automation enables a disturbance (increase/decrease the
arc length), it will affect the GMAW dynamics automaton as shown in figure 3.9(b).

3.4.2 Model Checking

It is possible in UPPAAL to use the model checker to get answers on specific questions,
e.g. to check if there are deadlocks in the system. The deadlock check can be seen as
a basic check of the systems behavior. By checking reachability and liveness properties
the performance of a supervisor or controller can be analyzed. In UPPAAL the query
language used is a simplified version of Computation Tree Logic (CTL)[Huth and Ryan,
2004].

In the following specific questions regarding the GMAW process will be discussed.

Do deadlocks exists in the system?
Query:
A[] not deadlock
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1 2 53
ref

4

GMAW Dynamics GMAW Dynamics

Supervisor

Metal transfer 
control mode
(pulse period)

Arc length 
control mode
(base period)

 Drop Dynamics Drop Dynamics

1 2 3
ref

4

Pulse!

Pulse done!

Pulse?

Pulse done?

Figure 3.8: The figure illustrates that it is possible to be in two different control modes; arc
length control mode and metal transfer control mode. The supervisor controls which of the
two modes to be in. In each control mode the processes are running in parallel.
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increase arc length!

decrease arc length!

(a) Disturbance automaton

1z

2z

decrease arc length?

Increase arc length?

(b) Effect of a disturbance

Figure 3.9: (a) The disturbance automaton. (b) The two thick arrows shows the effect of a
disturbance from the disturbance automaton to the GMAW dynamics.

Numerous factors can result in a deadlock in the system; A supervisor design flaw,
faulty implementation etc.

Answer:
The property is satisfied.

Do the supervisor continuously cycle between the base period and the pulse period?

Query:
Supervisor.Arc_length --> Supervisor.Metal_transfer

Supervisor.Metal_transfer --> Supervisor.Arc_length

To guarantee the basic operation of the supervisor, a continuously cycle between
the base period and the pulse period should take place. The first expression checks
if the path between the states Supervisor.Arc length and Supervisor.Metal transfer
will eventually be taken. The second expression checks if the path back from the
state Supervisor.Metal transfer to the state Supervisor.Arc length will eventually be
taken.

Answer:
The question is satisfied

Is the duration of the pulse period as specified?

Query:
A[] Supervisor.Metal_transfer imply x<=600

27



Section 3.5: Discussion

The duration in the pulse period is set to 600 clock cycles. This question checks
if it is possible for the supervisor to jump from metal transfer control to arc length
control before the specified time.

Answer:
The question is satisfied

The first question checks if there is some states from which the system cannot switch
away from, which it is found that there are not. Secondly the liveliness of the supervisor
is tested. This test can be seen as a check of the supervisor shown in figure 3.3. It is further
interesting to verify if the system is staying too long in the different states, which is tested
in the third query, where the time spend in the metal transfer state is tested. Similarly
to the third query it could be tested if the supervisor is switching too fast between the
different states, which will reveal if there is a possibility for Zeno behavior in the system.

3.5 Discussion

The objective of this paper was to show that it is possible to apply the theories developed in
[Tabuada and Pappas, 2003b] to a given process, in this case the Pulsed GMAW process.

As seen from section 3.3 it is possible to formulate the GMAW welding process as
a network of timed automata, which can be directly implemented in the simulation and
verification tool, UPPAAL, thus giving the possibility of posing such questions as; is
state A always reachable from state B or is it possible to end up in a deadlock - Questions,
which is impossible to answer with classical control theory.
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Chapter 4

A Piecewise Affine Hybrid
Systems Approach to Fault
Tolerant Satellite Formation
Control

In this paper a procedure for modelling satellite formations including failure dynam-
ics as a piecewise-affine hybrid system is shown. The formulation enables recently
developed methods and tools for control and analysis of piecewise-affine systems to
be applied leading to synthesis of fault tolerant controllers and analysis of the sys-
tem behaviour given possible faults. The method is illustrated using a simple example
involving two satellites trying to reach a specific formation despite of actuator faults
occurring.

4.1 Introduction

Several future Earth and space science missions [Léger, 2007; Baker et al., 2007] involve
operation of multiple coordinated spacecrafts.This has resulted in the development of a
number of control strategies[Scharf et al., 2004; 2003] for satellite formations, but only
few consider fault tolerance on the formation level. Reducing or eliminating the effects
of faults is an important aspect of spacecraft design as it increases the amount of time a
satellite formation can perform scientific observation by extending the mission lifetime
and keeping the formation in science mode for a higher fraction of the time. As described
in [Tsiotras and Doumtchenko, 2000] several catastrophic failures of spacecraft in orbit
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have been due to malfunctions in the control subsystem and it is thus of particular impor-
tance to develop fault tolerant control strategies.

Current fault control design focuses mostly on individual satellites, but when intro-
ducing such satellites as part of a formation new opportunities and restrictions arise. In
[Meskin and Khorasani, 2006] it is shown that an actuator fault on a satellite potentially
can destabilise a whole formation. Due to the distributed nature of a satellite formation
it possesses an inherent redundancy. A fault occurring on one satellite could be offset by
actions taken by other satellites in the formation e.g. an actuator fault on one satellite
can be compensated for by control of the other satellites in the formation, which is to
maintain relative positions. This interaction and the possible measures that can be taken
to remedy faults is therefore important to describe and analyse in order to develop auto-
mated/autonomous fault handling strategies on a formation[Mueller and Thomas, 2005].

Previous efforts in this area has been focusing on e.g. passive fault tolerance via robust
or adaptive control design method [Thanapalan et al., 2006; Garcia-Sanz et al., 2007].
Similar problems are found in control of formations of mobile robots and unmanned aerial
vehicles. [Desai et al., 1999] uses the popular leader-follow control structure [Lafferriere
et al., 2005; Scharf et al., 2004; 2003] to design a reconfiguration algorithm that can be
used to reconfigure a formation after a fault has occurred. In [Boskovic and Mehra, 2003]
the same architecture and a controller for formations capable of handling actuators faults
is designed while failures in communications systems is investigated in [Berger et al.,
2003].

This paper focuses on deriving satellite formation models described as piecewise
affine hybrid systems (PAHS). A PAHS formulation allows continuous time satellite for-
mation dynamics to be extended with discrete events representing faults in formation com-
ponents. Given that the formation and potential faults can be modelled as a PAHS, then
modern control synthesis methods [Habets et al., 2006; Wisniewski and Larsen, 2008]
support automatic generation of fault tolerant control strategies. Specifically [Wisniewski
and Larsen, 2008] demonstrates how controllers can be synthesised by abstracting the
control problem to a combinatorial objects or a state machine. The aim of this paper is
therefore to capture the behavioral aspects and fault modes of a satellite formation in a
PAHS to be able to leverage the research within PHAS.

In Section 4.2 a deep space satellite formation model is presented using discrete events
initiate state transitions to model faults resulting in a hybrid system. By simplifying
the model and partitioning the state space into a simplicial set a piecewise affine hybrid
system is constructed. An example of this modelling approach is illustrated in Section 4.3
and the results are summarised and discussed in Section 4.4.

4.2 Methodology

The procedure described in this section aims at providing a method for modelling satellite
formations with faults. The model is constructed in such a way as to be able to synthesise
a fault tolerant controller. The basic strategy is one of abstraction from a hybrid system
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Figure 4.1: Abstraction of the formation model from a hybrid system to a discrete automa-
ton.

to a discrete description. The spacecraft formation is modeled as a generic hybrid system
which is translated into a PAHS, for which discrete abstraction and analysis methods exist
[Habets et al., 2006]. Specifically a discrete abstraction such as an automaton, for which
numerous synthesis and analysis methods exist, can be extracted from the PAHS descrip-
tion [Wisniewski and Larsen, 2008; Larsen et al., 1997]. The procedure is illustrated in
fig. 4.1 showing how a hybrid system is translated into a PHAS which can be abstracted
into an automaton.

4.2.1 Spacecraft Formation Model

The model presented in this section describes an deep space (e.g.. heliocentric or La-
grange point) satellite formation with n satellites. The model does not include the space-
craft attitude as it for most formations can be controlled independently of the position.

The relative position dynamics of two spacecrafts in a deep space formation can be
described as a simple double integrator with the thrust force as input,

˙[
r
v

]
=

[
0 1
0 0

] [
r
v

]
+

[
0 0

m−1
1 m−1

2

] [
T1

T2

]
, (4.1)

where r is the relative position of the spacecrafts, v = ṙ is the relative velocity, mi is
the mass of the i’th spacecraft and Ti is the thrust.

As only the position dynamics are considered the standard 12 thruster setup can be re-
duced to 6 thrusters, two for each of the 3 spatial dimensions [Smith and Hadaegh, 2005].
Furthermore each thruster-pair can be abstracted into one thruster capable of providing
both negative and positive thrust.

The result is a dynamic model of the n-satellite formation, with the relative position,
ri,j , and velocity, vi,j , for all satellite pairs, (i, j) , i 6= j as the state1,

1Only one of the pairings (i, j) (j, i) are used i.e. ri,j and rj,i are not both in the state vector.
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d
dt



r1,2

r1,3

...
rn−1,n

v1,2

v1,3

...
vn−1,n


︸ ︷︷ ︸

x

=
[
03k×3k I3k×3k

03k×3k 03k×3k

]
︸ ︷︷ ︸

A



r1,2

r1,3

...
rn−1,n

v1,2

v1,3

...
vn−1,n


︸ ︷︷ ︸

x

+



0 . . . . . . . . . 0

M1 −M2 . . .
. . .

...

M1 0 −M3
. . .

...
...

. . . . . . . . .
...

0 . . . M(n−2) . . . −Mn

0 . . . . . . M(n−1) −Mn


︸ ︷︷ ︸

B



T1,x

T1,y

T1,z

...
Tn,x

Tn,y

Tn,z


︸ ︷︷ ︸

u

, (4.2)

where k = n(n−1)
2 is the number of unique spacecraft pairings, Mi = Im−1

i
2 is a

matrix describing the mass of each spacecraft and Ti,l is the input thrust of spacecraft i in
direction l.

The nominal formation model is an ideal model as it does not take disturbances such
as gravity or radiation pressure into account, as these disturbances are very small in a deep
space formation.

4.2.2 Fault Modelling

When modelling faults affecting the control of a satellite formation the focus is usually on
actuator, sensor and control computer faults. For satellite formations the communication
structure is also a possible failure point which further complicates the situation. In order
to truly model the faults which can occur on a satellite formation a full fault modelling
and effect analysis (FMEA) is to be performed. The focus here will be on simple actuator
faults as they are easily modelled and have a very visible effect on the formation dynamics.

The actuator faults considered in this paper are loss of a thruster, fuel leak and stuck
thruster.

Loosing a thruster can be modeled by changing the input matrix, B, of the system. In
case thrust in the l’th direction is lost on the i’th spacecraft it is modelled by multiplying

2I being the identity matrix
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the input matrix with a unit matrix where the corresponding row is zeroed, e.g.

Bfault = B


1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 1

 , (4.3)

In case the thrusters in the 2nd thruster pair on the first satellite T1,y fails.
A fuel leak can be described as an additive constant thrust, which is modelled by

adding a constant vector, C, to Eq. 4.2:

ẋ = Ax + Bu + C (4.4)

C =


03k×1

Fleak,1,2

...
Fleak,n−1,n

 (4.5)

Here Fleak,i,j describes the thrust force produced by the leak affecting the (i, j)’th
spacecraft pair.

Combining the two can be used to model a stuck thruster.

4.2.3 Hybrid System Formulation

By combining the formation model with the fault model a hybrid system can be con-
structed. Occurrence of faults are equated with discrete (uncontrollable) input events and
the continuous mode of a discrete state describes the corresponding dynamics of the for-
mation under failure.

Throughout the literature there are many different ways of describing a hybrid system.
One of the standard ways of doing so is in the sense of [Henzinger, 1996a] where a hybrid
system is described as a graph with a dynamical system defined on each vertex. Presented
here is specifically the open hybrid automaton [Lygeros and et. al., 1999].

Definition 3 (Open Hybrid Automata). An open hybrid automaton, H , is a collection

H = (Q,X, V, Y, Init, f, h, Inv,E,G,R)

where

- Q is a finite collection of discrete state variables.

- X is a finite collection of continuous state variables.

- V is a finite collection of input variables. Assuming V = VD ∪ VC , where VD

contains discrete and VC continuous variables.
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- Y is a finite collection of output variables. Assuming Y = YD ∪ YC , where YD

contains discrete and YC continuous variables.

- init ⊂ Q×X is a set of initial states.

- f : Q ×X × V → Rn is a vector field describing the evolution of the continuous
state variables;

- inv: Q → 2X×V assigns to each q ∈ Q an invariant set.

- h : Q×X → Y is an output map.

- E ⊂ Q×Q is a collection of discrete transitions.

- G : E → 2X×V assigns to each e = (q, q′) ∈ E a guard.

- R : E ×X × V → 2X assigns to each e = (q, q′) ∈ E and v ∈ V a reset relation.

With f(q, x, v) and h(q, x) being globally Lipschitz continuous in x and f(q, x, v)
being continuous in v.

Remark 1. In order to model external events forcing a state transition e.g. a fault, a
simple modelling trick is used. Each external event is associated with a discrete variable,
ve ∈ VD, and for each state pair, q, q′, where the event should trigger the transition
e = (q, q′) a guard is assigned of the form g(e) : ue = 1 with inv(q) : ue = 0 and
inv(q′) : ue = 1.

The satellite formation model including fault modelling can thus be represented as an
open hybrid automata as follows:

System 1. Hybrid system satellite formation model

- Each state, q ∈ Q represents a fault scenario i = 0 . . . n given n possible faults.
qi designates the fault state where i = 0 signifies the nominal case. Considering
scenarios with several simultaneous faults occurring requires more states e.g.. qi,j

could denote fault i and j occurring at the same time.

- X describes the relative positions and velocities used as the state variable in Eq.
4.2.

- VC describes the input thrust as shown in Eq. 4.2 where VD is used to denote the
occurrence of faults as per remark 1.

- As the satellite formation is considered fully observable for the purposes of this
paper the set of continuous output the set of continuous state variables YC = X
,and the set of discrete outputs is equal to the set of discrete states YD = Q.

- init is the initial configuration of the formation which can vary according to the
formation deployment, but will typically contain the fault free state q0.
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- f Is the flow given by the differential equation Eq. 4.2 and the fault model Eq.
4.3,4.4 of the current failure mode. Notice that VD is not used as input to the flow
in this model.

- The invariant, inv, for all states is the entire domain of the continuous variables Rn

with the discrete part of the invariant VD constructed as per remark 1.

- For the automaton to be fully observable yC = hc(x, q) = x and yD = hD(x, q) =
q.

- E describes the transitions occurring at the event of a fault.

- G is the guard set which is constructed per remark 1 to enable fault events.

- The reset maps, R, are all identity maps as no jumps in the continuous state happens
when a failure occurs.

As the Open Hybrid Automata (OHA) as defined by [Lygeros and et. al., 1999] is a
very general and syntactic description of a hybrid system, it is hard to perform any com-
putations on a system described by it. It is therefore desirable to transform the formation
model from an OHA to another description which yields better to computation. In this
case the piecewise-affine hybrid system has been chosen as control synthesis and analysis
of such systems is an active research area.

4.2.4 Piecewise Affine Hybrid System

PAHS are a subset of hybrid systems which are restricted to affine dynamics with domains,
guard sets etc. defined on polytopes. A polytope can be defined as the convex hull of a
finite number of points. Specifically a polytope of dimension n is called a simplex if it is
the convex hull of n + 1 points3 e.g. a triangle in R2 or a tetrahedron in R3.

Following the method in [Habets et al., 2006] with the addition of discrete input events
a PAHS can be defined as:

Definition 4 (Piecewise-Affine Hybrid System). A piecewise-affine hybrid system, H, is
a collection

H = (Q, E , T ,W,U , {Xq,Aq | q ∈ Q}, {Rq(e),Gq(e) | (q, e) ∈ dom(T )},
{I(w)q | q ∈ Q, w ∈ W})

where

- Q is the set of discrete states q ∈ Q.

- E is the set of edges connecting states e ∈ E .
3The points can not coincide
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- T is a transition map (partial), T : Q× E → Q, relating states and edges.

- W is the set of input events w ∈ W .

- Uq is a polytope describing the continuous input uq ∈ Uq.

- Xq is a politopic set of continuous state variables xq ∈ Xq, defining the invariant
set of the state q. Note that the state variables in different discrete states can differ.

- Aq denotes an affine system, ẋq = Aqxq + Bquq + Cq, governing the evolution of
the continues variables in state q.

- Gq(e) The guard sets, Gq(e) ⊂ ∂Xq, is the boundary of the domain, Xq, for the
affine system Aq.

- Rq(e) Reset maps are defined for each transition, e, as a function from guard sets
to the domain of the state Rq(e) : Xq → Xf(q,e) for any (q, e) ∈ dom(T ).

- Iq(w) The input map causes transitions, e ∈ E , to be taken based on the input
events w ∈ W , Iq(w) : W ×Q → E , according to T .

If each of the continuous state sets, Xq, are simplices then H is a piecewise-affine
hybrid system on simplices for which there exist control synthesis methods [Habets et al.,
2006; Wisniewski and Larsen, 2008].

Focusing on the simplicial version of a PAHS it is evident that the domains of the
hybrid system formation model 1 are not compatible with the requirement that the state
sets, Xq, are simplices as all of the invariants in H are Rn. The solution lies in selecting
a bounded region of Rn as the state space and discretising it into a finite number of
simplices as shown in fig. 4.2. The optimal division of a space into simplices is still an
open question, but a common method is to use a finer division near areas of interest in the
state space e.g. reference point such as desired formations.

The end result is that each discrete state in H is split into several discrete states with
the same affine dynamics in H. However the events caused by failures changes the affine
dynamics without changing the continuous state variable, Rq(e) = id, and this is easily
visualised as a transition between two state spaces, see fig. 4.3.

It is worth to note that even if the underlying dynamics are non-linear this approach
can be used as for each simplex the non-linear system can be linearised [Sontag, 1981]
and yield a piecewise affine approximation to the nonlinear system. The end result is a
controller strategy very similar to gain scheduling.

By converting the hybrid system 1 into piecewise-affine hybrid system the satellite
formation can be described as:

System 2. PAHS satellite formation model
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relative position

relative velocity

Goal Set

Figure 4.2: A 2 dimensional state space divided into simplices.

Fault 1

Nominal

Fault 2

Figure 4.3: An external event causes the dynamics to be changed. Left the hybrid system
H. Right the PAHS H

- For each state, q ∈ Q, representing a failure mode, i, the domain of the continuous
state, x ∈ X , is partitioned into simplexes represented by a set of discrete states
Qi ⊂ Q.

- The set of discrete states is the union of the discrete states generated by partitioning
the domain of each failure mode q ∈ Q into simplices.

Q =
|Q|−1⋃
i=0

Qi
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- For each pair of adjacent simplices represented by the states (q, q′) ∈ Q a transi-
tion e ∈ E exist with the corresponding transition relation T (e, q) = q′. Further-
more each transition e = (q, q′) ∈ E from the system 1 corresponding to a fault,
i, generates a set of transitions, Ei ⊂ E; one for each discrete state in Qi. The
transition relation, T (es, qs) = q′s, maps each transition from state qs representing
simplex, s, to the state representing the corresponding simplex, q′s, in the failure
mode.

- The set of discrete input events, W , is obtained from the one-to-one mapping,
L(vd) : VD → W such that each discrete variable in the hybrid system, H , corre-
sponds to a discrete event in H.

- The input map, Iq(w), is defined s.t. a fault, i, generating input event, wi, maps to
the intersection between the set of transitions starting in q ∈ Q, denoted Eq,4 and
the set of transitions associated with the i’th failure, Ei.

Iq(wi) = Eq ∩ Ei

- The set of continuous input variables VC can be defined such that vi,j ∈ VC is
limited by the maximal thruster force −Ti,j,max ≤ vi,j ≤ Ti,j,max. Constructing
U as the Cartesian product of the input variables U = v1,1×v1,2×· · ·×vn,3 yields
a hyperrectangle thus fulfilling the condition that U must be a polytope.

- As the discrete states, q ∈ Q, are defined with respect to simplicial a decomposi-
tion of the state space, X , it naturally follows that the set of the continuous state
variables, Xq, for each discrete state is exactly the simplex for which the discrete
state is defined.

- As the domain of each failure mode, q ∈ Q, is divided into simplices, then for the
set of states, Qi ⊂ Q, the affine dynamics are equal to the dynamics of the failure
mode i. AQi = {Ai, Bi, Ci}.

- The guard sets are defined per definition 4 to lie on the boundaries of the domains
of each state, q ∈ Q, i.e. on the facets of the simplices.

- The reset maps from the open hybrid automata description of the formation carries
over and as the evolution of the continuous state, X , in each failure mode, q ∈ Q,
includes no discontinues jumps the reset maps for the PAHS model are all identity
maps.

In order to obtain a discrete abstraction of the formation model each of the transitions,
e ∈ E , must be evaluated to determine whether they are reachable and controllable. For
the transitions caused by traversing a simplicial facet the method as described in [Wis-
niewski and Larsen, 2008; Habets et al., 2006] determines whether a facet can be blocked

4Eq is the set of states for which T (e, q) 6= ∅, e ∈ E
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(controllable) or not (uncontrollable), and for the transitions caused by failure events they
are all uncontrollable. Therefore an abstraction describing the possible traversal of the
simplices can be represented as e.g. a discrete automaton or as a simplicial set as shown
in the example in the next section.

Furthermore a number of tools exist which can aid in system analysis and control syn-
thesis. Some examples are; UppAal[Larsen et al., 1997] which can synthesise controllers
and check properties of the discrete abstraction, and Ariadne and PHAver [Balluchi et al.,
2006; Frehse, 2005] which computes reachable and safe sets for piecewise-affine hybrid
systems.

4.3 Example

In this section an example of how a two spacecraft formation can be controlled using the
aforementioned formalisms will be illustrated. The goal in this example is bringing the
two spacecrafts together, and the problem therefore reduced to the rendezvous problem,
but with the added complication of possible faults occurring.

The two-satellite formation problem, which was stated in Eq. 4.1, is sufficiently
simple to be grasped in lower dimensions and contains enough complexity to show the
strength of the proposed methodology, which easily scales to a greater number of satel-
lites.

Since the system state space is four dimensional it needs to be divided into a sim-
plicial set containing a number of 4-dimensional simplices. However, as can be seen
from Eq. 4.1, the system is naturally decoupled in the two spatial dimensions. Thus the
system can, without loss of generality be represented as a parallel composition of two
two-dimensional simplicial sets. One of these spatial dimensions is shown in fig. 4.4.
Here the relative position error, in one of the dimensions, is displayed along the horizon-
tal axes and the relative velocity between the two satellites along the vertical axes. The
allowable regions are the white simplices, in which the satellite formation is allowed to
move freely and the shaded areas are the goal sets, which is the control objective. There
is also the possibility of adding dark shaded regions comprising avoid sets which signify
regions of the state space which is forbidden to enter e.g. where collisions will occur or
communication/sensors will cease working.

Now, for each simplex the possibilities for blocking a facet can be found, as described
in [Wisniewski and Larsen, 2008]. An example of this for an initial position between 100
and 500 meters from the goal state is shown in fig. 4.5. The initial state is here marked by
a black ball. For each simplex traversed along the path towards the goal state the facets,
which it is possible to leave through is marked by an arrow indicated the direction of
leaving. If it is possible to block that state the tail of the arrow is additionally marked
by a black dot corresponding to controllable and uncontrollable transitions in a digraph
description.

As this formalism does not specify what is to happen in the goal state, but just that
it should be reached, the transition taken entering it might just as well be a transition to
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Figure 4.4: Example division of the two-satellite formation problem along one spatial di-
mension.

another PAHS, just with a finer state division or alternatively if all facets can be blocked
and a fix point created a reference in the state space can be reached [Habets et al., 2006].

To illustrate how faults affects the system fig. 4.6 shows a superposition of the state
spaces of nominal and a fault mode, with identical simplicial divisions. The solid line
shows the evolution of the continuous states in the fault free mode while the dashed line
shows the evolution of the state after the fault occurs. As can be seen the flows differ from
the point of failure and this is a consequence of the fault causing facets to change from
being blockable (controllable) to unblockable (uncontrollable), shown as white balls.

4.4 Discussion and Conclusion

In this paper a model of a satellite formation including thruster faults has been presented
and a conversion to a piecewise-affine hybrid system has been shown, leading to the
possibility of leveraging recent methods developed to analyse and synthesise controllers
for PAHS. The control synthesis method has been outlined and an illustrative example of
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Figure 4.5: Example of how the goal state could be reached from the initial state.

a two-satellite formation has been used to clarify the concept.
There are still a number of open questions and place for improvements. Specifically

adapting the method to handle distributed as opposed to the centralised control as shown
in this paper and also the ability to include some measure of (fuel) optimality into the
approach.

Furthermore the optimal partitioning into simplices is an open question. Especially
considering that the number of simplices required to maintain a fixed grid resolution in-
creases exponentially with the number of continouos dimensions.
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Figure 4.6: Example of how a fault changes the controlability of transitions and thereby
the flow of the continuous states.
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Chapter 5

Combinatorial Control Systems

The paper introduces the concept of a combinatorial control system. It is a discrete
abstraction of a hybrid- and thus in particular a continuous control system. We asso-
ciate to it notions of a flow map, a Lyapunov function and feedback. The state space is
partitioned into polyhedral sets and the control action forces a shift from a polyhedron
to its neighbor. Locally in each polyhedral set the system is approximated by an affine
model. The concept is particularly useful for combined guidance and control of e.g.
autonomous robots and satellites; as an example in the paper illustrates.

5.1 Introduction

Automatic control synthesis for large scale systems is a central capability for creation
of next generations of autonomous systems, such as automatic robotic manufacturing
systems, and mobile robotics operating in uncharted environments.

Previously, it has been shown that feedback control can be automatically generated
for a class of nonlinear systems. In [Pedersen et al., 2002] evolutionary algorithms and
in [Prajna et al., 2004] Lyapunov functions were used for automatic control synthesis.
These methods are not devised to handle switches between operation modes characterized
by different dynamic. Nevertheless, mode change is essential for autonomous dynamical
systems. On the other hand, considerable progress has recently been made in the direction
of discrete abstractions of continuous and hybrid control systems. In e.g. [Tabuada and
Pappas, 2003b] the state space was partitioned by higher dimensional cubes, and control-
lable system has been shown to be bi-similar to a discrete register.

In the current paper a unified modeling framework is developed. It takes into account
both possibility of switches between the systems dynamics and non-linearities in the sys-
tem model. An overview of the proposed framework is sketched in Fig. 5.1. At first,
three components are given: the system in question, admissible control and the control
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objectives. The state space of the system is partitioned into polyhedral sets, here sim-
plices. In each simplex the system dynamics is approximated by an affine model. The
totality of simplices is called in the diagram a simplicial complex. Admissible control is
used to assign to each simplex the set of reachable simplices in its direct neighborhood
- the control determines the future simplices. This control action will be called a control
combinatorial vector field (CCVF). Motivated by the continuous counterpart a control
objective is expressed by a function whose minimum is at the goal simplex and which is
decreasing along the system trajectories - this is a combinatorial Lyapunov function. A
Combinatorial Control System designates in the figure the selection of a discrete control
action satisfying the control objectives.

The paper is organized as follows. Sect. 5.2.1 gives a brief introduction to simplicial
complexes. It is shown in Sect. 5.2.2 how to steer the system such that each trajectory
exits a simplex through a desired face. Combinatroial vector fields are introduced in
Sect. 5.2.3. It constitutes a discrete abstraction of a control system. The concept of a
combinatorial Lyapunov function is brought in in Sect. 5.2.4. It is used in this paper to as-
sert the control objectives. Finally, Sect. 5.3 provides a simple example, which illustrates
how the methodology developed in this work can be used for automatic control synthesis.

Control Combinatorial

System Control ObjectiveControl

Simplicial Complex

Lyapunov Function
Vector Field

Combinatorial
Control System

Figure 5.1: Overview of the combinatorial control system framework.

5.2 Methodology

The different components of Fig. 5.1 will be elaborated in this section. The main atten-
tion will be given to how a dynamic system can be transformed into a simplicial complex
and how the possible control actions can be embedded into a CCVF. The two remain-
ing parts, the Lyapunov function and finally combinatorial vector field will merely be
sketched and the relevant references will be provided at the end. For a thorough handling
of the theoretical background the reader is referred to [Wisniewski and Larsen, 2008;
Larsen and Wisniewski, 2008a] and the references therein.
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5.2.1 Simplicial Complex

A n-dimensional simplex, i.e. an n-simplex, is the geometric space spanned by n + 1
independent points, hereafter called vertices, i.e. in 2-dimensions a simplex is a triangle,
in 3-dimension a tetrahedron etc. The sides of a simplex are called facets, and each facet
of a simplex is in itself a simplex. All such facets and facets of facets are called faces.

A simplicial complex K in Rn is a collection of simplices in Rn such that [Munkres,
1984]: Every face of a simplex of K is in K and the intersection of any two simplexes of
K is a face of each of them.

Since any polytope can be constructed by the combination of a finite number of sim-
plices the methods describe in the following holds for any polytope. For a more thor-
ough introduciton to simplicial complexes the reader is refered to [Grünbaum, 2003;
May, 1992; Zomorodian, 2005].

Transforming a dynamical system into a simplicial complex can be divided into the
following two steps: triangulation and linearization.

Partitioning

The first step in obtaning a discrete abstraction of a system is to partition the state space
into a simplicial complex. So far, there does not exist one optimal way of doing this
without extensive knowledge of the underlying dynamical system, thus we suppose that
there exists a partition. The space on which robotic systems are modelled can be described
by a bounded subset of Rn×Tm×So, n, m, o ∈ N, which has the property, that it can be
represented as a simplicial complex with a finite number of simplices, thus making this
abstraction into a simplicial complex valid for such systems.

Linearization

To represent the dynamical system as a simplicial complex a dynamic model approximat-
ing the original systems dynamics locally is assigned to each simplex. In this work an
affine model is used to represent the dynamics in each simplex, because it gives a good
trade-off between being able to represent an arbitrary system locally and at the same time
being able to handle it mathematically [Sontag, 1981; 1982]. An affine system takes the
following form:

ẋ = Ax + Bu + a,

with x ∈ Rn being the state-space, A ∈ Rn×n the autonomous dynamics, u ∈ Rm the
input space, B ∈ Rn×m the input matrix and a ∈ Rn any constant dynamics.

The first method for obtaining an affine system valid on a given simplex is based on
barycentric linearization, and is found by considering the system

ẋ = f(x, u) with Jacobian Df(x, u)

and linearization point x0 - the barycenter of the simplex.
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The linearization of interest thus becomes

ẋ = f(x0, 0) + Df(x0, 0)
(

x− x0

u

)
,

which results in the following system matrices: A = Dxf(x0, 0), B = Duf(x0, 0) and
a = f(x0, 0) + Dxf(x0, 0)

(
−x0

)
This linearization represents a good linear approxi-

mation of the system in the simplex and it is very simple and fast to calculate in practical
applications. However, the linearization has the downside, that the linearizations in the
neighboring simplices do not agree on the facets, which leads to a discontinuous system
model. In order to remedy this a method for linearization, which agrees on the boundary
will be presented.

In order to generate a linearization, which agrees on the facets of the simplices with
neighboring simplices the systems dynamics at the vertices of the simplex is used.

First the autonomous part of the system is identified, which is done by considering the
dynamics of the system at each vertex. The autonomous system is: ẋ = Ax + a, which
on each vertex gives: ẋvi = Avi + a ⇔ vT

i AT + aT = ẋT
vi
⇒

vT
1 1

vT
2 1
...

...
vT

n+1 1


(

AT

aT

)
=


ẋv1

ẋv2

...
ẋvn+1

 . (5.1)

Since the vertices of the simplex are independent, (5.1) always has a unique solution.
What is left is to find the input matrix, B, which can be computed as described previously
under barycentric linearization.

Not only does this linearization possess the nice property, that it agrees with the dy-
namics of neighboring simplices on common facets, but this method of linearization is
also applicable on systems, where the underlying model of the system is unknown, by
replacing the derivative ẋvi with the approximation ẋvi ≈

vi+τ−vi

τ .
Note, that all linearizations does not necessarly need to be available apriori. A re-

ceding horizon approach could be considered where only the nearest neighbours are lin-
earized whenever entering a new simplex.

5.2.2 Control Combinatorial Vector Fields

In this section control on the individual simplices is investigated. Such control has previ-
ously been studied in [Habets and van Schuppen, 2004] and [Habets et al., 2006] where
the control objective was decomposed into two control problems posed for each n-simplex
σ (in fact in [Habets and van Schuppen, 2004] the authors treat more general problem of
control synthesis on a polytope):

Problem 1 (Problem 4.1 in [Habets et al., 2006]). Let σ ∈ Kn, Kn being the n-dimensional
complex. Given a subset S of maximal faces, i.e. co-dimension 1 simplices, of σ find a
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control law
kσ : Im(σ) → Rm, kσ(x) = Fσx + gσ, (5.2)

where Fσ is an m by n matrix and gσ is an n-vector, such that it guarantees that all flow
lines of the closed-loop system

ẋ = (Aσ + BσFσ)x + (aσ + Bσgσ), (5.3)

starting at a p ∈ Im(σ) leaves the simplex σ in finite time by crossing one of the faces in
S.

Problem 2 (Problem 4.2 in [Habets et al., 2006]). For a given σ ∈ Kn find a control
law (5.2) such that for any p ∈ Im(σ) the flow line φp(t) of the closed-loop system (5.3)
satisfies φp(t) ∈ Im(σ) for any t ≥ 0.

Problems 1 and 2 are solved in [Habets et al., 2006] by blocking facets that are com-
plementary to the set S. A facet F1, with outward unit normal n1, is called blocking if
〈ẋσ, n1〉 < 0. We observe that if S′ ⊂ S and the control law kσ blocks all the faces in
S then it also blocks the faces in S′; thus the more blocking faces the more restrictive
control becomes. For a treatment of the necessary and sufficient conditions for guaran-
teeing control to a certain facet of a simplex for the piece wise affine system the reader is
referred to [Habets et al., 2006] and the references therein.

Thus for each simplex there exists a set of controllers kσn , possibly empty, which
guarantees that the system will leave the simplex through a known subset of its facets.

Other types of controllers, e.g. nonlinear controllers, may of course be considered as
long as it guarantees exit through a specific facet of subset of facets. Affine controllers
are considered here because they can be generated automatically.

5.2.3 Combinatorial Vector Fields

Let K be a simplicial complex. A combinatorial vector field V on K is a family
{Vn| n ∈ N} of maps [Wisniewski and Larsen, 2008]

Vn : Kn−1 → Kn ∪ {0}

that satisfies Vn ◦ Vn−1 = 0, that is if σ ∈ Image(Vn−1) then Vn(σ) = 0.
Alternatively a combinatorial vector field is a set V̄ of pairs of simplices 〈α, σ〉, where

α is a maximal face of σ. It is helpful to picture a combinatorial vector field on K by
arrows, where the tail is at α and the arrow at σ, as illustrated in Fig. 5.2.

Using the combinatorial vector field as an abstraction of the original system it is
possible to calculate flow and flow line of the combinatorial vector field. For this the
notion of a combinatorial scalar product is needed, which for simplicial complexes is
〈·, ·〉 : Kn ×Kn → {0, 1}, defined by

〈σ, α〉 =
{

1 if σ = α
0 otherwise
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We extend it to the bilinear product 〈·, ·〉 : Cn(K)× Cn(K) → Z. In particular〈∑
j

njσj , σk

〉
= nk.

Define θn : Cn(K) → Cn−1(K) by

θn(σ) =
n∑

i=0

(−1)i 〈Vn ◦ dn
i (σ), σ〉 dn

i σ,

with dn
i (σ) being the face map of σ [May, 1992]. The map θ takes σ ∈ Kn to a linear

combination of the simplices in V −1
n (σ), i.e. for a given simplex it pronounces which

facets the flow possibly came from.
With this we define the notion of a flow: A flow (of a nondeterministic combinatorial

vector field) is the map Φn : Cn(K) → Cn(K) given by

Φn = (∂n+1 − θn+1) ◦ Vn+1 + Vn ◦ (∂n − θn).

Consider the nondeterministic combinatorial vector field defined in Fig. 5.2. It is

v1v0 v2e0 1e

A2

A1

v3

v4 v5 v6

e2

e3 e4
e5 e6 e8

e9 e10

A5A3 e7

A4

Figure 5.2: An example of a simplicial complex with its associated vector field. The vertex
v3 is a rest point.

possible to calculate the flow starting at the 2-simplex A4:

Φ2(A4) = (∂3 − θ3)V3 + V2(∂2 − θ2)
= (∂3 − θ3)0 + V2(e7 − e10 + e6 − e7) = A3.

The result is the 2-simplex A3, which corresonds to our expectation, as seen from Fig. 5.2.
Correspondingly, a flow line, γ, is used to denote a sequence of flows, i.e. γ = σ,Φ(σ),Φ◦
Φ(σ),Φ ◦ Φ ◦ Φ(σ), . . .

5.2.4 Lyapunov Function

In order to specify the control objectives for the system we introduce the notion of a
Lyapunov function, f : K → R. It has been shown in [Franks, 1980] and [Forman, 1998]
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that such Lyapunov functions for combinatorial dynamical systems exist with the same
properties as for continuous dynamical systems, i.e. is descreasing along flow lines of
the system. There are no general limitation to such a function except that it should be
monotonic with a global minimum at the goal simplex.

One obvious Lyapunov candidate is the distance to the goal simplex. Assigning a
value to each simplex in the simplicial complex is done by iteratively associating to every
simplex an increasing number starting from the goal simplex. Thus - for example all
neighboring simplices to a goal are given a value higher than the goal value, and etc. until
the entire complex has been covered. At this step simplices, which represent unsafe areas,
i.e. prohibited areas which the system under no circumstances is allowed to enter is not
given any value, and is thereby not considered in the following synthesis.

Another possibility is to use a potential field alike function as described in [Hwang and
Ahuja, 1992; Koren and Borenstein, 1991] with minimum at σgoal and maximum at σinit,
and then for each simplex apply the average over the simplex as a value of the Lyapunov
candidate function at this simplex. The disadvantage of potential field functions is that
they might have local minima.

5.2.5 Control Synthesis

Let L0 be a finite set (of control actions). A combinatorial control system is a map

µ : Kn × L0 → Cn−1(K)

such that for every l ∈ L0, the restriction of µ to Kn × {l}, is an n-combinatorial vector
field.

By having the control objective specified by a Lyapunov function f it is now possible
to synthesize a control system by selecting a control action from L0 that satisfies the
conditions of the Lyapunov function.

Denote the set of all possible combinatorial control systems satisfying the control
objective given by the Lyapunov function f by Ω. If Ω 6= ∅, then all flow-lines of the
closed loop system Φω(σ) stops at σgoal, where Φω is the the flow for the n-combinatorial
vector field with controller ω ∈ Ω There might be, however, more than one combinatorial
control system in Ω. This flexibility can be used to select the control ω, which minimizes
a certain cost function. Let H : Kn × L0 → R be a function,

ω = arg min
ω∈Ω

max
γω

∑
σ∈γω

H(σ, ω(σ)),

where γω is a flow line for the n-combinatorial vector field Φω(σ) that starts at σinit and
stops at σgoal.

In practice one wants that the decision of the control action is local. For each simplex
the set of possible control actions is determined to find the next feasible controller. Let
J : Kn → R be a function. For an initial simplex σinit and a goal simplex σgoal we want
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to find a combinatorial control such that at each simplex σ, max J(Φω(σ)) is minimal -
The following procedure can be used:
σ = σinit

While σ 6= σgoal

ω = arg minω∈Ω max J(Φω(σ))
σ = Φω(σ)

5.3 Example

In this section a numerical example is given. It comprises path planning and obstacle
avoidance for a small robot modeled as a unicycle, as described in [Oriolo et al., 2002].

State Space. The domain of the example is a 100 by 100 square, which has been
triangulated into the simplicial complex shown in Fig. 5.3, where the diamond indicates
the starting location, the circle - the goal location, the squares - unsafe regions and stars -
safe regions.

Lyapunov function. To aid the control synthesis a Lyapunov function is used. In this
example the Lyapunov function f maps a simplex to the smallest number of simplices
joining this simplex with the goal simplex. For simplicity only the values of the Lyapunov
function at the 2-simplices are depicted in Fig. 5.3.

Modeling. The model of a unicycle robot is derived in [Oriolo et al., 2002]. The work
shows that the robot’s mathematical model, through exact feedback linearization, can be
linearized wrt. angle and position.

In a cartesian coordinate system the position is described by(
ẋ
ẏ

)
= ṗ

(
cos θ
sin θ

)
. (5.4)

To simplify the problem two controllers are used. The first controller keeps the robot at
a constant speed. This is accomplished by a standard proportional control with a pro-
portional gain of kp = 10 and a reference of ṗref = 2. The second controller regulates
the robot’s angle, which is carried out by using a proportional-differential controller with
kp = 20 and kd = 30 and as input reference the desired angle θref .

By using these two controllers the system given by (5.4) can be reduced to(
ẋ
ẏ

)
= ṗref

(
cos θref

sin θref

)
. (5.5)

Since, throughout this example, ṗref = 2 the affine system approximation of (5.5) be-
comes (

ẋ
ẏ

)
= 2

(
sin θ̄
− cos θ̄

)
θref + 2

(
cos θ̄
sin θ̄

)
, (5.6)

with θ̄ being the linearization point for the given simplex.
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Controllability. Given the system model (5.6) the admissible and blocking facets are
identified. Suppose that the flow enters a simplex σ perpendicular to a facet and enumerate
the facets of σ from F1 to F3 starting from the facet through which the simplex was
entered. Then it is seen from (5.6) that {F1, F2} and {F1, F3} are sets of blocking facets,
which correspond to admissible facets F2 or F3, i.e. there exists a controller forcing
the system to exit either through F2 or F3. Note that the system is not stabilizable in the
equilibrium point, due to the assumption of constant velocity. Including this in the control
synthesis it would however become stabilizable.

Control synthesis. The algorithm selecting the combinatorial control systems Ω,
satisfying the Lyapunov function f is applied. No cost function has been utilized in this
example, thus when the algorithm finds two identical Lyapunov values for neighbouring
simplexes the first encountered by the program is chosen. In Fig. 5.3 the solid line shows
the control synthesis.

Numerical simulation. To verify that the developed controller executes the control
actions as desired, the original non-linear system is simulated with the combinatorial
control law. Fig. 5.3 depicts the resulting trajectory of the closed loop system by the
dashed line. The solid line represents the discrete control. It is seen that the synthesized
controller makes the original non-linear system behave as specified.

5.4 Conclusion

In has been shown how control synthesis for a large class of dynamical systems including
both non-linear and switched systems can be performed automatically. The state space
has been partitioned into simplices, in which the system dynamics has been approximated
by a set of affine systems with agreeing dynamics along the facets. The control objectives
have been expressed in terms of the combinatorial Lyapunov function and the discrete
control has been devised that fulfills these objectives. The methodology has been illus-
trated by application to robot guidance, where the unicycle trajectory planning problem
was considered.
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Figure 5.3: The simplicial complex considered in the example along with assigned Lya-
punov function values, the synthesized combinatorial control system, indicated by the solid
line, and the control system applied to the original system shown by the dashed line.
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Chapter 6

Introduction to Combinatorics
The following chapter will try to emphasize some of the advantages of developing a
purely combinatorial equivalent of continuous dynamical systems as well as hybrid
systems along with a comparison of the different proposed methods.

6.1 Relevance of a Combinatorial Equivalent

As shown in the first part of this thesis, hybrid systems intrinsically contains both discrete
parts, in form of switching between locations, and continuous parts, in form of the contin-
uous dynamics in each location. In order to handle, i.e. analyse and control, such systems
there are basicly two approaches:

- Develop methods for handling hybrid systems and thereby encompassing both the
continuous and discrete nature of the system in one framework.

- Translate everything into one system being either discret or continuous.

The first approach has the advantage, that it is keeping quite close to the original way of
thinking about the problem, i.e. as a set of locations with continuous dynamics in each
location. However, when comming to building analysis and control synthesis tools for
such systems the task becomes quite difficult. A few works in this direction are [Chutinan
and Krogh, 2003; Larsen et al., 2004].

Going in the other direction and translating the entire system into either a discrete or
continuous system has the advantage, that many tools have already been developed for
purely discrete and purely continuous systems. However, the downside is, that in order
to use these tools the continuous dynamics first needs to be translated into a discrete
equivalent or visa versa. Something which can be quite a dificult task in its own.
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- Translating the discrete transactions into continuous equivalents. In order to make
a purely continuous model of the system the discrete nature of hybrid systems, i.e.
the switch between locations needs to be translated into a continuous equivalent.
One work in this direction is shown in [Wisniewski, 2006], where it is shown how a
continuous realization can be made by connecting the continuous dynamics through
a flow strip with pure integrater dynamics defined on it as shown in figure 6.1. This

(a) Hybrid System (b) Continuous realisation

Figure 6.1: (a) The original hybrid system consisting of two locations and one jump. (b)
A continious realisation of the system with the jump replaced by a flow strip with pure
integrators defined on it.

theory has been shown used on a stability analysis for a distributed cooling system
in [Li and Wisniewski, 2006].

- Translating the continuous dynamics into a discrete equivalent. As mentioned ear-
lier it is also possible to go the other way, i.e. translate all continuous parts into
discrete equivalents. In order to do this the continuous section of the system can be
split into a number of smaller parts, each which can be approximated by a linear or
possibly affine system. Which of these cells it is possible to go between as a func-
tion of the applied control law and input restriction, can now be found. A simple
illustration of this is shown in figure 6.2.

(a) Hybrid System (b) Discrete realisation

Figure 6.2: (a) The original hybrid system consisting of two locations and one jump. (b)
A discrete realisation of the system with the contiuous dynamics replaced by discrete ab-
stractions.

Since a large amount of research effort has been put into handling purely discrete systems
- primarily by the computer science community, e.g. [Larsen et al., 2004] it was found,
that the shortest path towards a working theory will be to focus on developing a discrete
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abstraction of the contiunous part of the system and to develop an algebra capable of
handling such discrete systems.

In the following only the key differences of the three methods will be mentioned,
which are their definitions of vector fields and flow.

6.2 Previous Work

One of the main works in developing a discrete abstraction of dynamic systems is done
in [Forman, 1998]. In this paper the following definitions for vector fields and flows are
introduced.

Definition 5. The Forman vector field is given as: V : Kn → Kn+1 ∪ {0}, with the
following restrictions:

1. For each σ(p) ∈ Kp, either V (σ) = 0 or σ is a regular face of V (σ).

2. If σ ∈ Image(V ) then V (σ) = 0.

3. For each σ(p) ∈ Kp: ]{v(p−1) ∈ Kp−1|V (v) = σ} ≤ 1,

with ] denoting the cardinality. In [Forman, 1998] the notion of illustrating the vector
fields by arrows is introduced analog to how arrows are used to indicated flow directions
in phase plots for continuous dynamical systems. An example of such is shown in figure
6.3. The above definition can in terms of these arrows be expressed as follows:

- An arrow goes from a lower dimension to a one dimension higher simplex.

- A simplex cannot be both a head and a tail for a vector field.

- Each simplex can at maximum be the head or tail of one vector field.

v1 e2v21e

e5e3 e4 e6

e7

3v

v4 v5

A1 A2

A3

Figure 6.3: A combinatorial vector field. The vertex v3 is a rest point.

Simplices which are neither the head nor the tail of a vector field are called rest points.
Another aspect of the paper is Formans definition of flow, which is as follows:

Definition 6 (Def. 4.2 in [Forman, 1998]). Define the (discrete time) flow Φ : C∗(M, Z) →
C∗(M, Z) by

Φ = 1 + ∂V + V ∂ (6.1)
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Section 6.3: First Method

This flow definition is nice in the sence that it preserves homology, however when
starting to do computations with it future simplices are not always the ones which in-
tuitively should be the future simplices. Furthermore, it is difficult to interpretate the
multiplicity of a future simplex, i.e. how to interprete Φ(σ1) = 3σ2 − 2σ3. Finally, from
the definition of the vector field it is only allowed for the vector field to split into more
directions, but it is not allowed to merge flows, something which whould be nice to have
in practice as a dual to splitting.

6.3 First Method

To remedy these shortcommings of Formans method a modified version of his combina-
torial vector fields is introduced. A more thorough introduction of this is given through
chapter 7 and 8 where a practical application is also introduced.

In changing the combinatorial vector field, firstly the definition of vector fields is
changed in order to allow for merging flows, which result in the following definition:

Definition 7. Let K be a simplicial complex. A nondeterministic combinatorial vector
field V on K is a family {Vn| n ∈ N} of maps

Vn : Kn−1 → Kn ∪ {0}

that satisfies Vn ◦ Vn−1 = 0.

That is, a simplex cannot be the head of an arrow and at the same time the tail of
another arrow, however it is now possible for a simplex to have multible heads.

The definition of flow is also modified from Formans definition in order to remedy the
counter-intuitive behaviour of the flow. This is done by introducing the θ operator, which
can be interpreted as a pre operator returning co-dim 1 simplices which has the current
simplex as a result of its flow.

Definition 8. Let θn : Cn(K) → Cn−1(K) be given by

θn(σ) =
n∑

i=0

(−1)i 〈Vn ◦ dn
i (σ), σ〉 dn

i (σ),

where dn
i is the ith n-dimensional face, and 〈·, ·〉 : Kn ×Kn → {0, 1} the combinatorial

scalar product, defined by

〈σ, α〉 =
{

1 if σ = α
0 otherwise

By utilizing definition 8 it is possible to define the combinatorial flow as:
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Chapter 6: Introduction to Combinatorics

Definition 9. Φn : Cn(K) → Cn(K) given by

Φn = (∂n+1 − θn+1) ◦ Vn+1 + Vn ◦ (∂n − θn),

with ∂n being the boundary map given by ∂n =
∑n

i=0(−1)idn
i

Using this extention of the combinatorial vector field and flow it is now possible to
handle both splitting and merging of flows, an important duality, which is needed in order
to consider both forward and backward flow. However, one downside of this definition is,
that it does not preserve homology.

6.4 Second Method

In the previously described method a move was taking away from a rigirously and nice
formulation of combinatorial vector fields and flows towards a more intuitive and practical
formulation. In this second method a purely geometric interpretation of the combinatorial
vector fields and flows will be considered, which also allows for extending the notation
to include polyhedral complexes. A thorough introduction to this method is given in
chapter 9.

Firstly, by changing the direction of flow, i.e. letting it be directed as Vn : Kn →
Cn−1 it gives a more intuitive feel of the flow from an engineering point of view. Thus
the flow is defined as:

Definition 10. Let K be a complex. An i-vector field is a map

νi : Ki → Ci−1(K)

that satisfies

1. for any P ∈ Ki, νi(P ) ∈ Ci−1(cl(P )).

2. for any pair (F, P ) ∈ Ki−1 ×Ki, 〈F, νi(P )〉νi−1(F ) = 0.

3. for any pair (P,Q) ∈ Ki ×Ki with P 6= Q, 〈νi(P ), νi(Q)〉 = 0

The first requirement states, that the vector field of a cell will end at a linear combi-
nation of its facets. The second condition states that a cell cannot both be the head of a
vector field and at the same time a tail for one. The final condition states, that a cell can
only be the head of one vector field.

For this combinatorial vector field it is now possible to associate the following flow.

Definition 11. An i-flow (of a combinatorial vector field) is the homomorphism1 Φi :
Ci(K) → Ci(K) given by

Φi(P ) =
∑

Q∈Adi(P )

〈∂iQ, νi(P )〉 Q +
∑

Q∈Sti+1(P )

〈∂i+1Q,P 〉 νi+1(Q) + P,

1Φi is a homomorphism if and only if for any P, Q ∈ Ci, Φi(P + Q) = Φi(P ) + Φi(Q).
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Section 6.5: Comparison of Methods

for P ∈ Ki, with Adi and Sti+1 being the Adjacent neighborhood and Star of a polytope
respectively, as described in section 9.5.

6.5 Comparison of Methods

Given the three methods described in the previous, a comparison of the methods will be
given in the following looking at five distinct cases, which are: Source, sink, merging,
splitting and flow of combinatorial vector fields.

6.5.1 Source

A pictorial representation of a source is given in figure 6.4 for a 2-dimensional source
using the first method and the second method respectively.

The flow calculations for a source using the three mentioned methods looks like the
following:

- Forman:

Φ(A1) = A1 + ∂V (A1) + V ∂(A1) = A1 −A2 + A3 + A4

- First method:

Φ(A1) = (∂ − θ)V (A1) + V (∂(A1)− θ(A1)) = A4 −A2 + A3

- Second method:

Φ2(A1) =
∑

Q∈Ad2(A1)

〈∂2Q,V2(A1)〉Q+
∑

Q∈St3(A1)

〈∂3Q,A1〉V3(Q)+A1 = A2+A3+A4
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Figure 6.4: (a) A source in the formulation of Forman and the first method. (b) A source
using the second method.
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Chapter 6: Introduction to Combinatorics

6.5.2 Sink

The three different sink representations for the three methods are shown in figure 6.5 for
a 2-dimensional sink.

The flow calculations for a sink using the three mentioned methods looks like the
following:

- Forman:

Φ(A1) = 0, Φ(e1) = 2e7, Φ(e7) = 0, Φ(v7) = v7

- First method:
Φ(A1) = 0, Φ(e1) = 0

- Second method:
Φ(A1) = A1, Φ(e1) = 0
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Figure 6.5: (a) A sink in the formulation of Forman. (b) A sink using the first method. (c)
A sink using the second method.

6.5.3 Splitting

Splitting using Formans and the first method is shown in figure 6.6(a) and for the second
method in figure 6.6(b).

The flow calculations for this split using the three mentioned methods looks like the
following:

- Forman:
Φ(A1) = A2 + A3

- First method:
Φ(A1) = −A2 + A3

- Second method:
Φ2(A1) = A2 + A3
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Figure 6.6: (a) Splitting of flow in the formulation of Forman and the first method. (b)
Splitting of flow using the second method.

6.5.4 Merging

Merging of flow using the first method is shown in figure 6.7(a) and for the second method
in figure 6.7(b).

The flow calculations for this merging using the three mentioned methods looks like
the following:

- Forman:
Not possible

- First method:
Φ(A1) = A3

- Second method:
Φ2(A1) = A3
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Figure 6.7: (a) Merging of flow in the formulation of the first method. (b) Merging of flow
using the second method.
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6.5.5 Flowing

The last example given will be a bit bigger, which aim to show that the flow is well-
behaving, in the sense that it gives the expected future polytopes.

The simplicial complex considered here is depicted in figure 6.8, which can be seen
as a partition of a space in R2 with the system ẋ = [1 0]T defined on all of it.

The flow calculations for this using the three mentioned methods looks like the fol-
lowing:

- Forman:

Φ(A10) = A11, Φ(e17) = e18+2e12−e23, Φ(e22) = 2e22−e23, Φ(v10) = v11

- First method:

Φ(A10) = A11, Φ(e17) = e18 + 2e12 − e23, Φ(e22) = e23, Φ(v10) = v11

- Second method:

Φ(A10) = A11, Φ(e17) = e18, Φ(e22) = e18 + e23 + e29, Φ(v10) = v11
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Figure 6.8: (a) A flow in the formulation of Forman and the first method. (b) The same
flow using the second method.
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Section 6.6: Conclusion

6.6 Conclusion

By comparing the results of the flow computations performed in the previous section
table 6.1 can be produced listing the different methods properties agains each other.

For a source it is not desirable that the flow calculation will show that it potentially
stays at the location, since it is a fixed point with measure 0. However, when calculating
the flow of a sink the location itself should be returned. For the big flow example it is
seen, that both method 1 and 2 gives nice results for dimension n and dimension 0 flows.
However, they both have problems handling the intermediate dimensions.

Source Sink Split Merge Flow
Forman ÷

√ √
÷ ÷

Method 1
√

÷ (
√

)
√

(
√

)
Method 2

√ √ √ √
(
√

)

Table 6.1: Comparison of methods for combinatorial flow calculations.

64



Chapter 7

Combinatorial Hybrid Systems

As initially suggested by E. Sontag [Sontag, 1981; 1982] it is possible to approximate
an arbitrary nonlinear system by a set of piecewise linear systems. In this work we
concentrate on how to control a system given by a set of piecewise linear systems
defined on simplices. By using the results of L. Habets and J. van Schuppen [Habets
and van Schuppen, 2001] it is possible to find a controller for the system on each of
the simplices thus guaranteeing that the system flow on the simplex only will leave the
simplex through a subset of its faces. Motivated by R. Forman [Forman, 1998], on the
triangulated state space we define a combinatorial vector field, which indicates for a
given face the future simplex. In the suggested definition we allow nondeterminacy in
form of splitting and merging of solution trajectories. The combinatorial vector field
gives rise to combinatorial counterparts of most concepts from dynamical systems,
such as duals to vector fields, flow, flow lines, fixed points and Lyapunov functions.
Finally it will be shown how this theory extends to switched dynamical systems and an
algorithmic overview of how to do supervisory control will be shown towards the end.

7.1 Introduction

Recently a number of initial steps have been taken towards truly automatic control of
switched dynamical systems [Tabuada and Pappas, 2003b; Bemporad et al., 2000] and
the references therein. Giving a system the ability to automatically reconfigure itself has
received enormous attention during the past decade, particularly in the fields of fault tol-
erant control (FTC) and navigation of autonomous robots. In the first case, the system
dynamics can exhibit rapid changes, in the latter it is the environment’s dynamics that
changes. Common for both applications however are, that whenever a change occurs,
the system will start to either recalculate a new control law, or select it from a set of
pre-analyzed and -programmed controllers. Albeit doable, such reconfigurations requires

65



Section 7.1: Introduction

great computational resources; recourses, which are often not available on smaller au-
tonomous platforms, thus a more efficient method is desired.

In the autonomous robot case the guidance problem has previously been handled by
two different methods, one being model predictive control, [Falcone et al., 2007; Kouvar-
itakis and Cannon, 2001], where the constraints describe the safe area and the system tra-
jectory is being simulated within a finite horizon through which the system is verified not
to hit an unsafe area. Another approach has been to use energy shaping, in which obsta-
cles are modeled as maxima of potential fields, and the control goal as the minimum, thus
following the negative gradient vector field will lead to the goal [Barraquand et al., 1992;
Koren and Borenstein, 1991]. Finally, and more recently, the problem has been addressed
by [Tabuada and Pappas, 2003b], where the system is modelled as an automaton. The
control design is then reduced to a finite discrete state supervisor that satisfies system
requirements. An application example of such a system in multi-robot planning can be
found in [Quottrup et al., 2004] and in [Larsen et al., 2007] it is applied to a switched
system.

In the FTC case each fault scenario has a dedicated controller that has been developed
for each of them. The switching between these controllers have then been left to a super-
visory controller, which relies on reliable fault detection and isolation (FDI) methods to
decide when to switch [Izadi-Zamanabadi and Larsen, 2007].

This paper deals with combinatorial formulation for piecewise-affine control systems.
It is thought as a carry-over of [Habets and van Schuppen, 2004] and [Habets et al., 2006],
which address the control problem for piecewise-affine systems on an arbitrary polytope
that forces the solution trajectories of the closed loop system to either leave it or stay in
it for ever. This paper merely considers the underlying discrete system. Interest of the
control community in systems defined on simplicial objects has been initiated by [Sontag,
1981; 1982]. Reachability and controllability on such systems have been studied before
in [Asarin et al., 2000a; Bemporad et al., 2000]. Whereas previous methods have been
based on the concept of a transition system, this paper focuses on its higher dimensional
generalization, a simplicial complex.

In this paper a complete design flow for control on combinatorial hybrid systems will
be given. Firstly the concepts of embedding a control system on a simplicial complex is
introduced in section 7.2 and 7.3. The main contribution of this paper is a formulation
of a combinatorial dynamical system in section 7.3. Section 7.4 gives a practical relation
between the combinatorial system and the original continuous system, which will be il-
lustrated through an example. Finally control synthesis is addressed in section 7.5, where
the concept of a combinatorial dynamical system is expanded to include the hybrid nature
of a class of hybrid systems. The section gives an overview and a conceptual example.

We use the following notation: Z is the set of integers, N is the set of natural numbers,
Z+ = {n ∈ Z| n ≥ 0}. A facet is a maximum dimensional face of a simplex. Throughout
the paper it is assumed, that the system is given as a simplicial complex with associated
affine systems defined on each simplex. It is outside the scope of this paper to go into
the details of simplicial objects. For a more mathematical background on the usage of
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simplicial complexes the reader is referred to [Wisniewski and Larsen, 2008], and more
generally [Munkres, 1973] and [Lee, 2002].

Paraphrasing the definition of the hybrid automata in [Henzinger, 1996a] and a hybrid
system in [Branicky, 1998] the hybrid systems definition employed in this paper is a pair
of sets.

- A finite set of dynamic systems defined on manifolds.

- A finite set of transfer maps, which maps a subset of one manifold to another.

7.2 Combinatorial Vector Fields

In this section we introduce the central notion of this paper - a combinatorial vector field.
The notion has been developed by R. Forman in [Forman, 1998] for studying topological
invariants of CW complexes. Here it is extended to deal with nondeterminacy encoun-
tered in hybrid systems. The attention in this paper is restricted to geometrical properties
of a combinatorial vector field. It is treated as a generator of flow. The notion of combi-
natorial flow lines is used in Section 7.5 for synthesis of supervisory control. For a more
elaborate treatment of combinatorial vector fields see [Wisniewski and Larsen, 2008].

Definition 12 (Definition 1.2, [Forman, 1998]). Let K be a simplicial complex. A com-
binatorial vector field V on K is a family {Vn| n ∈ N} of maps Vn : Kn−1 → Kn ∪ {0}
that satisfies

1. Vn ◦ Vn−1 = 0, that is if σ ∈ Im(Vn−1) then Vn(σ) = 0.

2. For each σ ∈ Kn, the number of elements of the pre-image V −1
n (σ) ≡ {α ∈

Kn−1| Vn(α) = σ} is 0 or 1,

where Kn is the set of n-simplices in K.

Alternatively a combinatorial vector field is a set V̄ of pairs of simplices (α, σ), where
α is a maximal face of σ, and for which no simplex is in more than one pair. It is helpful
to picture a combinatorial vector field on K by arrows, where the tail is at α and the arrow
at σ, see Fig. 7.1.

v1 e2v21e

e5e3 e4 e6

e7

3v

v4 v5

A1 A2

A3

Figure 7.1: A combinatorial vector field. The vertex v3 is a rest point.

67



Section 7.2: Combinatorial Vector Fields

Intuitively condition 1 of Definition 12 means that the system is of the first order;
geometrically it implies that the future simplices do not increase the dimension, see the
definition of the flow map below. Condition 2 excludes merging the future cells. It is
illustrated in Fig. 7.2 that splitting of flow is allowed whereas merging is excluded. In
Definition 14 of a nondeterministic combinatorial vector field we shall allow both situa-
tions.

1A
v2

v1

3v

v4

1e e2

e3

v5

e4

e7

e5 e6

A2

A3

(a) Splitting

1A

v1 v2

3v v4

1e

e2
e3 e4

e5

A2

(b) Merging

Figure 7.2: Illustration of Definition 12. Merging on the right hand side is excluded in
whereas splinting on the left hand side is allowed.

Since no simplex is in more than one pair in V̄ , every cell σ of the simplicial complex
K satisfies precisely one of the following conditions:

1. σ is the tail of exactly one arrow;

2. σ is the head of exactly one arrow;

3. σ is neither the tail nor the head of any arrow.

A simplex that satisfies condition 3. is called a rest point.

Definition 13 (Definition 1.3 of [Forman, 1998]). Let V be a combinatorial vector field
on K. We say that σ ∈ Kn is a rest point of V of index n if

1. Vn+1(σ) = 0 and

2. σ /∈ Im(Vn).

Section 7.3 indicates that the discrete behavior of a piecewise affine control system
involves nondeterminacy induced by blocking more than one facet of a simplex. It seems
therefore natural to omit condition 2 of Definition 12.

Definition 14. Let K be a simplicial complex. A nondeterministic combinatorial vector
field V on K is a family {Vn| n ∈ N} of maps

Vn : Kn−1 → Kn ∪ {0}

that satisfies Vn ◦ Vn−1 = 0.
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In the remainder of this section we shall develop a notion of flow of a nondeterministic
combinatorial vector field, that is a map Cn(K) → Cn(K) which takes an n-simplex to
its future n-chain (a linear combination of the simplices in the very next future, for more
details on chain groups see [Bredon, 1997]).

Remark 2. The linear combination of simplices indicates nondeterminism in the future
evolution. Thus for example τ 7→ σ + γ means that the future of τ is σ or γ. In fact, the
semantics adopted in this paper is such that any flow τ 7→ aσ + bγ for a, b ∈ Z \ {0}
indicates that the future of τ is σ or γ.

For simplicial complexes we may introduce the following definition of a combinato-
rial scalar product 〈·, ·〉 : Kn ×Kn → {0, 1}, defined by

〈σ, α〉 =
{

1 if σ = α
0 otherwise

We extend it to the bilinear product 〈·, ·〉 : Cn(K)× Cn(K) → Z. In particular〈∑
j∈J

njσj , σk

〉
= nk, k ∈ J.

Define θn : Cn(K) → Cn−1(K) by

θn(σ) =
n∑

i=0

(−1)i 〈Vn ◦ dn
i (σ), σ〉 dn

i (σ),

where dn
i is the ith n-dimensional face. The map θ takes σ ∈ Kn to a linear combination

of the simplices in V −1
n (σ), as shown in Fig. 7.3.

v1 e2v21e

e3 e6

e7

3v

v4 v5

A1 A3

e4 e5
A2

Figure 7.3: θ2(A2) = e4 − e5.

Discrete dynamics of a combinatorial control systems is encapsulated in the following
definition of the flow.

Definition 15. A flow (of a nondeterministic combinatorial vector field) is the map Φn :
Cn(K) → Cn(K) given by

Φn = (∂n+1 − θn+1) ◦ Vn+1 + Vn ◦ (∂n − θn),

with ∂n being the boundary map given by ∂n =
∑n

i=0(−1)idn
i
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Figure 7.4: An example of a simplicial complex with its associated vector field.

Example 1. Consider the nondeterministic combinatorial vector field defined in Fig. 7.4.

Firstly, the flow at e0 is computed:

Φ1(e0) = (∂2 − θ2)V2(e0) + V1(∂1e0 − θ1e0)
= (∂2 − θ2)0 + V1(v0 − v1 − v0) = −e4.

The result is the 1-simplex e4, which corresponds to our expectation, as seen from Fig. 7.4.
Another flow of interest could be the flow from the 2-simplex A4:

Φ2(A4) = (∂3 − θ3)V3 + V2(∂2 − θ2)
= (∂3 − θ3)0 + V2(e7 − e10 + e6 − e7) = A3.

Again the flow from A4 to A3 is found as expected.

The flow, Φn, generates an n-flow line. An n-simplex, σ ∈ Kn, belongs to the n-flow
line with the initial n-simplex τ if there is k ∈ Z+ such that 〈σ,Φk

n(τ)〉 6= 0. It is worth
noticing that a flow line born in an n-simplex σ - a source - does not die in a sink, since it
is a vertex (0-simplex). It dies in fact in an n-simplex belonging to the star of a sink.

With combinatorial vector fields defined, it possible to define the combinatorial coun-
terpart of flow lines, which in the combinatorial setting will be called a V -path.

Definition 16. A V -path of index p is a sequence of length r,

γ : σ
(p)
0 , τ

(p+1)
0 , σ

(p)
1 , τ

(p+1)
1 , ..., τ

(p+1)
r−1 , σ(p)

r , (7.1)

such that for all i ∈ {0, 1, ..., r − 1}

1. τi = V (σi)

2. σi 6= σi+1 = Φ(σi)

If σ0 = σr the V -path is called closed. Two closed V -paths, γ, γ̃, are equivalent if γ̃
can be produced by selecting another starting point of γ.

A V -path is calculated by taking an initial simplex, σ0, and propagating its flow, i.e.:

σ0 → V (σ0) → Φ(σ0) → V Φ(σ0) → ΦΦ(σ0) . . . (7.2)
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Moreover, since non-determinism is allowed in this definition of flow the V -path is al-
lowed to split into more paths, thus resulting in a tree of reachable locations compared to
just a single track in the deterministic case.

Chain recurrent sets are sets in which the flow of an element of the set will be cyclic
within the set. Thus intuitively this is the case for rest points and non-stationary closed
V -paths. More formally this means that:

Definition 17 (Definition 2.1 in [Forman, 1998]). σ(p) ∈ K is an element of the chain
recurrent set R if either

1. σ is a rest point of V or

2. there is a non stationary closed V -path γ with σ ∈ γ

As for dynamical systems, the notion of a Lyapunov function for a simplicial com-
plex is desirable, and as shown in [Forman, 1998] and [Franks, 1980] it is possible to
find a similar Lyapunov function, which has the property, that it is constant on the chain
recurrent set, and outside the set it is the negative gradient of the function towards the set.

Definition 18 (Theorem 2.4 in [Forman, 1998]). Let R be a chain recurrent set. There is
a function f : K → R such that

1. if σ(p) /∈ R and τ (p+1) > σ then{
f(σ) < f(τ) if τ 6= V (σ)
f(σ) ≥ f(τ) if τ = V (σ)

2. if σ(p) ∈ R and τ (p+1) > σ then{
f(σ) = f(τ) if τ ∼ σ
f(σ) < f(τ) if τ � σ

where τ ∼ σ means that that they belong to the same path.

This is to be understood in the following way: From the first definition, then a given
V -path, not being a chain recurrent set,

γ : σ
(k)
0 , τ

(k+1)
0 , σ

(k)
1 . . .

will have the following relation:

f(σ(k)
0 ) ≥ f(τ (k+1)

0 ) > f(σ(k)
1 ) ≥ . . . ,

which, as with continuous dynamical systems, means that the Lyapunov function is de-
creasing along the flow. The second condition in the definition above is saying, that for
the chain recurrent set

γR : σ
(k)
0 , τ

(k+1)
0 , σ

(k)
1 , τ

(k+1)
1 , . . . , τ

(k+1)
r−1 , σ(k)

r = σ
(k)
0
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the following relation:

f(σ(k)
0 ) = f(τ (k+1)

0 ) =f(σ(k)
1 ) = f(τ (k+1)

1 ) = . . . =

f(τ (k+1)
r−1 ) = f(σ(k)

r ) = f(σ(k)
0 ),

holds true.
Having drawn the parallels between continuous dynamical systems and combinatorial

dynamical systems it is now possible to change the view to how a control system can be
imposed on such combinatorial systems.

7.3 Piecewise-Affine Control System on Combinatorial
Manifolds

In this section we recall the notion of a combinatorial manifold M , as described in [Hud-
son, 1969] - a simplicial complex of particularly regular structure. We associate to each
simplex of maximal dimension in M a piecewise affine control system.

Let σ be an n-simplex. We say that a control vector field ξ : Im(σ) × Rm → Rn is
piecewise-affine n-control system if ξ is defined by the piecewise-affine map

ξ(x, u) = Ax + Bu + a,

where x is an n vector, A is an n by n matrix, B is an n by m matrix, u is an m vector
and a is an n-vector.

Definition 19. A combinatorial n-control system is a pair (M, ξ), where M = {M0, ...,Mn}
is a combinatorial n-manifold, and ξ = {ξσ| σ ∈ Mn} is a family of piecewise affine n-
control systems.

With a combinatorial n-manifold defined as in [Lickorish, 1999a]. Let (M, ξ) be a
combinatorial n-control system. A control objective for (M, ξ) is decomposed in [Habets
et al., 2006] and [Habets and van Schuppen, 2004] into two control problems posed for
each n-simplex σ (in fact in [Habets and van Schuppen, 2004] the authors treat more
general problem of control synthesis on a polytope):

Problem 3. Fix σ ∈ Mn. Given a subset S of facets of σ find a control law

kσ : Im(σ) → Rm, kσ(x) = Fσx + gσ, (7.3)

where Fσ is an m by n matrix and gσ is an n-vector, such that it guarantees that all flow
lines of the closed-loop system

ẋ = (A + BF )x + (a + Bg), (7.4)

starting at p ∈ Im(σ) leave the simplex, σ, in finite time by crossing one of the facets in
S.
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Problem 4. For a given σ ∈ Mn find a control law (7.3) such that for any p ∈ Im(σ) the
flow line φp(t) of the closed-loop system (7.4) satisfies φp(t) ∈ Im(σ) for any t ≥ 0.

We say that the control law (7.3) blocks a facet γ of a simplex σ if the vector field ξc
σ

of the closed loop system - defined by the right hand side of equation (7.4) - satisfies the
equality

〈ξc
σ(x), nγ〉 ≤ 0 (7.5)

for any x ∈ Im(γ), where nγ is the outward normal vector to γ and 〈·, ·〉 is the standard
scalar product on Rn.

Problems 3 and 4 are solved in [Habets et al., 2006] by blocking facets that are com-
plementary to the set S. We observe that if S′ ⊂ S and the control law kσ blocks all
the faces in S then it also blocks the faces in S′; thus the more blocking faces the more
restrictive control it is.

7.4 Controllability on Simplices

In this section the controllability of a given simplex is studied. Firstly some general results
on when it is possible to control the system to a given facet is shown. This is followed by
a number of actual design procedures to form the desired control. This leads to a set of
controllers, which can be selected in the combinatorial design procedure described in the
next section.

The resulting control options after this section is a set of combinatorial control systems
given by the map

Vc : Kn−1 × Un−1 → Kn ∪ {0},
from which the final controller will be selected later on.

It is desirable to look for the controllers which guarantees a single exit facet first, since
this results in a deterministic flow later on. Such a test for control to a specific facet, F1,
can be done by regarding the normal vector to the facet n1, and requires that the systems
flow at the vertices of the facet will be in the same direction as the normal vector, i.e. out
of the simplex. Furthermore it is required, that the flow from the opposite vertex of the
face, v1, is flowing towards the convex hull of the simplex, which is formalized in the
following.

Proposition 1. Given a n-simplex, σn, by the vertex set V = v1, . . . , vn+1 ∈ Rn then
there exists an input sequence u belonging to the convex input set U ⊂ Rn, s.t. the linear
affine system, ẋ = Ax + Bu + a defined on the simplex can be controlled to the facet,
given by the normal vector n1 if, for i ∈ {2, . . . , n + 1}

nT
1 (Avi + Bu + a) > 0∧

nT
i (Avj + Bu + a) ≤ 0∀j = {1, . . . , n + 1} \ {i}∧

Σi < ni, ẋv1 >< 0 (7.6)

has a solution.
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This proposition is a reformulation of the results in [Habets and van Schuppen, 2001],
where it is shown for convex polytopes, but is reproduced here in the language of this
contribution. Having found the feasible input set it is straight forward to calculate an
affine control law, as shown in [Habets and van Schuppen, 2004] and [Habets et al.,
2006].

7.5 Synthesis

Having the definition of simplicial complexes, combinatorial vector fields, combinatorial
control systems and combinatorial flow is now possible to combine them in a supervi-
sory control algorithm, which forces the trajectory of the closed-loop system to a reach
simplex. However, before treating this algorithm the hybrid aspect of the method will be
addressed.

From the definition of hybrid systems, it consists of a family of dynamical systems
defined on manifolds, which in the previous sections have been transformed into discrete
simplicial complexes. These are glued together by transition maps, which can be de-
scribed by three properties which needs to be covered before we have a complete discrete
hybrid system. These are the transition relations, E, which describe from which mani-
folds it is possible to jump to other manifolds, the guards, G, which describe when it is
possible to leave a given manifold and the reset maps, R, which describe, where the state
ends in the destination manifold.

Thus these three elements together describes a relation between how the underlying
manifold of a dynamical system is connected to another underlying manifold of a dynamic
system. By making this relation into an tube, and identifying the one end of it with the
guard condition, and the other end with the reset condition a binding manifold is created,
as depicted in fig. 7.5(a) joining i.e. M1 and M2.

Iteratively the entire system can now be bound together into one manifold by, for
each transition relation, attaching the two continuous dynamics manifolds with a binding
manifold.

Definition 20. A continuous realization of a hybrid systems is a topological space itera-
tively defined by: for each e(q, q′) ∈ E glue the two manifolds Xq, Xq′ ∈ X by

Xq ∪Xq′ ∪G(xq)× {1}/G(xq, 1) ∼ R(xq).

On the binding manifolds given by G(xq) × {1}/R(xq) the system dynamics obvi-
ously has to be given, which quite naturally is selected to be an integrator, thus giving a
constant flow across the surface.

Remark 3. Definition 20 does not give rise to a topological manifold, however if the
guard functions, G, are restricted to the boundaries of the manifolds the resulting com-
bined manifold is a PL-manifold, thus preserving the structure of the combinatorial dy-
namical system.

74



Chapter 7: Combinatorial Hybrid Systems

Remark 4. The integrator action corresponds to the time it takes to traverse the transi-
tion. In this setting however it is not further considered, since the approach taken here is
time abstract.

In the following a combined algorithm will be presented, which takes the original
hybrid system, transforms it into a combinatorial hybrid system and finds a trajectory of
the system satisfying the given requirements.

Algorithm 1. Algorithm for going from a continuous hybrid system to control on a com-
binatorial hybrid system.

1. Construct connecting manifolds. One joined manifold is build for the entire hybrid
system using Definition 20.

2. Triangulate manifold. The joined manifold is now triangulated. This can be done
in a number of ways and with larger or smaller discretisation [Goodman, 2004].

3. Barycentric linearization. In order to obtain a piecewise affine system in each
simplex the dynamics in each simplex is linearized around its barycenter.

4. Calculate controllability. Calculate all possible exit faces of the given simplex. This
results in a combinatorial control system.

5. Find shortest path. Once the combinatorial vector field is in place it is possible to
calculate all possible V -paths and thereby finding the shortest.

6. Ensure path is followed. Finally the controllers needed to ensure that the desired
path is followed are selected.

This algorithm is obviously not optimal, since it calculates all possible ways to tra-
verse the simplicial complex before returning the shortest one. Thus practically the first
two points in the algorithm will be performed first. Following this the next 3 points will be
performed iteratively. This is done by taking the initial n-simplex, linearize it around its
barycenter and calculate all the possible n-simplices reachable from this simplex. This is
then repeated for the resulting simplices of the previous operation until the target simplex
is reached. In order to avoid loops, any simplices, which previously have been visited are
omitted from the new set of simplices to be checked. This operation can be seen as a tree
search algorithm, and in order to find the shortest path a breath-first search algorithm will
be preferable compared to a depth-first algorithm.

Once the traversing reaches the target simplex the algorithm is terminated, and the
shortest possible V -path from the initial to the target simplex, γop, is found.

The supervisory control task now is to make sure that γop is followed, which is ensured
by blocking undesired exit facets of simplices with more than one exit facet. This is
practically achieved by altering the flow lines in the continuous system through control,
as described in Section 7.3.
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Remark 5. It is often desirable to address the problem of avoiding forbidden or unsafe
sets. The advantage of the formalism developed in this paper is that there is no combina-
torial vector field thus no flow defined on the forbidden simplices. Therefore branches of
the search tree hitting such simplices will automatically be abandoned.

To show how the algorithm is used an example will be given in the following.

Example 2. The original continuous hybrid system under consideration in this example
can be seen in fig. 7.5(a). It consists of 3 different squares, along with one transition
relation from M1 to M2 and again from M2 to M3, which are indicated here as joining
manifolds.

The first step according to Algorithm 1 is to build one joined manifold, as seen in
fig. 7.5(a). Secondly the joined manifold needs to be triangulated. In this example a
coarse triangulation is used to show the principle. This can be seen in fig. 7.5(b).

Now, for each triangle the system dynamics is linearized around its barycenter form-
ing an affine system. On each of these affine systems the controllability of the system is
calculated, thus given all possible directions to exit a given simplex. All these possibilities
are shown in fig. 7.5(c).

The final two steps in the algorithm are now first to find a suitable route of the com-
binatorial dynamical system. One possible objective could be to minimize the number of
traversed simplices. Finally, when the desired route has been found the necessary con-
trollers to ensure that the route is followed are selected.

7.6 Conclusion

Through this paper the concept of a combinatorial hybrid systems defined on a simplicial
complex has been introduced. Concepts from ordinary dynamical systems, such as flow,
flow lines and Lyapunov functions have been shown for combinatorial hybrid systems.
Furthermore an algorithm for automatic control design has been suggested along with
examples showing how the proposed methods are used.
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Figure 7.5: Illustration of Combinatorial hybrid system
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Chapter 8

Combinatorial Fault Tolerant
Control System Design - with
Application to Attitude Control
Systems for Satellites.

This work presents a novel method for designing automated fault tolerant and fault
probability minimizing control by abstracting the dynamics of the system, in both nom-
inal and faulty mode, into a finite number of discrete partitions. On this discrete ab-
straction it is possible to analyze the system through the discrete equivalents of vector
fields and flows, and to design controllers given a set of control objectives. The key
feature is now, that all considered faults are embedded into the discrete object, and
that it is possible to automatically design controllers for it. The theory is shown ap-
plied to the attitude control system for a small satellite.

8.1 Introduction

Autonomous satellite missions is an area which is gaining increasingly attention, since
the complexity of future missions is increasing, and the stringent budget demands calls
for less permanent ground operators. A number of missions have since the turn of the
millennium showed that it is indeed possible to run such complex space missions nearly
autonomous, with a minimum of operator intervention. Of interesting missions could be
mentioned NASAs Deep Space 1[Pell et al., 2004] , ESAs SMART-1[Elfving et al., 2003]
and most recently the Automated Transfer Vehicle (ATV)[McInnes, 2000] by ESA, which
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demonstrated autonomous rendezvous and docking with minimal operator intervention.
The basic requirements to a space vehicle for such missions is that it include a system
which is capable of detecting faults, and a supervisory controller, which is in charge of
directing the satellite according to the mission objectives and any possible faults that may
have occurred. It is the latter part which is the focus of this paper.

The supervisory controller can in many cases be modeled as a switched dynamical
system. Through resent years a number of initial steps have been taken towards truly
automatic control of switched dynamical systems, as seen in the works of [Tabuada and
Pappas, 2003b; Bemporad et al., 2000] and the references therein. Giving a system the
ability to automatically reconfigure itself has received enormous attention during the past
decades, particularly in the fields of fault tolerant control (FTC). The problem arises
whenever a change occurs, the system will start to either recalculate a new control law,
or select it from a set of pre-analyzed and -programmed controllers. Albeit doable, such
reconfigurations requires great computational resources; recourses, which are often not
available on smaller autonomous platforms like satellites, thus a more efficient method is
desired. Previously, in the FTC case each fault scenario had a dedicated set of controllers.
The switching between these controllers have then been left to a supervisory controller,
which relies on reliable fault detection and isolation (FDI) methods to decide when to
switch[Izadi-Zamanabadi and Larsen, 2007] .

In the present effort the problem of automatically designing a control system under
the presence of possible faults has been addressed. This paper deals with combinato-
rial formulation for piecewise-affine control systems. It is thought as a carry-over of the
work of[Habets and van Schuppen, 2004; Habets et al., 2006] , which address the con-
trol problem for piecewise-affine systems on an arbitrary polytope that forces the solution
trajectories of the closed loop system to either leave it or stay in it forever. Reachabil-
ity and controllability of such systems have been studied before in[Asarin et al., 2000a;
Bemporad et al., 2000] . Whereas previous methods have been based on the concept of a
transition system, this paper focuses on its higher dimensional generalization, a simplicial
complex. In 2 dimensions a simplicial complex is a set of triangles glued together along
the edges. Likewise in 3 dimensions it is build from tetrahedrons.

A simplex is to be thought of as a generalized n-dimensional triangle. The simplices
are then used to cover the system’s state space. If the system evolves in a bounded 6-
dimensional space, then this state space would be covered with a finite number of 6-
simplices.

For each simplex in the simplicial complex it is now possible to analyze which ad-
jacent simplices are reachable from the said simplex. By doing such an analysis for all
simplices in the simplicial complex it is possible to design a controller, which is able to
move the system from one position in the state space to another.

This kind of method bears resemblance to the work done on timed automata within
the computer science community. However, there are a number of distinct differences
between the possibilities using timed automata and the method presented here. First and
foremost the presented method here also considers lower dimensional flows on the edges
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of the simplices. Secondly a number of standard formulations from continuous dynamical
systems, such as: vector field, flows and Lyapunov functions are shown to have discrete
equivalents in the notion of a combinatorial dynamical system defined on a simplicial
complex. By using this formulation it is now possible to automatically design a control
strategy for reaching a certain goal region in the simplicial complex. A small example of
such can be seen in figure 8.1. The arrows indicate the flow of the system, and they always
go from an n-simplex to an (n+1)-simplex. Thus flow from a point runs to a line and from
a line to a surface. It is seen in figure 8.1 that the system will end up in the corner v3. The
system is forced to follow the prescribed direction through an affine controller for each
simplex.

v1 e2v21e

e5e3 e4 e6

e7

3v

v4 v5

A1 A2

A3

Figure 8.1: An example of the combinatorial abstraction of a state space. The arrows on
the edges illustrate combinatorial vector fields, which bears resemblance to vector fields
from continuous systems.

Having a controller in the nominal case it is possible to consider how to include pos-
sible faults in the formulation. When having the combinatorial dynamical system, then
a number of different possible trajectories, with different controllers arise to the same
control objective, thus by utilizing health information about all the instruments on the
satellite, it is possible to always choose the control strategy, which poses the smallest
probability of instrument failure during the maneuver. This phenomena becomes particu-
larly important when performing control near critical regions, where a fault in a sensor or
actuator could result in entering a critical region thus leading to mission failure.

In this paper the design procedure for a fault-tolerant control system will be recalled
in the following section. After this the theory behind combinatorial dynamical systems
defined on simplices will be presented along with how most concepts from classical con-
trol theory applies to it. Finally it will be shown how the theory applies to automatically
designing a fault tolerant control system for a satellite, which in this case is a micro class
satellite using momentum wheels.

8.2 Fault-Tolerant Control System Architecture

Design of a complete fault tolerant supervisory control involves a number of activities.
It requires methods that can help the designers to rigorously analyze the system, identify
all possible/potential faults, identify the monitoring/diagnosis possibilities, design control
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and sensor fusion algorithms for different scenarios, design the dedicated decision logic
to ensure correct decision when an event has occurred and then take the appropriate action
to accommodate for the situation.

As it is illustrated in figure 8.2 a modular architecture for implementation of the fault
tolerant control system is employed. The detector modules monitor the system and when

& Setpoints
Commands State Info

& Alarms

Autonomous Supervisor

DetectorsEffectors

Controllers

Plant SensorsActuators

Fault Handling FDI

Spacecraft

Plant Wide Control

Figure 8.2: An overview of fault tolerant control system architecture.

a fault occurs the supervisor is informed. Based on the received information from detec-
tor modules and/or operator, the supervisor switches to appropriate state. The effector
modules translate the new state and carry out the necessary changes (including changing
the control strategy or activating proper sensor fusion). The modularity provides both
flexibility when changes are needed and also less complicated testing procedures.

As shown on Figure 8.2, the spacecraft could be considered as a complex system with
different sensors, actuators and controllers. Due to the system complexity as described
previously it is necessary to apply a structured way of analysing the system in steps, as
shown in figure 8.3 from [Bøgh, 1997] . The content of the individual blocks will be
described in the following.

8.2.1 Fault Analysis

In the fault modeling step the system is divided into components and each component is
analyzed for possible fault using a proper Hazard analysis technique. For satellites, being
electro-mechanical systems, the Failure Mode and Effect Analysis (FMEA) technique is
appropriate[International, 1998] . The output of this analysis is a number of possible
faults, which should be considered in the following.

In the fault assessment step all the faults identified using the FMEA are assessed
according to their severity to the space craft mission and their probability of occurrence,
which leads to a Severity Occurrence (SO) index. Each severity is quantized with a value
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Figure 8.3: Systematic fault tolerant control system development approach.

between 1 and 10, where 10 is the highest rating, i.e. very severe. Likewise occurrences
are quantized in the interval from 1 to 10, where 10 is very likely, and 1 is highly unlikely
[International, 1998] . The SO index is now obtained by multiplying the two numbers for
each fault, thus giving a measure suitable for discriminating which faults should be dealt
with, and which are minor (either low severity or low occurrence). The severity of the
considered faults are assessed either through fault injection on the actual plant or through
fault simulation on a model of the plant. Since the system at hand is a satellite, it is not
possible to do fault injection, thus all the faults needs to be simulated.

The structural analysis is used to identify the parts or subsystems of the system at
hand which contain redundant information. A general framework for this is the structural
approach[Declerck and Staroswiecki, 1991; Izadi-Zamanabadi and Staroswiecki, 2000;
Blanke et al., 2003] . The redundant information of the system can then be analyzed
and used for identifying and diagnosing faults. It is worth noticing, that the structural
model of the system does not depend on detailed knowledge of the plant parameters or
dynamic relations, only between the system variables and constraints (i.e. differential
equations, algebraic equations, rules), thus enabling the method to be applied very early
in the system design phase. The analysis is always performed on the nominal system (i.e.
without faults), thus it also makes it suitable for identifying possibilities for sensor fusion.
For further information about the method see [Izadi-Zamanabadi, 2002] .

It is now possible to design the fault accommodation strategies. This involves devel-
oping the strategies for handling the selected faults in all operational mode by evaluating
each subsystem with its instrumentation with respect to possible redundancies in order
to meet the desired requirements. In the case of sensor faults, the fault accommodation
strategy is normally based on the sensor fusion possibilities and takes advantage of the re-
dundant information found through the structural analysis. In the case of actuator faults,
these are mostly handled through controller reconfiguration or by taking advantage of
hardware redundancy.

These four elements constitute the analysis phase of fault tolerant control design. They
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provide a comprehensive method for analyzing the system with focus on providing fault
tolerance. The final output of the analysis phase is a list of severe faults that needs to be
detected and handled and a clear view of the means by which they should be handled.

8.2.2 Fault Tolerance Design

The next phase in developing a fault tolerant control system is the design phase. This
phase is again divided into three parts:

- Fault Detection and Isolation. Design of a number of algorithms to correctly detect
identified faults.

- Decision Logic. Development of a decision logic, which react to the possible faults,
or commands and determine a corresponding logical state.

- Effector Design. Algorithms or procedures, which, given the new state, provide the
required corresponding functionality.

Depending on the redundancies in hardware and software, and the underlying systems
dynamics complexity a number of methods and algorithms for fault diagnosis purposes
exist. The fault detection and isolation usually benefits from the structural analysis by
taking advantage of the redundant information available, and employing model-based
methods such as observer-based or parity space methods[Chen and Patton, 1999] . The
output of this block is normally a fault vector ~F = {Fnom, Fe1 , Fe2 , . . . , Fek

} where
F ∈ {0, 1}. However, in this contribution we will consider the actual fault probabilities
directly, giving by the fault probability vector ~Fp = {Pnom, Pe1 , Pe2 , . . . , Pek

} where
P ∈ [0, 1].

On the basis of the output from the FDI system the decision logic decides which
actions should be taken in order to maintain fulfillment of the mission mode objectives in
the future. For each mission mode different control modes can be defined reflecting the
set of sensors and actuators available by which the given mission modes objectives are
achievable albeit degrade performance.

The last step in the procedure is the effector design. This is the actual design of
procedures and algorithms for performing the desired mission objectives given a certain
set of instruments. In the case of sensor faults, it is often possible to handle the fault
through sensor fusion, whereas actuator faults normally relies on hardware redundancy.

Having described the procedure for producing the fault tolerant control system it is
now needed to describe how the dynamics of the system is abstracted into a combinatorial
dynamical system, on which the final control system will be designed.

8.3 Discrete Abstraction

To arrive at a discrete abstraction of the dynamical system in question the system dynam-
ics needs to be divisions into a number of objects, which later on will be used in the design
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process. In the following section some basics of doing the partitioning will be discussed
along with how to define a dynamical system on the discretized objects. For a thorough
handling of how to perform automatic control synthesis on discrete dynamical systems,
see [Wisniewski and Larsen, 2008; Larsen and Wisniewski, 2008a] .

8.3.1 State Partition

As the main object of interest in the following will be on compact manifolds[Lee, 2002]
and partitions of these into simplices the formal definitions of these will be stated in the
following.

Definition 21. A polyhedron is a set that equals the intersection of a finite number of
closed half spaces.

Definition 22. An n-simplex is a set that equals the intersection of n + 1 closed half
spaces.

The following definitions for a partition of a given set is used.

Definition 23. A collection of polyhedral sets K = {θ1, . . . , θn} is a partition for a set
Θ if

1.
⋃N

i=1 θi = Θ

2. If θ ∈ K and γ is a face of θ, then γ ∈ K.

3. If γ = θ ∩ φ then γ is a face of θ and φ.

In the following we will exclusively be focusing on simplicial partitions. We denote
the set of all n-simplices in a simplicial complex K by Kn,

Kn ≡ {σ ∈ K| σ is an n-simplex}.

On each partition a dynamical system will be defined in terms of a piecewise affine (PWA)
approximation of the original system.

Definition 24. A function f : Θ → Rk where Θ ⊆ Rk, is simplicial PWA if there exist a
simplicial partition, R1, . . . , RN of Θ and f(θ) = Aiθ+Biu+ai,∀θ ∈ Ri, i = 1, . . . , N

Thus for each simplex the possible control possibilities can be studied through the
corresponding n-control system for that simplex.

Definition 25. Let σ be an n-simplex. We say that a control vector field ξ : Im(σ)×Rm →
Rn is a piecewise-affine n-control system if ξ is defined by the piecewise-affine map

ξ(x, u) = Ax + Bu + a,

where A is an n by n matrix, B is an n by m matrix and a is an n-vector.
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8.3.2 Discrete Dynamical System

Having the domain of the dynamical system in question given as a simplicial complex
it is now possible to define a discrete dynamical system on top of it as an abstraction of
the original system. Firstly, some important properties of simplices will be recaptured
from a geometric point of view followed by the definition of control systems on these
objects. This leads up to the main contribution in this section: the combinatorial vector
field, which shares many properties with ordinary vector fields as known from dynamical
systems.

Definition 26 (Definition IV.1.1 in [Bredon, 1997]). Let
Rn have standard basis e0, ..., en. Then standard n-simplex is

4n ≡

{
x =

n∑
i=0

λiei

∣∣∣∣∣
n∑

i=0

λi = 1, 0 ≤ λi ≤ 1

}
.

The λi are called barycentric coordinates.

Definition 27 (Definition IV.1.2 in [Bredon, 1997]). Given n ≤ N independent points
v0, ..., vn ∈ RN , [v0, ..., vn] is an affine map 4n → RN defined by∑

i

λiei 7→
∑

i

λivi.

We shall call [v0, ..., vn] an affine n-simplex or just a simplex.

The image of [v0, ..., vn] is the convex span of the points vi. We shall often identify
an (affine) simplex with its image

Image[v0, ..., vn] =

{
n∑

i=0

λivi

∣∣∣∣∣
n∑

i=0

λi = 1, 0 ≤ λi ≤ 1

}
.

This definition is equivalent to the corresponding definition based on the intersection
of n + 1 half-planes. For the n-simplex there will be n + 1 outward pointing normal
vectors, n̄0, . . . , n̄n, thus the simplex can be described by the set of points satisfying the
following LMI, with vi being the only point not in the face with n̄i as a normal vector:

Λx ≤ β, with Λ =

n̄T
0
...

n̄T
n

 , β =


n̄T

0 v1

...
n̄T

n−1vn

n̄T
nv0


Definition 28 (Definition IV.1.5 in [Bredon, 1997]).
The n-chain group Cn(K) of the simplicial complex K is the free abelian group gener-
ated by n-simplices

Cn(K) =
⊕

σ∈Kn

Z2,
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which is equivalent to Z2[σ1] × Z2[σ2] × . . . where σi ∈ Kn. Thus an n-chain is a
formal sum

c =
∑

σ∈Kn

nσσ

of n-simplices σ with integer coefficients nσ .
This can be understood as, that Cn consists of all possible linear combinations of sim-

plices in Kn. An example of this would be if Kn = {a, b, c}, then Cn = {0, a, b, c, a+
b, a + c, b + c, a + b + c}.

Furthermore, the boundary map of a simplex, denoted by ∂, is defined by systemati-
cally omitting one vertex from the simplex in question and then adding the result together
with alternating sign as shown below, where [a, b, c] means span{a, b, c}.

∂[a, b, c] ≡ [â, b, c]− [a, b̂, c] + [a, b, ĉ] = [b, c]− [a, c] + [a, b].

Notice the notion of direction: [a, b] = −[b, a].

a c

b

Figure 8.4: Example of boundary map calculation.

We introduce a relation on the set of simplices: γ ≺ σ if γ is a face of σ. We say that
γ is a maximal face of σ if γ ≺ σ and dim γ + 1 = dim σ.

Now it is possible to formulate the notion of a combinatorial manifold M - a simpli-
cial complex of particularly regular structure. We associate to each simplex of maximal
dimension in M a piecewise affine control system.

Definition 29. An combinatorial n-control system is a pair (K, ξ), where K = {K0, ...,Kn}
is a simplicial complex, and ξ = {ξσ| σ ∈ Kn} is a family of piecewise affine n-control
systems.

Let (K, ξ) be a combinatorial n-control system. A control objective for (K, ξ) is
decomposed in [Habets and van Schuppen, 2004; Habets et al., 2006] into two control
problems posed for each n-simplex σ (in fact in [Habets and van Schuppen, 2004] the
authors treat more general problem of control synthesis on a polytope):

Problem 5 (Problem 4.1 in [Habets et al., 2006]). Let σ ∈ Kn. Given a subset S of
maximal faces of σ find a control law

kσ : Im(σ) → Rm, kσ(x) = Fσx + gσ, (8.1)

where Fσ is an m by n matrix and gσ is an n-vector, such that it guarantees that all flow
lines of the closed-loop system

ẋ = (A + BF )x + (a + Bg), (8.2)
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starting at a p ∈ Im(σ) leaves the simplex σ in finite time by crossing one of the faces in
S.

Problem 6 (Problem 4.2 in [Habets et al., 2006]). For a given σ ∈ Kn find a control
law (8.1) such that for any p ∈ Im(σ) the flow line φp(t) of the closed-loop system (8.2)
satisfies φp(t) ∈ Im(σ) for any t ≥ 0.

We say that the control law (8.1) blocks a maximal face γ of a simplex σ if the vector
field ξc

σ of the closed loop system on σ - defined by the right hand side of equation (8.2) -
satisfies the equality

〈ξc
σ(x), nγ〉 ≤ 0 (8.3)

for any x ∈ Im(γ), where nγ is the outward normal vector to τ and 〈·, ·〉 is the standard
scalar product on Rn. Inequality (8.3) indicates that γ is an exit face.

Problems 5 and 6 are solved in [Habets et al., 2006] by blocking maximal faces that
are complementary to the set S. We observe that if S′ ⊂ S and the control law kσ blocks
all the faces in S then it also blocks the faces in S′; thus the more blocking faces the more
restrictive control it is.

The focus in this work is on the combinatorial part of the control synthesis problem,
i.e. on a supervisor that selects blocking faces of a combinatorial n-control system such
that every trajectory of the closed loop system starting in an n-simplex σs reaches the tar-
get n-simplex σt in finite time. For a treatment of the necessary and sufficient conditions
for guaranteeing control to a certain facet of a simplex for the PWA system the reader is
referred to [Habets et al., 2006] and the references therein.

Combinatorial Vector Fields

Here we introduce the central notion of this section - a combinatorial vector field. The
notion has been developed by R. Forman in [Forman, 1998] for studying topological
invariants of CW complexes. The attention in this section is restricted to geometrical
properties of a combinatorial vector field. We extend the notion of a combinatorial vector
field to encompass non-determinism in Definition 32. It is treated as a generator of flow.

Definition 30 (Definition 1.2, [Forman, 1998]). Let K be a simplicial complex. A com-
binatorial vector field V on K is a family {Vn| n ∈ N} of maps

Vn : Kn−1 → Kn ∪ {0}

that satisfies

1. Vn ◦ Vn−1 = 0, that is if σ ∈ Image(Vn−1) then Vn(σ) = 0.

2. For each σ ∈ Kn, the number of elements of the pre-image

V −1
n (σ) ≡ {α ∈ Kn−1| Vn(α) = σ}

is 0 or 1.
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Alternatively a combinatorial vector field is a set V̄ of pais of simplices 〈α, σ〉, where
α is a maximal face of σ, and for which no simplex is in more than one pair. It is helpful
to picture a combinatorial vector field on K by arrows, where the tail is at α and the arrow
at σ, see Figure 8.5.

v1 e2v21e

e5e3 e4 e6

e7

3v

v4 v5

A1 A2

A3

Figure 8.5: A combinatorial vector field. The vertex v3 is a rest point.

Intuitively condition 1. of Definition 30 means that the system is of the first order;
geometrically it implies that the future simplices do not increase the dimension, see the
definition of the flow map below. Condition 2. excludes merging the future cells. It is
illustrated in Figure 8.6 that splitting of flow is allowed whereas merging is excluded. In
Definition 32 of a nondeterministic combinatorial vector field we shall allow both situa-
tions.

1A
v2

v1

3v

v4

1e e2

e3

v5

e4

e7

e5 e6

A2

A3

(a) Splitting

1A

v1 v2

3v v4

1e

e2
e3 e4

e5

A2

(b) Merging

Figure 8.6: Illustration of Definition 30. Merging on the right hand side is excluded,
whereas splinting on the left hand side is allowed.

Since no simplex is in more than one pair in V̄ , every cell σ of the simplicial complex
K satisfies precisely one of the following conditions:

1. σ is the tail of exactly one arrow;

2. σ is the head of exactly one arrow;

3. σ is neither the tail not the head of any arrow.

A simplex that satisfies condition 3. is called a rest point.

Definition 31 (Definition 1.3 of [Forman, 1998]). Let V be a combinatorial vector field
on K. We say that σ ∈ Kn is a rest point of V of index n if
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1. Vn+1(σ) = 0 and

2. σ /∈ Image(Vn).

Figure 8.7 illustrates a rest point of minimal index 0 - a sink and the maximal index n
- a source.

1A

1e

e2

e3e5

e6 e7

e9

12e

11e
e8

e10

v1

v2

3vv4

v5

v6

A2

A3
v7

A4

A5

6A

e4

(a) Sink

1A

v1 v2

3v v4
v5

v6 v7
v8 v9

v10 11v 12v

1e

e2 e3 e4 e5

e6 e7
e8 e9 e10 11e 12e e13

e14 e15 e16

e17 e18 e19
e20 e21 e22

e23 e24

A2

A3

A4
A5

6A

7A
8A

9A
10A

11A
12A

13A

(b) Source

Figure 8.7: (a) v7 is a rest point of index 0; (b) A1 is a rest point of index n.

Since piecewise linear control systems indicates that discrete behavior of a piecewise
affine control system involves nondeterminacy induced by blocking more than one maxi-
mal faces of a simplex. It seems therefore natural to unleash condition 2 of Definition 30.

Definition 32. Let K be a simplicial complex. A nondeterministic combinatorial vector
field V on K is a family {Vn| n ∈ N} of maps

Vn : Kn−1 → Kn ∪ {0}

that satisfies Vn ◦ Vn−1 = 0.

In the remaining of this section we shall develop a notion of flow of a nondeterministic
combinatorial vector field, that is a map Cn(K) → Cn(K) which takes an n-simplex to
its future n-chain (a linear combination of the simplices in very next future).

Remark 6. The linear combination of simplices indicates nondeterminism in the future
evolution. Thus for example τ 7→ σ + β means that the future of τ is σ or β.

For simplicial complexes we may use the following definition of a combinatorial
scalar product 〈·, ·〉 : Kn ×Kn → {0, 1}, defined by

〈σ, α〉 =
{

1 if σ = α
0 otherwise

We extend it to the bilinear product 〈·, ·〉 : Cn(K)× Cn(K) → Z. In particular〈∑
j

njσj , σk

〉
= nk.
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Define θn : Cn(K) → Cn−1(K) by

θn(σ) =
n∑

i=0

(−1)i 〈Vn ◦ dn
i (σ), σ〉 dn

i σ.

The map θ takes σ ∈ Kn to a linear combination of the simplices in V −1
n (σ), see Fig-

ure 8.8.

v1 e2v21e

e3 e6

e7

3v

v4 v5

A1 A3

e4 e5
A2

Figure 8.8: θ2(A2) = e4 − e5.

Discrete dynamics of a combinatorial control systems is encapsulated in the following
definition of the flow.

Definition 33. A flow (of a nondeterministic combinatorial vector field) is the map Φn :
Cn(K) → Cn(K) given by

Φn = (∂n+1 − θn+1) ◦ Vn+1 + Vn ◦ (∂n − θn).

Example 3. Consider the nondeterministic combinatorial vector field defined in Fig-
ure 8.9.

v1v0 v2e0 1e

A2

A1

v3

v4 v5 v6

e2

e3 e4
e5 e6 e8

e9 e10

A5A3 e7

A4

Figure 8.9: An example of a simplicial complex with its associated vector field.

Firstly, we compute flow starting at e0:

Φ1(e0) = (∂2 − θ2)V2(e0) + V1(∂1e0 − θ1e0)
= (∂2 − θ2)0 + V1(v0 − v1 − v0) = −e4.

The result is the 1-simplex e4, which corresponds to our expectation, as seen from Fig-
ure 8.9.

Another flow of interest is the one initiated at e1:

Φ(e1) = (∂2 − θ2)V2 + V1(∂1 − θ1)
= (∂2 − θ2)A3 + V1(v1 − v2)
= e1 − e6 + e5 − e1 + e6 − e2 = e5 − e2.
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Again it is seen that the resulting flow gives the foreseen adjacent edge, e1, along with a
possible side flow to e2.

Lastly, we calculate the flow from the 2-simplex A4:

Φ2(A4) = (∂3 − θ3)V3 + V2(∂2 − θ2)
= (∂3 − θ3)0 + V2(e7 − e10 + e6 − e7) = A3.

Again the flow from A4 to A3 is found as expected.

The flow Φn generates an n-flow line. An n-simplex σ ∈ Kn belongs to the n-flow
line with the initial n-simplex τ if there is k ∈ Z+ such that 〈σ,Φk

n(τ)〉 6= 0. It will be
seen below that the flow lines of dimension n and n−1 are the only important for control
synthesis for combinatorial control systems. It is worth noticing that a flow line born in
an n-simplex σ - a source - does not die in a sink, since it is a vertex (0-simplex). It dies
in fact in an n-simplex belonging to star of a sink.

8.3.3 Lyapunov Function

With combinatorial vector fields defined, it possible to define the combinatorial counter-
part of flow lines, which in the combinatorial setting is called a V -path.

Definition 34. A V -path of index p is a sequence of length r,

γ : σ
(p)
0 , τ

(p+1)
0 , σ

(p)
1 , τ

(p+1)
1 , ..., τ

(p+1)
r−1 , σ(p)

r , (8.4)

such that for all i ∈ {0, 1, ..., r − 1}

1. τi = V (σi)

2. σi 6= σi+1 = Φ(σi)

If σ0 = σr the V -path is called closed. Two closed V -paths, γ, γ̃, are equivalent if γ̃
can be produced by selecting another starting point of γ.

A V -path is calculated by taking an initial simplex, σ0, and propagating its flow, i.e.:

σ0 → V (σ0) → Φ(σ0) → V Φ(σ0) → ΦΦ(σ0) . . . (8.5)

Moreover, since non-determinism is allowed in this definition of flow the V -path is al-
lowed to split into more paths, thus resulting in a tree of reachable locations compared to
just a single track in the deterministic case.

Chain recurrent sets are sets in which the flow of an element of the set will be cyclic
within the set. Thus intuitively this is the case for rest points and non-stationary closed
V -paths. More formally this means that:
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Definition 35 (Definition 2.1 in [Forman, 1998]). σ(p) ∈ K is an element of the chain
recurrent set R if either

1. σ is a rest point of V or

2. there is a non stationary closed V -path γ with σ ∈ γ

As for dynamical systems, the notion of a Lyapunov function for a simplicial com-
plex is desirable, and as shown in [Forman, 1998] and [Franks, 1980] it is possible to
find a similar Lyapunov function, which has the property, that it is constant on the chain
recurrent set, and outside the set it is the negative gradient of the function towards the set.

Definition 36 (Theorem 2.4 in [Forman, 1998]). Let R be a chain recurrent set. There is
a function f : K → R such that

1. if σ(p) /∈ R and τ (p+1) > σ then{
f(σ) < f(τ) if τ 6= V (σ)
f(σ) ≥ f(τ) if τ = V (σ)

2. if σ(p) ∈ R and τ (p+1) > σ then{
f(σ) = f(τ) if τ ∼ σ
f(σ) < f(τ) if τ � σ

where τ ∼ σ means that that they belong to the same path.

This is to be understood in the following way: From the first definition, then a given
V -path, not being a chain recurrent set,

γ : σ
(k)
0 , τ

(k+1)
0 , σ

(k)
1 . . .

will have the following relation:

f(σ(k)
0 ) ≥ f(τ (k+1)

0 ) > f(σ(k)
1 ) ≥ . . . ,

which, as with continuous dynamical systems, means that the Lyapunov function is de-
creasing along the flow. The second condition in the definition above is saying, that for
the chain recurrent set

γR : σ
(k)
0 , τ

(k+1)
0 , σ

(k)
1 , τ

(k+1)
1 , . . . , τ

(k+1)
r−1 , σ(k)

r = σ
(k)
0

the following relation:

f(σ(k)
0 ) = f(τ (k+1)

0 ) =f(σ(k)
1 ) = f(τ (k+1)

1 ) = . . . =

f(τ (k+1)
r−1 ) = f(σ(k)

r ) = f(σ(k)
0 ),

holds true.
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Having the above definitions for the combinatorial equivalent of a Lyapunov function
in place it is now possible to use the Lyapunov function as a specification of control on
the simplicial complex.

One obvious Lyapunov candidate is based on the distance to the goal simplex. Assign-
ing a value to each simplex in the simplicial complex is then done by iteratively assigning
to every simplex a number starting from the goal simplex. Thus the goal simplex σg has
associated a value, and all neighboring simplices to a goal are given a higher value than
the goal value. Iteratively then all the neighboring simplices to these simplices which
does not have a value yet will get a higher value assigned. Algorithmically, this is:

Procedure 1. Iterative method for assigning to each simplex a Lyapunov value
∆0 = σgoal, V (σgoal) = 0
While ∆ 6= Kn

ρ = {σ ∈ Kn|σ 6∈ ∆ ∧ δσ ∩ δ∆ 6= ∅}
∀σ ∈ ρ, V (σ) = max(V (∆)) + 1
∆i+1 = ∆i ∪ ρ

An example of this can be seen in figure 8.10. Here the goal simplex is denoted by
G, and the initial simplex by I. The grayed out center cross is a forbidden region. By
assigning Lyapunov values starting from the goal simplex and outwards it is ensured,
that no local minimum occurs. Having this in place control can now locally always be
determined by evaluating the Lyapunov value in the star of the current simplex and control
towards the lowest one.
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Figure 8.10: Example of Lyapunov value assignment to simplices in the Swiss flag exam-
ple.

Another possibility would be to use a potential field kind of function[Hwang and
Ahuja, 1992; Koren and Borenstein, 1991] with minimum at G and maximum at I, and
then for each simplex utilize the average over the simplex as a lyapunov value for the
simplex. The advantage of this would be, that it is possible to calculate the lyapunov
value for an arbitrary simplex independent of the rest of the simplices. However it has
the disadvantage, that it is possible to arrive at local minima, thus the gradient following
method needs to be augmented to deal with such local minima.
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8.3.4 Control Synthesis

From the section on combinatorial control systems we have, that there for each simplex
will be a number of possible future simplices dependent on which controller is chosen in
the specific simplex. That is:

Definition 37. A control system is the map

Ln : Kn−1 → 2Cn , (8.6)

where 2Cn is the set of all subsets of Cn.

By having the control objective given through a Lyapunov function on the simplicial
complex it is now possible to select the final control system by selecting controllers from
Ln satisfying the Lyapunov requirements stated in Def. 36.

Definition 38. The set of all possible control systems satisfying the control objective given
by the Lyapunov function, f , is:

Lc
n ≡ {vn ∈ Ln|f(σ) > f ◦ vn(σ)}

Proposition 2. If there exist a sequence of controllers for the system, s.t. Lc
n 6= ∅, then

the combinatorial control system is said to be controllable wrt. the stated objectives.

Remark 7. It is worth noticing there, that given Lc
n 6= ∅ does not mean that it is impossi-

ble to control the system in question to the desired stated. It simply means, that the chosen
simplicial division of the system might not allow for it.

Looking at Definition 38 it is seen, that there might be more than one possible control
system satisfying the Lyapunov inequality. This flexibility can then be used to select the
controller, and thereby the V -path, which minimizes the cost in some sense. A typical
minimization criterion in space missions is to minimize the consumption of propellant.
However, near mission critical stages, another criterion, the probability of failure, is often
sought minimized.

Remark 8. It is worth noticing, that, since controllability to a given facet in the continu-
ous case is independent of where the system is in the simplex or how it entered it, then the
local decision on combinatorial controllability is not affected by previous selections.

In practice the decision of which controller to use is a local decision, thus for each
simplex the set of possible control systems is evaluated to find the next feasible controller.
Thus for each simplex the following procedure is used:

Procedure 2 (Control Synthesis). Given the set of feasible control systems Lc
n, and the

cost function, J , then synthesis of a controller obeying this specification is done by:
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σ = σinit

While σ 6= σgoal

Pick vc
n ∈ Lc

n s.t. minJ(Φvc
n(σ)

σ = Φvc
n(σ)

Where Φvc
n(σ) means the flow of σ given the controller vc

n. Here there are not put
any restraints on the structure of J , it is also possible that instead of just evaluating one
simplex it would also be able to handle a series of future simplices, thus resulting in a
finite horizon optimization.

8.4 Case: The Rømer satellite

As an example of how the above described theory is used in practice it will be shown
applied in the control system of the proposed danish satellite: Rømer.

The Rømer satellite is planned to carry two scientific experiments called the MONS
(Measuring Oscillations in Nearby Stars) and the Ballerina experiment. Originally they
were proposed as two separate missions, however they shared so many aims, that they
were combined into one.

The satellite is being designed as a micro satellite with a mass of approximately 120
kg. This is to ensure, that the satellite can be launched as a secondary payload. The orbit
specified for the Rømer satellite is a Molniya orbit.

The scientific objective of MONS is to observe stellar oscillations at a greatly im-
proved level of sensitivity. A typical star is going to be observed for a period of 30-50
days continuously at a time. This is performed to probe the stellar interior to determine its
composition, and and internal rotation. The primary instrument specified for the MONS
mission is 340mm telescope with a CCD detector.

The scientific objective of Ballerian is the detection and localization of gamma-ray
bursts (GRB). The physical mechanism leading to GRBs is poorly understood. The GRBs
occur randomly and are distributed over the entire sky, and are known to be among the
fastest objects in the universe. The scientific instrument specified for the Ballerina mis-
sion is an 80mm X-ray telescope. However, in order to first detect the GRBs Wide Angle
Telescopes for Cosmic Hard x-rays (WATCH) telescopes are used. Four of such tele-
scopes are placed on the satellite in a tetrahedron configuration, which ensures full sky
coverage. After a GRB has been detected by one of the WATCH instruments, and local-
ized at a precision of approximately 1 arc minute, the satellite turns autonomously within
a few minutes to allow the X-ray telescope to observe the afterglow. The star imager and
the X-ray telescope then determine the precise source of the burst, which subsequently is
transmitted to the Earth.

Both the MONS and the X-ray telescope are highly sensitive, and exposure to direct
light from the sun would destroy them immediately, thus the satellite is equipped with a
sunscreen, which, after the satellite has been injected into its orbit, and it has entered into
nominal mode, will unfold. After this point it is mission critical, that the satellite never
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will point directly at the sun.
The WATCH instruments have also been chosen in order to save both cost and weight,

because they perform rotary motion. Since the scientific observations allow the instru-
ments to have a varying angular frequency in the range ±[0.5, −2]Hz, this gives the
WATCH the dual purpose of both being a scientific instrument while at the same time
being a part of the attitude control system. Along with the WATCH, acting as momentum
wheels, the Rømer satellite is also equipped with magnetorquers, these are used to ex-
change momentum with the Earth when the satellite is near the Earth in its orbit, whereas
only the momentum wheels are used further away.

8.4.1 Fault Tolerant Control

Solutions for attitude control system of the Rømer spacecraft have been proposed in
[Jensen and Wisniewski, 2001; Quattrup et al., 2001] . In this paper the focus is on
the supervisory control system. Moreover, it is on the decision process, which become
evident, when the system is modeled as a discrete dynamical system, as described in
the previous section. For the Rømer satellite in scientific mode the space in question is
for the attitude, the unit quaternion, S3 ⊂ R4 and for the angular velocity by the ball
B3(2, 0)rad/s ⊂ R3. However, for ease of representation and understanding the follow-
ing example will be given using a projection into R2, however it is clear that the theory is
valid in any dimension.

One of the cases of particular interest for the Rømer satellite, is when it is close to
pointing at the Sun. This situation arrises from the mission objective, which is to observe
a given star for several days at a time, while, at the same time avoiding pointing at the
Sun, which results in two conflicting objectives. Thus every time the target stars trajectory
passes by the Sun, the supervisory controller needs to intervene in order no to point at the
Sun.

This situation is depicted in figure 8.11(a). It is seen, that the observation bor axis
passes through the Sun, thus would the supervisory system not intervene the satellite
would continue its tracking across the sun leading to destruction of the onboard instru-
ments and failure of the mission.

One standard approach, which is often used in guidance problems for autonomous
systems is that of potential fields[Hwang and Ahuja, 1992; Koren and Borenstein, 1991] .
This approach has also been proposed for the Rømer satellite in[Wisniewski and Kulczy-
cki, 2005] . The basic idea of the method is shown in figure 8.11(b), where the straight
dashed line denoted by (a) gives a division line, through the edge of the potential field.
If the satellite is pointing to the left side of the line the satellite will follow the trajectory
denoted by (b) around the sun, and had the satellite been pointing to the right side of the
line it would have followed the trajectory denoted by (c). However, by introducing the
potential field function for the Sun, unavoidably a choice has already been taking, saying
if the satellite should choose trajectory (b) or (c). This choice is however made ”acci-
dently” in the sense, that it is normally just taking without considering the consequence
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Sun

Star trajectory

(a) Problem statement

(a)

(c)

(b)

(b) Traditional approach

(c) Combinatorial division

(e)

(d)

(d) Combinatorial solution

Figure 8.11: Sun avoidance problem for the Rømer satellite

of the choice.

However, in the combinatorial setting, this choice is emphasized. The division of the
space surrounding the sun is depicted in figure 8.11(c), where the simplices containing
the sun have been marked grey, which means, that they should be avoided. In the last
figure 8.11(d) the two possible V -paths, γd and γe, for tracking the star trajectory are
shown. Up until reaching the avoid set the two paths are identical, however, at the last
simplex before the two paths diverges the supervisor needs to perform a choice of which
path to follow, either γd or γe. Looking closer at the two paths, then it is seen, that they
are comprised of two parts, a critical part, which is from the splitting of the paths and
until the corner, and a safe part, which is from the corner and until the trajectories merge
again.

This idea is illustrated in figure 8.12, where the evolution of the V -path describing
the star tracking is followed until time k, where a choice is to be made. As mentioned
earlier, then this choice has often been taken implicitly a priori through the design of the
avoidance algorithm. However, here, the choice is based on the fault probability infor-
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γdcritical
// γdsafe

!!
γk−1 // γk

0.0155

0.07
**

γk+n // γk+n+1

γecritical
// γesafe

==

Figure 8.12: Decision process for the Sun avoidance example

mation available. In this case the vector shows1 FPk
= {Pnom = 0.9, Pd = 0.01, Pe =

0.07, . . .}, where Pd denotes the accumulated probability of a fault in the instrument set
needed to perform γdcritical

, and likewise for Pe. Having this information available, it is
now possible to determine, which trajectory, γd or γe is the least probable to fail during
the Sun avoidance maneuver, thus resulting in an overall higher mission reliability.

8.5 Conclusion

In this paper it has been shown how a given dynamical system can be represented as a
combinatorial system. It has furthermore been shown how this formalism can be used in
connection with fault tolerant control to increase the overall system reliability for critical
control objectives. Finally it has been shown how the method applies to control of the
Rømer satellite.

Normally faults have been treated by the supervisory control system when they arise,
i.e. when they are too severe to continue nominal operation without switching to another
control objective or another control strategy. The main feature of using projections of
faults into the nominal simplicial complex is, that it becomes possible to make reasonable
decisions based on a priori information about the satellites health state, thus making the
supervisory controller proactive instead of reactive.

1The fault probabilities are accumulated for the two scenarios, and the remaining fault probabilities have
been omitted.
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Chapter 9

Combinatorial Vector Fields for
Piecewise Affine Control
Systems

The notion of a combinatorial dynamical system is rigorously introduced in this pa-
per. A combinatorial dynamical system can be seen as a discrete abstraction of large
class of systems including smooth non-linear systems, switched dynamical systems
and switched control systems. A number of concepts from continuous dynamical sys-
tems are shown to have combinatorial counterparts, such as vector fields, flow lines
and Lyapunov functions. Algorithms for automatic control synthesis are developed for
combinatorial dynamical systems. Furthermore the presentation of these concepts is
supported by a number of examples.

9.1 Introduction

During the past years a number of methods for automatic control synthesis have been pro-
posed for dynamical systems and more recently for switched dynamical systems, as seen
in the works of [Tabuada and Pappas, 2003b; Bemporad et al., 2000] and the references
therein.

Automatic control synthesis is particularly interesting in a number of fields including
gain scheduling for control of non-linear systems, robotic navigation in changing envi-
ronments and fault tolerant control.

Gain scheduling has received much attention in industry due to its intuitive method-
ology and ease of use. In its simplest form gain scheduling is performed by dividing the
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system space at hand into a number of sections, and then in each section finding a suit-
able controller for the system. An overview of gain scheduling methods can be found in
[Rugh and Shamma, 2000], and more recent work on anti-windup and bump-less trans-
fer between controllers can be found in [Zaccarian and Teel, 2002] and [Bendtsen et al.,
2005].

In robotic navigation the system’s trajectory is to be designed. One of the main diffi-
culties is, that the environment of the navigating robot can be non-static, thus new control
strategies need to be derived online. An overview of the literature and examples of how
to perform such online trajectory planning can be found in [Koenig and Likhachev, 2002]
and the references therein.

Lastly, fault tolerant control systems makes great use of automatic control synthesis.
This is not least true for space applications. Examples of actual space missions applying
autonomously self-configuring controllers include missions such as NASAs Deep Space
1 reported by [Pell et al., 2004] , ESAs SMART-1 described by [Elfving et al., 2003]
and most recently the Automated Transfer Vehicle (ATV) by ESA, see [McInnes, 2000],
which demonstrated autonomous rendezvous and docking with minimal operator inter-
vention.

This paper deals with a generalized framework for automatic control synthesis, thus
encompassing the above mentioned fields into one unified framework. The paper can
be seen as a carry-over and extension of the work of [Habets and van Schuppen, 2004;
Habets et al., 2006], which address the control problem for piecewise affine systems on
an arbitrary polytope that forces the solution trajectories of the closed loop system to
either leave it through a specified subset of facets or stay in it forever. Reachability and
controllability of such systems have been studied in [Asarin et al., 2000a; Bemporad et al.,
2000]. Whereas previous methods have been based on the concept of a transition system,
this paper focuses on its higher dimensional generalization, a polyhedral complex. In 2
dimensions a polyhedral complex is a set of polytopes glued together along the edges.
The polytopes are then used to cover the system’s state space. Likewise, if the system
evolves in a bounded n-dimensional state space, then it is covered by a finite number of
n-polytopes.

As such systems potentially can be very large one of the main contributions in this
paper is to rigorously derive an algebra for handling the complexity of such systems.
Another very important feature of the theory presented here is that it is agnostic towards
the underlying system, i.e. after the abstraction there is no distinction between a linear,
non-linear or switched dynamical system.

For each polytope in the polyhedral complex it is now possible to analyze which
adjacent polytopes are reachable from the said polytope. By doing such an analysis for
all polytopes in the polyhedral complex it is possible to design a controller, which is able
to move the system from one position in the state space to another.

This kind of method bears resemblance to the work done on timed automata. How-
ever, there are a number of distinct differences between timed automata and the method
presented here. First and foremost the presented method also considers lower dimensional
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flows on the edges of the polytopes. Secondly a number of standard formulations from
continuous dynamical systems, such as: vector field, flows and Lyapunov functions are
shown to have discrete equivalents in the notion of a combinatorial dynamical system
defined on a polyhedral complex. By using this formulation it is now possible to auto-
matically design a control strategy for reaching a certain goal region in the polyhedral
complex. Since the control strategy might give rice to a number of different solutions it is
also possible to choose the optimal controller according to a given cost function.

Firstly, we define polytopes and polyhedral complexes in Section 9.3. A polyhedral
complex is a division of the state space into polytopes. The possible control actions on
each polytope makes the combinatorial flow either transversal or tangential to the facets
of the polytope in question, which is introduced in Section 9.4. Having a control system
on a polytope it is possible to establish a discrete abstraction of the vector field - a com-
binatorial vector field. The notion of a combinatorial vector field and the combinatorial
equivalence of flow are introduced in Section 9.5. In Section 9.6 the concept of a Lya-
punov function is defined for combinatorial vector fields, which is used as a specification
for control objectives. The structure of the Lyapunov function is utilized in Section 9.7 for
performing the control synthesis. Finally, the theory is illustrated by a numerical example
in Section 9.8.

9.2 Preliminaries

Let 〈·, ·〉 be the Euclidean scalar product in Rn and || · || the induced by 〈·, ·〉 norm. The
cardinality of a set K is denoted |K|. We shall denote the boundary of a set S by bd(S).
The image of a map f : U → V is Im(f) = {f(x) ∈ V | x ∈ U}.

9.3 State Partition

Let J be a finite index set. A polyhedral set P in Rn is the intersection of a family of
closed half spaces H−

j ≡ {x ∈ Rn| 〈x,Nj〉 ≤ aj} for Nj ∈ Rn and aj ∈ R, where
j ∈ J , i.e.

P ≡
⋂
j∈J

H−
j .

The polyhedral set P can be expressed by the inequality (9.1) to be understood compo-
nents wise:

P = {x ∈ | Nx ≤ a}, (9.1)

where N =
[
N1 . . . Nj

]T
, α =

[
a1 . . . aj

]T
. The dimension of P is the

dimension of the smallest subspace V ⊂ E that contains P .
A subset F of a polyhedral set P is a face if either F = ∅ or F = P , or there exists a
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supporting hyperplane1 H of P and F = P ∩H . Note that a face is again a polyhedral
set. A face of co-dimension 1 (dimension n − 1) is called a facet, a face of dimension 0
is a vertex. We write F � P to indicate that F is a face of P and F ≺ P if and only if
F � P and F 6= P .

Let K ≡ {Pj | j ∈ I} be a collection of polyhedral sets for some index set I . We
define

|K| ≡
⋃
j∈I

Pj ⊆ Rn.

We say that K is a (polyhedral) complex if

1. P ∈ K implies that any F ≺ P is also an element of K;

2. P,Q ∈ K implies that P ∩Q ≺ P and P ∩Q ≺ Q;

3. any point of |K| has a neighborhood intersecting only finitely many elements of K.

Notice that if I is finite then the last condition is automatically satisfied. Observe that the
intersection of two complexes is again a complex.

Let E be any polyhedral set (Rn inclusively). A piecewise linear partition (or for
short partitioning) of E is a complex K such that E = |K|. The elements of K will be
called cells.

We define sets K0, . . . ,Kn by

Ki ≡ {P ∈ K| dim(P ) = i}.

Thus, for instance Kn is the set of cells with full dimension n, and K0 the set of points. In-
terchangeably by partitioning K we will understand the resulting (n+1)-tuple (K0, . . . ,Kn).

Example 4. Consider E = R2. Let K2 consist of four sets Pi - the i’th quadrant for
i = 1, . . . , 4, let K1 = {P5, . . . , P8} with Pi+4 = Pi ∩ Pi+1 with the sum modulo 4. We
let K0 consist of a singleton P9 = {0}. Then (K0,K1,K2) is a piecewise partitioning of
R2.

Example 5. Consider E = R2 with K2 consisting of P1 - the first quadrant, P2 - the
second quadrant and P3 - the lower half plane; notice E = P1 ∪ P2 ∪ P3. Let K1 =
{P4, P5, P6, P7}, where P4 = P1 ∩ P3, P5 = P2 ∩ P3, P6 = P1 ∩ P2 and P7 = bd(P1).
We let K0 = {0}. In spite of |K| = Rn, K is not a partitioning since P4 = P1 ∩ P3 is
not a face of P3.

A combinatorial equivalent to a neighborhood is now introduced. Let K be a polyhe-
dral complex. A star of a cell Q consists of all cells that have Q as a face

St(Q) ≡ {P ∈ K| Q � P}.
1Recall a definition of a supporting hyperplane. For a given subset U ⊂ Rn we say that H is a supporting

hyperplane of U if the distance between U and H is 0 but the intersection of the interior of U with H is empty.
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Star is not a complex in general, since condition (1) of definition of the complex may not
be satisfied. We can make star into a complex by adding all its missing faces - the closed
star. For this we define a closure cl(H) of a subset H of a complex K as the smallest
complex that contains H . Thus the closed star is the closure of the star. The closed star
of Q can be restricted to the cells of dimension i

Sti(Q) ≡ (cl(St(Q)))i = {P ∈ Ki| Q � P}.

For an i-cell Q we define an adjacent neighborhood as the set of all adjacent i-cells to
Q

Adi(Q) = {P ∈ Ki|∃F ∈ Ki−1, K ≺ Q, K ≺ P}

Let S =
⋃

j∈J Pj for some index set J , then the adjacent neighborhood of S is

Adi(S) =
⋃
j∈J

Adi(Pj).

Example 6. Consider a complex as in Fig. 9.1. Then

St(e5) = {P2, P3, e5}, cl(St(e5)) = {P2, P3, e2, e4, e5, e6, e7, v2, v3, v4, v5},
St2(e5) = {P2, P3}, Ad2(P2) = {P1, P2, P3}.

1P

v4

e2
P 2

v5

v1

P 3

3v

e3 1e

e5 e4

v2

e6

e7

Figure 9.1: Illustration of the star and adjacent neighborhood.

The next two sections introduce two concepts fundamental for this exposition: a
switched control system and a combinatorial control system. Both objects are associ-
ated to a piecewise linear partition K of the state space E. The switched control system
is a continuous object living on the space |K|, whereas the combinatorial control system
is a discrete object living on the complex K.
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9.4 Switched Control Systems

We define a class of switched control systems that live on a piecewise linear partition of
the state space.

A switched control system S is a quadruple S = (E,K,U, S), where E is a bounded
polyhedral set (a polytope) in Rn, K is a piecewise affine partition of E, U is a polyhedral
set (of admissible inputs) in Rm, and S = {sP | P ∈ Kn} is a family of piecewise affine
control systems

sP : ẋ = AP x + BP u + aP ,

where AP , BP , and aP are n × n, n × m and n × 1 matrices, respectively. The state
x ∈ VP , where VP is an open neighborhood of P , and u ∈ U .

Let S be a switched control system. Following [Habets and van Schuppen, 2004] and
[Habets et al., 2006] a control objective for S is decomposed into two control problems
each formulated for a cell P ∈ Kn.

Problem 7. Let S be a switched control system, and P ∈ Kn. Suppose R is an arbitrary
nonempty subset of facets of P .

Find an (m× n)-matrix FP and an m-vector gP such that the control law

gP : VP → Rm, gP (x) = FP x + fP , (9.2)

satisfies:

1. Im(P ) ⊂ U and

2. all flow lines φx of the closed-loop system

lp : ẋ = (AP + BP FP )x + (aP + BP fP ), (9.3)

starting at a point x ∈ P leave P in finite time by crossing one of the faces in R.

Problem 8. Let S be a switched control system, and P ∈ Kn.
Find a control law (9.2) such that

1. Im(P ) ⊂ U and

2. for any x ∈ P the flow line φx of the closed-loop system (9.3) satisfies

φx(t) ∈ P for all t ≥ 0.

Let F be a facet of a cell P with the supporting hyperplane2

H− = {x ∈ Rn| 〈x,N〉 ≤ a}.
2N is the outward normal vector to F
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We say that the control law (9.2) blocks F if the vector field ξ of the closed loop sys-
tem (9.3)

ξP : P → Rn, x 7→ (AP + BP FP )x + (aP + BP fP )

satisfies the equality
〈ξP (x), N〉 ≤ 0 (9.4)

for all x ∈ P . A facet that can be blocked will be called a blocking facet.
Problems 7 and 8 are solved in [Habets et al., 2006] by blocking facets in the set S -

being the complement of R. We observe that if S′ ⊂ S and the control law kP blocks all
the faces in S then it also blocks the faces in S′; thus the more blocking faces the more
restrictive control becomes.

A family of control laws solving Problems 7 and 8 give rise to a switched feedback
law and a closed loop switched system. A switched feedback law for a switched control
system S = (E,K,U, S) is a triple C = (E,K,G), where G = {gP | P ∈ Kn}, where
gP is defined by (9.2).

A (closed loop) switched system is a tripleL = (E,K,L), where L = {lP | P ∈ Kn}
with lP defined by (9.3). The overall dynamics of a switched system L is governed by the
differential inclusion

ẋ ∈ ξ(x), where ξ : E → 2R2
, x 7→ {v ∈ Rn| v = ξP (x) if x ∈ P}.

For stability results for switched systems the reader is referred to [Leth and Wisniewski,
2009] and the references therein.

The focus in this work is on the combinatorial part of the control synthesis problem,
i.e. on a supervisor that selects blocking faces of a switched control system such that
every trajectory of the closed loop system starting in an n-cell Pinit reaches the goal n-
cell Pgoal in finite time. For a treatment of the conditions for guaranteeing control to a
certain facet of a cell system the reader is referred to [Habets et al., 2006].

9.5 Combinatorial Vector Field

Taken as a whole, the goal of this work is to formulate a combinatorial counterpart of a
control system. The object of interest is a polyhedral complex K.

An intermediate step is to impose a group structure on each of the sets Ki, introduced
in Sec. 9.3. For this we adapt a concept of a chain group, Definition IV.1.5 in [Bredon,
1997]. The i-chain group Ci(K) of the polyhedral complex K is the free abelian group
generated by i-cells. Hence Ci(K) is the product of N ≡ |Ki| copies of Z2, each corre-
sponding to an i-cell, Z2[P1]× Z2[P2]× . . .× Z2[PN ] with Pj ∈ Ki:

Ci(K) =
⊕

P∈Ki

Z2,
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Thus an i-chain is a formal sum

Q =
∑

P∈Kn

nP P

of i-cells P with coefficients nP ∈ Z2. In articular if i < 0 or i > n we have Ki = ∅,
and Ci(K) = 0.

Example 7. The 2-chain C2(K) in Fig. 9.1 is

C2(K) = {0, P1, P2, P3, P1 + P2, P1 + P3, P2 + P3, P1 + P2 + P3}.

For a polyhedral complex K we define an i-combinatorial scalar product 〈·, ·〉i :
Ki ×Ki → Z2 by

〈P,Q〉i =
{

1 if P = Q
0 otherwise

We extend it to the bilinear product 〈·, ·〉i : Ci(K)× Ci(K) → Z2. In particular〈∑
j

njPj , Pk

〉
i

= nk.

In the sequel we will drop the subscript i in the notation of the i-combinatorial scalar
products, i.e. we will write 〈·, ·〉 instead of 〈·, ·〉i.

We define an i-boundary map ∂i : Ci(K) → Ci−1(K) by first specifying it on
i-cells

∂i(P ) =
∑

F≺P, dim(F )=i−1

F.

Hence the i-boundary map takes an i-cell to the sum of its facets. We then linearly extend
the domain of the i-boundary map from Ki to Ci:

∂i(P + Q) = ∂i(P ) + ∂i(Q).

Observe that ∂i−1 ◦ ∂i = 0. To prove this claim we observe that each facet F of a
facet of polyhedral set P is the intersection of two facets of P , c.f. [Grünbaum, 2003].
For any P ∈ Ki we have

∂i−1 ◦ ∂i(P ) =
∑

j

∂i−1(Fj) =
∑

j

∑
k

Fj ∩ Fk,

but Fkj ≡ Fk ∩ Fj = Fj ∩ Fk ≡ Fjk, and Fkj + Fjk = 0 . Hence, we conclude that∑
j

∑
k Fjk = 0.

The definition of a combinatorial vector field below is motivated by the discussion
in Sec. 9.4. Let S be a switched control system, and C a switched feedback satisfying
Problem 7 and 8. It follows that for any P ∈ Kn the flow line with the starting point in P
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will leave it in final time through the facets R = {F1, . . . , FN}, as given by the definition
of R in Problem 7. The combinatorial information of this action is

P 7→ F1 + . . . + FN .

This will anchor a definition of an n-combinatorial vector field taking an n-cell to a linear
combination of its facets. In this exposition we have chosen to state it more generally for
any i-cell.

Let K be a complex. An i-combinatorial vector field is a map

νi : Ki → Ci−1(K)

that satisfies

1. for any P ∈ Ki, νi(P ) ∈ Ci−1(cl(P )).

2. for any pair (F, P ) ∈ Ki−1 ×Ki, 〈F, νi(P )〉νi−1(F ) = 0.

3. for any pair (P,Q) ∈ Ki ×Ki with P 6= Q, 〈νi(P ), νi(Q)〉 = 0

Condition (1) states as desired that a cell is mapped to a linear combination of its facets.
Condition (2) means that if an (i − 1)-cell F ∈ Im(νi) then νi−1(F ) = 0. Intuitively it
means that the future cells do not increase the dimension. Condition 3. pronounces that
two cells cannot be mapped to the same facet. Since, if there are two cells P and Q such
that ν(P ) = F1+F2+

∑N
j=3 Fj and ν(Q) = F1+F2+

∑M
j=3 Gj then F1+F2 ⊆ P ∩Q.

This contradicts with the definition of the polyhedral complex. If the cells Q and P maps
to the same face F , then 〈F, νi(P )〉 = 〈F, νi(Q)〉 = 1, i.e. 〈νi(P ), νi(Q)〉 = 1, which is
again a contradiction.

A similar concept of a combinatorial vector field was introduced in [Forman, 1998]
for the purpose of discrete Morse theory.

Alternatively a combinatorial vector field is a set of pairs

V ≡ {(P, F1 + . . . + FN )| P ∈ K, Fi are facets of P}

such that no facet Fi is in more than one pair. It is helpful to picture a combinatorial vector
field on K by arrows, where the tail is at P and the arrow at Fi, see Fig. 9.2. Fig. 9.3
indicates that both splitting and merging of flow directions are allowed. Intuitively the
arrow notation gives the same information as a phase-plane plot for continuous systems.

Since no cell is in more than one pair in V , every cell P ∈ K of the complex K
satisfies precisely one of the following conditions:

1. P is a tail of an arrow;

2. P is the head of exactly one arrow;

3. P is neither the tail nor the head of any arrow.
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Figure 9.2: A combinatorial vector field. The vertex v1 is a rest point.
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(a) Splitting, ν2(A2) = e4 + e5
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(b) Merging, ν2(A1) = e2 ≺
A2, ν2(A3) = e5 ≺ A2

Figure 9.3: Both merging of the flow direction on the left hand side and splinting on the
right hand side are allowed.

A simplex that satisfies condition 3 is called a rest point. In Fig. 9.2, the rest point is the
vertex v1.

Let ν be a combinatorial vector field on a complex K. We say that P ∈ Ki is a rest
point of ν of index i if

1. νi(P ) = 0 and

2. there is no Q ∈ Ki+1 such that 〈P, νi+1(Q)〉 = 1.

Example 8. Fig. 9.4 illustrates a rest point of the minimal index 0 - a source and the
maximal index n - a sink.

Example 9. In contradiction to the intuition the cell A2 in Fig. 9.5 is not a source, since
the interpretation of the figure is merely that non of the facets e2, e6, e7 can be blocked.

To a combinatorial vector field it is possible to associate a flow. An i-flow (of a
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Figure 9.4: (a) v7 is a rest point of index 0; (b) A1 is a rest point of index n.
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Figure 9.5: The cell A2 is not a rest point.

combinatorial vector field) is the homomorphism3 Φi : Ci(K) → Ci(K) given by

Φi(P ) =
∑

Q∈Adi(P )

〈∂iQ, νi(P )〉 Q +
∑

Q∈Sti+1(P )

〈∂i+1Q,P 〉 νi+1(Q) + P,

for P ∈ Ki.
If P ∈ Ki is a rest point, then νi(P ) = 0 and for any Q ∈ Sti+1(P ) we have

〈P, ν(Q)〉 = 0. Hence 〈P,Φi(P )〉 = 1.

Example 10. Consider the combinatorial vector field defined in Figure 9.6.
Firstly, we compute the flow starting at e0

Φ1(e0) = 〈∂1e0, ν1(e0)〉e0 + 〈∂1e3, ν1(e0)〉e3 + 〈∂2A1, e0〉ν2(A1) + e0

= 〈v0 + v1, v0〉e0 + 〈v0 + v4, v0〉e3 + e0 = e3,

3Φi is a homomorphism if and only if for any P, Q ∈ Ci, Φi(P + Q) = Φi(P ) + Φi(Q).
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Figure 9.6: An example of a polyhedral complex with its associated vector field.

and Φ1(e3) = e3. We observe that e3 is a rest point of the 1-combinatorial vector field ν1

and a fixed point of the i-flow Φi.
Another example is the flow starting at e4, which is the sum of 1-cells e0 + e1 + e5,

which corresponds to our expectation that the future is one of the three cells e0, e1 or e5:

Φ1(e4) = 〈v0 + v1, v1〉e0 + 〈v1 + v2, v1〉e1 + 〈v0 + v4, v1〉e3 + 〈v1 + v4, v1〉e4

+ 〈v1 + v5, v1〉e5 + 〈v4 + v5, v1〉e9 + e4 = e0 + e1 + e4 + e5 + e4

= e0 + e1 + e5.

We compute the flow at e5:

Φ1(e5) = e5 + e6 + e9 + e10 + 〈∂2A3, e5〉 ν2(A3) + 〈∂2A2, e5〉 ν2(A2) + e5

= e6 + e9 + e10 + e1 + e6 = e1 + e9 + e10.

Observe that Φ1(e1) = Φ1(e6) = Φ1(e7) = 0, which is interpreted as follows: If a flow
line leaves a cell through a facet then it cannot run along this facet.

Lastly, we calculate the flow at the 2-cell A3:

Φ2(A3) = 〈∂2(A2), ν2(A3)〉 A2 + 〈∂2(A3), ν2(A3)〉 A3

+ 〈∂2(A4), ν2(A3)〉 A4 + A3 = A4.

Again the flow from A3 to A4 is found as expected.

The i-flow Φi generates an i-flow line. An i-flow line is a sequence (finite or infinite)
{Pk} such that 〈Φi(Pk), Pk+1〉 = 1. In Example 10, the infinite sequence . . . , e4, e5, e9, e4, e5, e9, . . .
is a flow line. It is the n flow lines that is of significance for control synthesis for combina-
torial control systems. Therefore in the sequel we restrict the attention to the n-boundary
maps, n-combinatorial vector fields and n-flows. We denote them ∂, ν and Φ, respec-
tively. In particular

Φ(P ) =
∑

Q∈Adn(P )

〈∂Q, ν(P )〉 Q, for P ∈ Kn. (9.5)
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9.6 Lyapunov Function

To the combinatorial vector field and its flow it is possible to associate an execution trace
- a ν-path. The concept of ν-paths was first introduced in [Forman, 1998]. A ν-path (of
length N) is a sequence ,

γ : P0, F0, P1, F1, ..., FN−1, PN , (9.6)

such that for all i ∈ {0, 1, ..., N − 1}

1. Fi ∈ Kn−1, and Pi, PN ∈ Kn;

2. 〈νi(Pi), Fi〉 = 1;

3. Pi 6= Pi+1 = Φ(Pi).

We say that ν-path γ starts at P0 and stops at PN .
We use the following notation. If there is a ν-path such that Q,R ∈ γ then Q ∼ R,

otherwise Q � R.
If P0 = PN the ν-path is called closed. Two closed ν-paths, γ, γ̃, are equivalent if γ̃

can be produced by selecting another starting point of γ.
Chain recurrent sets are sets in which the flow of an element of the set will be cyclic

within the set. Thus intuitively this is the case for rest points and non-stationary closed
ν-paths.

P ∈ Kn is an element of a chain recurrent set R if either

1. P is a rest point of V or

2. there is a non stationary closed ν-path γ with P ∈ γ

As for dynamical systems, the notion of a Lyapunov function for a combinatorial
dynamical system is desirable, and as shown in [Forman, 1998] and [Franks, 1980] it is
possible to find a similar Lyapunov function, which has the property, that it is constant
on the chain recurrent set, and outside the set it is the negative gradient of the function
towards the set.

Let R be a chain recurrent set. A function f : Kn ∪ Kn−1 → R is a Lyapunov
function if for any pair (P, F ) ∈ Kn × Kn−1 with P � F one of the following two
conditions is satisfied:

1. if P /∈ R then{
f(P ) < f(F ) if 〈F, ν(P )〉 = 0
f(P ) ≥ f(F ) if 〈F, ν(P )〉 = 1

2. if P ∈ R then{
f(P ) = f(F ) if F ∼ P
f(P ) < f(F ) if F � P.
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From the first condition, if a ν-path

γ : P0, F0, P1 . . . , FN−1, PN ,

with Pi ∈ Kn and Fi ∈ Kn−1 is not a chain recurrent set, then we have the following
relation:

f(P0) ≥ f(F0) > f(P1) ≥ . . . , f(FN−1) > f(PN ),

which, as in the case of continuous dynamical systems, means that the Lyapunov function
is decreasing along the flow line. The second condition in the definition above asserts that
for the chain recurrent set

γR : P0, F0, P1, F1, . . . , FN−1, PN = P0

the following equalities:

f(P0) = f(F0) = f(P1) = f(F1) = . . . = f(FN−1) = f(PN )

hold.
We will use the combinatorial Lyapunov candidate function as a control specification

on the polyhedral complex. An evident choice of a candidate function is the distance to
a goal cell Pgoal. We associate an arbitrary value r to Pgoal. All its neighboring cells are
given a value which is higher than r. Iteratively, still a higher value will be associated to
all the neighboring cells to these cells. Let K be the polyhedral complex with a possibly
empty unsafe polyhedral complex, Ku ⊂ K, the algorithm for a Lyapunov candidate
function is as follows.

Algorithm 2. Iterative method for assigning to each cell and its facets a Lyapunov func-
tion value.
KB = {Pgoal}, f(Pgoal) = 0
While Kn \ (Ku)n 6= KB

KT = Adn(KB) \ (KB ∪ (Ku)n)
∀P ∈ KT ,

if (cl(P ) ∩ cl(KB))n−1 ∩Ku = ∅,
f(P ) = max(f(KB)) + 1
f
(
(cl(P ) ∩ cl(KB))n−1

)
=

{
max(f(KB)) + 1

2

}
KB = KB ∪ P

The resulting Lyapunov candidate function is well defined. This is seen from the
following. Let S be a subset of Kn and define AD(S) ≡ Ad(S)\S. Then AD(AD(S))∩
AD(S) = ∅.

Example 11. An example of Lyapunov function is seen in Fig. 9.7. Here, the goal cell
is denoted by G, and the initial cell by I . The grayed out center cross is a forbidden
region. By assigning Lyapunov function values starting from the goal cell and outwards
it is ensured, that no local minimum occurs.
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Figure 9.7: Example of Lyapunov value assignment to cells in the Swiss flag example.

Another possibility is to use a potential field alike function as described in [Hwang
and Ahuja, 1992; Koren and Borenstein, 1991] with minimum at G and maximum at I ,
and then for each cell apply the average over the cell as a value of the Lyapunov candidate
function at this cell. The disadvantage of potential field functions is that they might have
local minima.

9.7 Control Synthesis

Let L0 be a finite set (of control actions). A combinatorial control system is a map

µ : Kn × L0 → Cn−1(K)

such that for every l ∈ L0, the restriction of µ to Kn × {l}, is an n-combinatorial vector
field.

Let � be the following partial order relation on Cn−1(K). For any two chains Q =∑
P∈Kn−1

nP P and Q′ =
∑

P∈Kn
n′P P , we have Q � Q′ if and only if nP ≤ n′P for

all P ∈ Kn−1.
We say that a combinatorial control system system µ is minimal if for any two l1, l2 ∈

L0 and any P ∈ Kn such that µ(l1, P ), µ(l2, P ) 6= 0, none of the following relations is
satisfied: µ(l1, P ) � µ(l2, P ) and µ(l2, P ) � µ(l1, P ).

Example 12. let P ∈ Kn and A,B, C, D be facets of P . Let µ(P, ·) be given by

µ(P, l) =


A for l = 1
A + B for l = 2
B + C for l = 3
B + C + D for l = 4.

We have
A � A + B and A + B � B + C + D,
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therefor µ is not a minimal combinatorial control system. It is seen that minimal combi-
natorial control system rules out redundant controls. If a continuous flow line leaves P
through A it also leaves P through A + B.

Example 12 indicates that for control synthesis we may assume the combinatorial
control systems to be minimal. By having the control objective specified by a Lyapunov
function f it is now possible to synthesize a control system by selecting a control action
from L0 that satisfies condition 1 and 2 of the Lyapunov function definition.

Denote the set of all possible combinatorial control systems satisfying the control
objective given by the Lyapunov function f by Ω. Let J be an index set, then

Ω ≡ {ωi : Kn → L0| i ∈ J} (9.7)

such that for any ω ∈ Ω, and for any pair (P, F ) ∈ Kn ×Kn−1 with P � F one of the
following two conditions is satisfied:

1. if P 6= Pgoal then{
f(P ) < f(F ) if 〈F, µ(P, ω(P ))〉 = 0
f(P ) ≥ f(F ) if 〈F, µ(P, ω(P ))〉 = 1

2. if P = Pgoal then{
f(P ) = f(F ) if F ∼ P
f(P ) < f(F ) if F � P,

where F ∼ P means that F and P belong to the same ν-path generated by µ ◦ (id, ω)
and id : Kn → Kn−1 is the identity map.

If Ω 6= ∅, then all ν-path of the closed loop system µ ◦ (id, ω) stops at Pgoal. There
might be, however, more than one combinatorial control system in Ω. This flexibility
can be used to select the control ω, which minimizes a certain cost function. Let H :
Kn × L0 → R be a function,

ω = arg min
ω∈Ω

max
γω

∑
P∈γω

H(P, ω(P )),

where γω is a ν-path for the n-combinatorial vector field µ◦ (id, ω) that starts at Pinit and
stops at Pgoal.

In practice one wants that the decision of the control action is local. For each cell the
set of possible control actions is determined to find the next feasible controller.

Let J : Kn → R be a function. For an initial cell Pinit and a goal cell Pgoal we want
to find a combinatorial control such that at each cell P , max J(Φω(P )) is minimal, where
Φω is the flow for the n-combinatorial vector field µ ◦ (id, ω). The following procedure
can be used.

Algorithm 3.
P = Pinit

While P 6= Pgoal

ω = arg minω∈Ω max J(Φω(P ))
P = Φω(P )
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Figure 9.8: Assignment of Lyapunov values to cubes.

9.8 Numerical example

In this section a numerical example is given. It comprises path planning and obstacle
avoidance for a small robot modeled as a unicycle, as described in [Oriolo et al., 2002].

State Space. The domain of the example is a 100 by 100 square, which is divided into
100 equally sized cubes. This generates a cubical complex. The space space is depicted
in Fig. 9.8, where the diamond indicates the starting location, the circle the goal location,
the squares unsafe regions and stars safe regions.

Lyapunov function. To aid the control synthesis a Lyapunov function is used. In this
example the Lyapunov function f maps a cube to the smallest number of cubes joining
this cell with the goal. For this Algorithm 2 is applied. An intermediate result of the
algorithm is shown in Fig. 9.8. For ease of reading only the values of the Lyapunov
function at the 2-cells are depicted.

Modeling. The model of a unicycle robot is derived in [Oriolo et al., 2002]. The work
shows how the robot’s mathematical model, through exact feedback linearization, can be
transformed into two independent double integrators

p̈ = a, θ̈ = α, (9.8)

where a and α are the linear and angular acceleration, respectively.
For the purpose of this example the kinematic model is described in R2 by[

ẋ
ẏ

]
= ṗ

[
cos θ
sin θ

]
. (9.9)
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To simplify the problem two internal controllers are used. The first controller keeps the
robot at a constant speed. This is accomplished by a standard proportional control with a
proportional gain of kp = 10 and a reference of ṗref = 2. The second controller regulates
the robot’s angle, which is carried out by using a proportional-differential controller with
kp = 20 and kd = 30 and as input reference the desired angle θref . By using these two
controllers the system given by (9.8) and (9.9) can be reduced to[

ẋ
ẏ

]
= ṗref

[
cos θref

sin θref

]
. (9.10)

Since, throughout this example, ṗref = 2 the affine system approximation of (9.10) be-
comes [

ẋ
ẏ

]
= 2

[
sin θ̄
− cos θ̄

]
θref + 2

[
cos θ̄
sin θ̄

]
, (9.11)

with θ̄ being the linearization point for the given cell.
Controllability. Given the system model (9.11) the admissible and blocking facets

are identified. Assume that the flow enters a cell P perpendicular to a facet, i.e. θ̄ = nπ
2 .

Enumerate the facets of P from F1 to F4 starting from the facet through which the cell
was entered. It is seen from (9.11) that {F1, F2, F3}, {F1, F2, F4} and {F1, F3, F4} are
sets of blocking facets, which correspond to admissible facets F2, F3 or F4.

Control synthesis. The algorithm selecting the combinatorial control systems Ω, c.f.
(9.7), satisfying the Lyapunov function f is applied. Since there might be more than
one control action for a cell a cost function which favors horizontal movement is used in
Alg. 3. In Fig. 9.9 the solid line shows the evolving control synthesis.

Numerical simulation. To verify that the developed controller executes the control
actions as desired, the original non-linear system is simulated with the combinatorial
control law. Fig. 9.10 depicts the resulting trajectory of the closed loop system by the
dashed line. The solid line represents the discrete control. It is seen that the synthesized
controller makes the original non-linear system behave as specified.

9.9 Conclusion

It has been shown in this paper how a switched control system can be represented by a
discrete equivalent - a combinatorial control system. The abstraction has been justified
through the derivation of discrete equivalents to general concepts from continuous dy-
namical systems such as vector fields, flow lines and Lyapunov functions. It has further
been shown how, by using the Lyapunov function as a control specification, automatic
control synthesis for a combinatorial dynamical system can be accomplished.

Finally, the methodology has been exemplified by application to robot guidance,
where, for readability, a simplified version of the unicycle trajectory planning problem
was considered.
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Figure 9.9: Choosing the controllers.
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Chapter 10

Conclusion
In the following the main conclusions for the thesis will be drawn up.

10.1 Part I

The first part of this thesis mainly considers prior art. An overview of previous work on
deterministic hybrid systems is given in chapter 2, where hybrid system formulations such
as Mixed Logic Dynamics, Linear Complementary Systems, Max-Min-Plus-Scaling and
Piecewise Affine hybrid systems are described and related.

Following this, two examples of practical applications of hybrid systems are con-
sidered in chapter 3 and 4. In the first chapter control of a pulsed welding machine is
consdered, and it is shown how it is possible to reformulate the system as a hybrid system
and specify the control objectives as an LTL-formulation. Finally it is shown that it is
possible to validate the controller to the LTL-formulation by using a formal verification
tool, UPPAAL. In the second paper formation control of satellite is considered, and par-
ticularly how control can be performed in a fault tolerant control setting. It is shown how
the overall system can be modelled as a piece wise affine hybrid system, and how it is
possible to reason about the systems performance in the precense of faults in the system.

Finally chapter 5 gives an overview of the proposed framework structure. It briefly
touches upon the advantages of using such a formulation, and considers issues which
should be taken into account. Finally an example of how the framework can be used for
control is given in the last section of the chapter.

10.2 Part II

In the second part of the thesis the main theoretical part is presented. Chapter 6 gives
a comparative analysis of the advantages of using the two proposed frameworks for ex-
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pressing combinatorial vectorfields and combinatorial flows along with comparing theses
to the original work initiated by R. Forman.

The first combinatorial framework is presented in chapter 7 and 8. The first of these
chapters introduces the concept of a combinatorial hybrid system, what is understood
by a combinatorial manifold, how the controllability is defined on simplices and finally
shows how it is possible to do control synthesis for combinatorial hybrid systems. The
second chapter dealing with the first framework extends the results of the first chapter,
explains how this theory fits into a fault tolerant control setting and finally shows how
a combinatorial hybrid systems setting can be used to minimize the overall mission risk
through selecting paths throught the combinatorial hybrid system with minimal risk under
a finite horizon.

Finally, the second combinatorial hybrid systems framework is presented in chapter 9.
Here the definitions of combinatorial vector fields are reformulated in an intuitive way,
and the definitions of flow and flow lines are made purely geometric, thus allowing them
to work not only on simplices and simplicial complexes, but on polytopes and polyhedral
complexes in general. This is expanded by introducing the Lyapunov function for both
dimension n and n − 1, and deriving a control synthesis algorithm which takes this into
account. Finally the framework is applied to a robotic control problem at the end to show
how the framework is used in practice.

10.3 Future work

Since the concept of combinatorial hybrid systems is quite new there are many aspects,
which are interesting to consider in future research. Three of the main problems will
be touched upon in the following three chapters, which represent preliminary research,
which has not yet been matured for publishing.

The first concept to consider is that of optimal control for the individual simplices.
This subject is interesting, since we previously only have been checking that there exists a
controller, and found the set of possible affine controllers for a given system on a simplex.
This subject is touched upon in chapter 11.

Another practical issue to consider is when control is performed on a polytope. Then
it might not always be possible to find a feasible input set to guarantee exit through a
certain facet. It would then be sensible to consider a partitioning of the polytope into a
controllable polytope and an un-controllable. This idea is presented in chapter 12.

The final feature which could be considered, is a way to reduce the number of sim-
plices in a given simplicial complex. How it is possible to transform and reduce a simpli-
cial complex with a control combinatorial vector field given on it is considered in chap-
ter 13.
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Chapter 11

Optimal Control for Piecewise
Affine Systems defined on
Simplices with Polyhedral Input
Set

This chapter aims to treat optimal control problems for piecewise affine systems de-
fined on simplices. The work here is presented in sketch form only.

11.1 Introduction

Through recent years a number of initial steps have been taken towards truly automatic
control of switched dynamical systems, as seen in the works of [Tabuada and Pappas,
2003b; Bemporad et al., 2000] and the references therein. Many of these are based on
making a discrete abstraction of the underlying continuous system and then design the
controller based on the discrete abstraction. This is however not always a very efficient
controller since it does not consider the underlying dynamics of the system.

One such method of discretization which is of particular interest is the one of building
a simplicial complex on the state space of interest. How to build controllers on such
spaces has previously been addressed in [Habets and van Schuppen, 2004; Habets et al.,
2006], and more recently in [Wisniewski and Larsen, 2008] along with algorithms for
finding a feasible control strategy through the discretized system on the discrete level in
[Larsen and Wisniewski, 2008b].

Since a substantial amount of work has been done on designing automatic controllers
for dynamical systems it is desirable to preserve the discretization part of these solutions
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and then consider how a discrete location is optimally entered and left. This is possible
using classical optimal control tools such as the Hamiltonian approach, Dynamic pro-
gramming and of a more recent nature, LMI’s.

The discrete objects considered in the present work are simplices in any dimension.
However, expansion of the theory to polytopes in any dimension is straightforward. In the
present effort the problems discussed until now are divided into three different classes:

1. System state is not known - exit through given facet.

2. System state is known - exit through given facet.

3. System state is known - exit through given point on facet.

This division is quite natural, which will be obvious later on, since the different cases
have quite different solutions.

The first case is the most conservative in the sense, that it does not assume anything
about where the system might be, but just that it is somewhere within the simplex and that
it should leave the simplex through a certain set of simplices.

The second case is a bit more restrictive, because it assumes, that the starting location
of the system is known. In this case it is possible to calculate the trajectory of the system
and thus even allowing for switching of the controller within the simplex.

The last case is the most restrictive. It is based on the second case but is extended to
exit the simplex through a given point on the exit facet in comparison to the second case
where it is just required to leave the simplex through any point on the facet.

In the following the three cases will be discussed. Firstly the problem setting will
be clarified in Section 11.2, and the background on optimal control is refreshed in Sec-
tion 11.3.

The three cases will in turn be treated in Section 11.4, 11.5 and 11.6 and a conclusion
will be drawn up in Section 11.7.

11.2 Piecewise Affine Autonomous Systems Defined
on Polytopes

In the following section the preliminaries of the considered system will be desribed.

Simplex The basic state space domain, on which systems are considered in this paper
is simplices. A simplex in dimension n, i.e. an n-simplex is composed of n + 1 linearly
independent points representing the vertices of the simplex.

A simplex is a basic geometric object, i.e. by showing that the following theory ap-
plies to simplices it naturally applies to any object based on simplices. Hence, since any
polyhedral set can be decomposed into a finite number of simplices, the theory also apply
for any polyhedral set. And since any manifold can be approximated arbitrarily close by a
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polyhedral set, then it does not pose any limitation of the validity of the presented theory
that it is shown in this contribution for simplices.

System definition: On each simplex of the system the dynamics in that simplex is given
as an affine system with a polyhedral bounded input set:

ẋ = Ax + Bu + a (11.1)

where, A ∈ Rn×n is the systems dynamics, B ∈ Rn×m the input dynamics, a ∈ Rm a
constant offset, x ∈ Xi = ith − simplex and u ∈ U ⊂ Rm(polytope).

11.3 The Optimal Control Problem

The optimal control problem can be formulated as the problem of minimising a given cost
function, which generic can be written as:

J(g) =
∫ t1

t0

b(x(s), u(s))ds, (11.2)

with gε = (t0, x0) constrained by the system equation as given by (11.1).

11.3.1 Cost Function for Piecewise Affine System

Given that the objective for the system is to leave the simplex, then an obvious cost func-
tion for this would be to define the cost as the distance from the current position to the
exit facet.

Distance from a point to the exit facet With reference to figure 11.3.1 then the dis-
tance from an interior point of the simplex can be found by taking a vector from the point
to an arbitrary point on the exit facet and then projecting it onto the exit facet normal.

dist(x, Fexit) =
|n1̇r|
|n1|

, (11.3)

where n1 is the normalised normal vector to the exit facet and r is a vector pointing from
the interior point in question to a point on the facet, which in this case is chosen to be one
of the vertices of the exit facet.

Thus in the given case the value function can be written as the following affine func-
tion

L(x, u, t) = nT
1 v2 − nT

1 x + cT
u u, (11.4)

where v2 is a vertex at the exit facet, and cu ∈ Rm+ is a semi positive definite vector used
for scaling the input costs in the value function.
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Figure 11.1: Minimum distance - point to facet

Thus the cost function can now be written as:

J(x, u) =
∫ t1

t0

L(x, u, t)dt + K(xfinal), (11.5)

where K(xfinal) is a terminal cost, which, unless otherwise stated, will be assumed to be
zero.

11.3.2 Hamiltonian

Looking at the particular case of a finite horizon optimal control, then the necessary con-
ditions in the form of then the Hamiltonian is formulated as:

H (t, x, u, p(t)) = p(t)T f(x, u)+L(x, u, t) = p(t)T (Ax+Bu+a)−nT
1 x+nT

1 v2+cT
u u

(11.6)
Looking at the derivatives of this we find:

∂H

∂p
= f(x, u) = ẋ (11.7)

−∂H

∂x
= p(t)T A + nT

1 = ṗ (11.8)

Infimizing over u ∈ U gives:

inf
u∈U

H (t, x, u, p(t)) = inf
u∈U

p(t)T Ax + p(t)T Bu + p(t)T a− nT
1 x + nT

1 v2 + cT
u u

(11.9)

= inf
u∈U

(p(t)T B + cT
u )u + (p(t)T A− nT

1 )x + nT
1 v2 (11.10)
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from which it is seen that in order to infimise over u, the term p(t)T B + cT
u should be

minimized. However, the map Rm → R is a linear affine map, thus the infimum will be
located on one of the vertices of the convex input polytope U , or possibly on a facet of
the polytope.

Algorithm 4 (Calculation of the optimal input set).

1. Form the vertex set of the affine system: V

2. Calculate optimal input for each vertex in V :

∀vi ∈ V :
{
u∗i ∈ U | infu∈U H(t, vi, u, p) = (pT (t)B + cT

u )u + (p(t)T A− nT
1 )vi + nT

1 v2

}
∃u∗(t) = g (t, x(t), p(t)) Conjecture: g is affine in x

11.3.3 Dynamic Programming Approach

Again, the system is given as:

ẋ(t) = Ax(t) + Bu(t) + a

and the cost function, which needs to be infimized over is given by:

J(t1) =
∫ t1

t0

(nT
1 x(s) + nT

u u(s) + c1)ds

The dynamic programming(DP) equation can be set up like the following: DP value
function:

V : T ×X → R,

with T being the time interval from t0 to t1, and terminal condition: V (t1, x) = 0. As
it is desirable to find a minimum of the value function, this is found by seeing when the
derivative is zero, which can be written as:

0 = DtV (t, x) + inf
u∈U

[
DxV (t, x)T f(x, u) + b(u, x)

]
(11.11)

= DtV (t, x) + inf
u∈U

[
DxV (t, x)T [Ax + Bu + a] + nT

1 x + nT
u u + c1

]
(11.12)

= DtV (t, x) + DxV (t, x)T (Ax + a) + nT
1 x + c1 + inf

u∈U

[
(DxV (t, x)T B + nT

u )u
]

(11.13)

Guess
V (t, x) = s(t)T x+r(t) , V : T×X → R, and r, s being C1, which gives the derivatives:

DtV (t, x) = ṡ(t)T x + ṙ(t) (11.14)
DxV (t, x) = s(t) (11.15)
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which inserted in the above gives:

0 = ṡ(t)T x + ṙ(t) + s(t)T (Ax + a) + nT
1 x + c1 + inf

u∈U

[
(s(t)T B + nT

u )u
]

(11.16)

Thus we need to find s(t) and r(t) s.t.

0 =
[
ṡ(t)T + s(t)T A + nT

1

]
x+ ṙ(t)+ inf

u∈U
[(s(t)T B +nT

u )u(t)]+s(t)T a+c1 (11.17)

Thus it is now seen, that in order for the solution to be independent of the current state x,
the equation can be split into the following problems:

0 =
[
ṡ(t)T + s(t)T A + nT

1

]
x (11.18)

inf
u∈U

[(s(t)T B + nT
u )u(t)] (11.19)

0 =ṙ(t) + [s(t)T B + nu)u(t) + s(t)T a + c1 (11.20)

It is worth noticing, that there might be more solutions to (11.17) than (11.18)-(11.20).

Derivative calculation

Common for both (11.18) and (11.20) is, that both their values at the termination time,
i.e. t1, is equal zero: s(t1) = 0 and r(t1) = 0.

Solving for s(t) in (11.18) gives:

s(t) = −nT
1 A−T + ce−AT t,

which then can be used to calculate the time trace of s(t).
Looking at (11.13), then it is seen that the term:

inf
u∈U

[
DxV (t, x)T (B + nT

u )u
]

needs to be infimized. Thus it is possible to find uopt ∈ U , and since the problem is affine
the solution will lie on one of the vertices of U . It is thus sufficient to check the corners
of U . Let the vertex set of U be denoted by Uv

inf
u∈U

[
(DxV (t, x)T B + nT

u )u
]

⇒ inf
u∈U

[
(s(t)T B + nT

u )u
]

Assuming ui ∈ Uv is the optimal, then it means, that

(s(t)T B + nT
u )ui ≤ (s(t)T B + nT

u )uj , ∀uj ∈ Uv \ ui (11.21)
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11.4 Case 1: Unknown Position - Exit Through Facet

As mentioned in the introduction, then in this case it is not possible to know where the
system is within this simplex. This case naturally occurs when only the transition to the
simplex is observed, or if the state estimate is very poor. In this case the possible input
polytope is restricted to only include the subset, which guarantees that the desired exit
facet is crossed, and the remaining facets are not.

Control to a specific facet, F1, can be done by regarding the normal vector to the
facet n1, and requires that the systems flow at the vertices of the facet will be in the same
direction as the normal vector, i.e. out of the simplex. Furthermore it is required, that the
flow from the opposite vertex of the face, v1, is flowing towards the convex hull of the
simplex, which is formalized in the following.

Proposition 3. Given a n-simplex, σn, by the vertex set V = {v1, . . . , vn+1} ∈ Rn then
there exists an input sequence u belonging to the convex input set U ⊂ Rn, s.t. the linear
affine system, ẋ = Ax + Bu + a defined on the simplex can be controlled to the facet,
given by the normal vector n1 if, for i ∈ {2, . . . , n + 1}

nT
1 (Avi + Bu + a) > 0∧

nT
i (Avj + Bu + a) ≤ 0∀j = {1, . . . , n + 1} \ {i}∧

Σi < ni, ẋv1 >< 0 (11.22)

has a solution.

This proposition is a reformulation of the results in [Habets and van Schuppen, 2001],
where it is shown for convex polytopes, but is reproduced here in the language of this
contribution.

From proposition 3 it is possible to generate an allowable input set for each vertex of
the simplex. However, since this case deals with the case where nothing is known about
the current system state the intersection of the input sets are used as the possible input set,
i.e.

U ′ =
⋂
i

Uvi .

An example of this will be shown in the following.

Example 13. In the following, a small example will be used to illustrate how Alg. 4 is
applied to control on a simplex:

Simplex: The positive unit simplex extending from the origin, given by: (0,0),(1,0),(0,1).

Dynamics: ẋ = Ax + Bu + a , A =
[
−1 −2
−3 −4

]
, B = I2×2, a =

[
−5
−6

]
Input polytope: U = [−10 ≤ u1, u2 ≤ 10]

Requirement: Flow out of the facet with the normal vector
√

2
−1

[
1
1

]

131



Section 11.4: Case 1: Unknown Position - Exit Through Facet

Firstly calculate the restricted input polytope fulfilling (11.22), which gives:

U ′ = {u ∈ U |[1 1]u− 17 > 0},

and is depicted in figure 13.

Figure 11.2: Allowable region

Secondly calculate the cost at each vertex point in U ′, which is shown in figure 11.3:
It is easily seen that one of the points yields a lower value than all the others. Thus

this is the optimal selection of a constant input value (not surprisingly, it is at maximum
actuation - (10, 10)).

The other approach to the first case is using dynamic programming instead of the
Hamiltonian method. The background of dynamic programming is shown in section 11.3.3.
As with the previous example the input polytope is again truncated to only contain the fea-
sible input set for the entire polytope.
To illustrate this the system from example 13 will be used. From earlier we have, that the
vertex set of U∗ is:

U ′
v = [(7, 10), (8, 9), (10, 10), (10, 9)] (11.23)

Furthermore we have, that the input matrix is: B = I2×2 and the input penalty is nu =
(0, 0)T .
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Cost to exit facet through n1

(10, 9) = 80.70815
( 7,10) = 137.0319
(10,10) = 70.09321
( 8, 9) = 126.0691

Figure 11.3: Optimal flow for the system

Now, by assuming that u1 would be the optimal we get:

s(t)T u1 ≤ s(t)T u2 ⇔ 7s1 + 10s2 ≤ 8s1 + 9s2 ⇔ s1 ≥ s2 (11.24)

≤ s(t)T u3 ⇔ 7s1 + 10s2 ≤ 10s1 + 10s2 ⇔ s1 ≥ 0 (11.25)

≤ s(t)T u4 ⇔ 7s1 + 10s2 ≤ 10s1 + 9s2 ⇔ 3s1 ≥ s2 (11.26)

Likewise for the three remaining vertices is found in table 11.1.

u2 optimal u3 optimal u4 optimal
s1 ≤ s2 s1 ≤ 0 3s1 ≤ s2

−2s1 ≤ s2 2s1 ≤ −s2 s1 ≤ 0
s1 ≥ 0 s2 ≤ 0 s2 ≥ 0

Table 11.1: Inequality requirements on s(t) for u2, u3 and u4 being the respective optimal
inputs.

The trajectory of the systems costate, s(t), as described in (11.18), can now be calcu-
lated for the system, and the time trace of it is shown in figure 11.4.
Now, if the inequality requirements are compared to figure 11.4 it is seen that:

r1 : s1 > 0∀t ⇒ u1 ∧ u2

r2 : s1 > s2∀t ⇒ u1
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Figure 11.4: Time trace of the solution to s(t)

Optimal:
⋂

r = u1

Remark 9. If the inequalities had been changed u4 would have been the optimal.

11.5 Case 2: Known Position - Exit Through Facet

In this section the case where full state information is available will be considered.
As full state information is considered in this case it is possible to switch controllers

within the simplex, thus it is not necessary to restrict the input polytope as described under
Case 1. To ensure, that the system only crosses the desired facet of the simplex an extra
constraint needs to be included in the Hamiltonian. Looking at the Hamiltonian in (11.6),
then the augmented version becomes

H(t, x, u, p) = p(t)T f(x, u) + L(x, u, t) + µS(x, t), (11.27)

where the state constraints are formulated as fulfilling

S(t, x) ≤ 0, (11.28)

and the new co-state µ is given as

µ

{
> 0, S = 0
= 0, S < 0 , (11.29)

134



Chapter 11: Optimal Control for Piecewise Affine Systems defined on Simplices
with Polyhedral Input Set

which gives the following Euler-Lagrange equations

∂H

∂x
= −ṗ(t) =

{
p(t)T A− nT

1 + µ∂S
∂x , S = 0

p(t)T A− nT
1 , S < 0

. (11.30)

In other words: Once the system reaches a boundary of the state-space it will slide
along the boundary until it again will be more optimal to be fully inside the simplex.

Lemma 1. Maximum number of switches for optimal control on an n-simplex in case 2
is 2(n− 1).

Proof. Since, as seen from case 1, the optimal input will be in one of the input polytopes
vertices during the entire time in the simplex, then this will not lead to any switching.
However, when the system reaches the boundary of the system, then it will switch to a
grazing control. For each time the system reaches a boundary the system is restricted
to one dimension less, until reaching a dimension-1 facet, i.e. hit (n-1) boundaries, in
which case it must follow that one. Similarly, to exit at the facet the system may leave the
grazing giving an additional maximal (n-1) switches.

Example 14. An example of this is shown in the following.
Let the simplex be defined as in the previous example. The system dynamic is ẋ =

Ax + Bu + a , A =
[
0.1 −0.5
0.5 0.1

]
, B = I2×2, a =

[
0
0

]
with the input polytope being:

u1, u2 ∈ U = [−0.2; 0.2]
Objective as in the previous example: Flow out of the facet with the normal vector

√
2
−1

[
1
1

]
.

The system is stated at xinit = (0, 0.2). As it is seen from figure 11.5, then the system
evolves unrestricted for the first 0.15 s after which it hits the boundary of the simplex. At
this instance the control law is changed to grazing along the facet, as seen in red. This
is followed until 0.28 s, where it again becomes feasible to follow the original optimal
trajectory. The unconstrained trajectory is plotted on top of the constrained in dotted
style.

Remark 10. As seen from figure 11.5, then reaching a boundary of the simplex leads to a
grazing behavior of the system. This phenomena means, that during the period of grazing
the trajectory is suboptimal, compared to the unconstrained system evolution. There are
however a number of possibilities to alleviate this phenomena. One way would be to allow
for a certain degree of overlap between the simplices, ie. the trajectory would be allowed
to enter a neighbouring simplex to a certain extend before switching. Something which
might or might not be allowable depending on the system. Another possibility would be
to perform a complete switch to the neighbouring simplex, given, that it is possible to
control it back to the original simplex again. This would lead to a form of cooperation
between neighbouring simplices, which will be dealt with in the following.
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Figure 11.5: An example of a scenario when the second case is used.

11.6 Case 3: Known Position - Exit Through Point on
Facet

The last case which will be discussed in this context is that of exiting the simplex through
a given point on the exit facet. This has the advantage, that the trajectory of the system
can be optimized over a number of simplices, as opposed to just a single simplex, which
was the case in the two preceding cases.

xi
x

fp
1

p
2

M
1

M
3

2
M

Figure 11.6: Illustration of the philosophy of case 3

An illustration of the idea behind the third case can be seen in figure 11.6. Assuming
that the system contains of the three simplices M1-M3, and the initial and final state of
the system is given by xi and xf respectively, then, given a cost function, there are two
parameters, which can be used for doing an overall optimization on the entire system,
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illustrated here by the two crossing points, p1 and p2.
Recalling the definition of a cost function in (11.5) it is now clear, that the terminal

cost term is the cost for entering the next simplex at a given position. Thus leading to a
backwards recursive/iterative solution method.

In order exit a facet through a certain point an additional set of switches are needed.
Recalling, that Lemma 1 required 2(n− 1) switches to leave a certain facet, then in order
to leave a facet through a certain n−m-facet would require an additional m switches.

Lemma 2. Maximum number of switches for optimal control on an n-simplex with m ≤ n
terminal constraints is 2(n− 1) + m.

11.7 Conclusion

This chapter has touched upon development of optimal control specification on affine
systems given on simplices with polyhedral input sets and affine cost functions. Such
systems are quite common, e.g. in the process industry. The first case has shown how
is it possible to select a suitable input for a process if the only information available is
that the simplex has been entered, i.e. a facet has been crossed. The second case takes
into account, that a state estimate is available, thus more agressive bang-bang control
can be utillized, with possible switches of controllers within the simplex. The final case
consideres how to do an overall optimization of control through a given set of simplices
within a finite horizon.
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Chapter 12

Autonomous Hover Flight for a
Quad Rotor Helicopter using a
Piecewise Affine Hybrid
Systems Formulation

This paper deals with the design of an autonomous hover flight controller for an XPro
helicopter. Since the system is highly nonlinear, the system is modeled as a set of
piecewise affine systems defined on polytopes tied together using a hybrid automaton
formulation. Many practical problems with the method is highlighted, and solutions
for some of them are presented. Finally the presented concepts are applied to the ac-
tual system, and it is shown that it is feasible to design an autonomous hover controller
using the presented method.

12.1 Introduction

The lack of automatic methods for control design of large non-linear systems often leads
to quite time consuming and error prone human controller designs. One way of tackling
this problem is to regard the nonlinear systems as a set of piecewise affine systems, a
work which was initiated by Sontag [Sontag, 1981; 1982]. These piecewise affine systems
(PAS) were later considered cooperatively as the dynamics in the discrete location of a
hybrid automaton (PAHS) as described in [Henzinger, 1996b; Sontag, 1996]. Now, by
introducing a control system on the PAHS, as introduced in [Habets and van Schuppen,
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2001], it is possible to open or block certain facets, thereby guiding the system through a
given subset of the PAS before reaching the target PAS.

The control problem of opening and blocking facets of PAHS defined on polytopes
was first addressed in [Habets and van Schuppen, 2004] where the polytope in question
was split into simplices, and the control problem was considered on each simplex sepa-
rately. The simplicial control approach was further studied in [Habets et al., 2006]. Even
though this described approach is feasible, then it scales poorly, which is easily seen by
considering an n-cube as the polytope in question. Then it requires as a minimum n2−n
simplices, but in praxis it is often divided using a Delaunay triangulation, which gives an
upper bound of n2dn/2e

simplices. Thus it is apparent, that it is desirable to derive the
control law from the original polytope.

12.1.1 The Dragonflyer X-Pro Quad Rotor Helicopter

The system, which is considered in this paper is a quad rotor helicopter. Unlike a normal
helicopter with a main rotor, which gives the lift, and a tail rotor to stabilize the helicopter
around its yaw axis, then the quad rotor as four identical rotors, which combined gives
the lift. The distribution of lift between the individual rotors thus gives the possibility
of doing translatory as well as rotational maneuvers. Although this type of helicopter is
inherently much more difficult to control than an ordinary helicopter, it has the advantage,
that it is robust towards one rotor failure, which is a desirable feature when operating such
helicopters either in a hostile environment, or near humans.

The helicopter in question has been retrofitted with a number of additional sensors
compared to the original 3-axis gyros which it is standardly delivered with. These sensors
have been added in order to get a better estimate of the helicopters attitude and position.
However, there has been no changes performed on the actuators used in the system.

12.1.2 Delimitation of the control task

In this paper, the control of the helicopter will be limited to a hover configuration. This
delimitation has been done due to two main reasons, the first one being, that it is desirable
to keep the model relative simple, so that the focus is kept on the methodology used in
addressing the problem, and secondly because an autonomous hover controller for a quad
rotor helicopter, a precursor mission for an autonomous flight controller, has yet to be
proven in field tests.

Firstly in this paper the model describing the systems dynamics and kinematics in
hover will be presented in section 12.2. Following this in section 12.3 it will be described
how the system can be regarded as a set of PAS with an overlying automaton describing
how the set of PAS is traversed. Furthermore it is described how the different transition
in the automaton can be either blocked or opened by use of control at the PAS level and
a number of algorithms for doing this is presented. The section ends with discussing
how the dimension of the system at hand can be reduced to a tangible number by only
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regarding essential states and decoupling certain states. Following this an example of
how the actual control was calculated on one of the PAS in the system is presented in
section 12.4. The paper is finished off by section 12.5 where some concluding remarks
on the method is given.

12.2 Systems Dynamics

This section will provide an overview of how the non-linear helicopter model is con-
structed and how the model parts interact. Furthermore simplifications in the model and
why these are acceptable will be discussed.

Motor
+

Gear

V

Dynamics
+

Kinematics
Rotor

Ω

∑ τdyn

0R1

0P1

Fz

4x

τz

Ω
.

Figure 12.1: Modelling overview of the X-Pro divided into three subsystems, motor-gear,
rotor and body.

As can be observed from Figure 12.1, the controllable inputs to the X-Pro are the four
motor voltages V . The outputs from the model are the X-Pro attitude 0

1R and position 0
1P ,

of the helicopter, as seen from the inertial frame, in this case the ground. There are three
subsystems: motor-gear, body and rotor. The interfaces between these will be described
in the following.

The angular velocity, Ω, produced by the motor and reduced by the gear is feed to
both the rotor and body block. The angular acceleration Ω̇ is connected to the body block
in order to calculate the body moments which eventually leads to attitude. It should be
noted that the angle of attack and linear velocity of the body, which specifies angle of
relative wind and dissymmetric lift respectively, has been omitted as rotor inputs. This is
a natural and acceptable simplification as the main objective is to operate in a hover state.
The rotor output is the force Fz and the torque τz . The generated rotor torque, τz , is lead
not only to the body block, but also back to the motor along with the torque generated by
the body dynamics. These two torque contributions are summarized to comprise the total
load torque seen by the motor.

12.2.1 Gear-Motor Model

In the following the gear-motor model for the rotors will be stated. As this type of model
is quite standard the model will be stated here without any derivation, however this can
be found in [Franklin et al., 2002].
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Table 12.1: Empirical model parameters
(a) Motor parameters

Parameter Description Value Unit
La Armature inductance 0.2811 mH
Ra Armature resistance 0.2094 Ω
K Torque constant 0.0046 N ·m

A

Jmotor Inertia of motor 2.62 µω̇
τ

Jgear Inertia of motor 1.34 µω̇
τ

bcomb Combined viscous friction 0.994 µN ·m
rad/sec

τcomb Combined rolling friction 2.9 mN ·m
(b) Rotor Parameters

Parameter Value Unit
aFz

−208 µN ·s2

rad2

bFz
−9.10 mN ·s

rad

aτz 8.79 µNm·s2

rad2

bτz 1.0 mNm·s
rad

cτz
41.4 mNm

The following resulting equations for the gear-motor assembly is found, where ia is
the motor current, Ωmotor is the motor angular velocity:

ia(s) =
Va(s)−K · Ωmotor(s)

La · s + Ra
, Ωmotor(s) =

K · ia(s)− τf (s)− τl(s)
Jmotor · s

(12.1)

The resulting equation for angular velocity after the gearing, Ωgear, can then be found to
be

Ωgear(s) =
K · ia(s)− τftot(s)− τl(s)

η · (Jmotor + Jgear

η2 ) · s
, (12.2)

with τl being the load torque, and τftot
being the total frictional torque defined as

τftot(s) = τcomb + bcombΩmotor(s) (12.3)

with the empirically parameters as stated in Table 1(a).

12.2.2 Rotor Model

A sufficient model for the rotor blade dynamics in hover can be found in [Prouty, 1989]
with Ω = Ωgear describing the rotor angular velocity, which gives the force acting on the
z-axis:

rFz = aFz Ω2 + bFz Ω, (12.4)
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along with the torque acting around the z-axis:

rτz = aτz Ω2 + bτz Ω + cτz (12.5)

The parameters for Equation (12.4) and (12.5) has been found empirically and are stated
in Table 1(b).

12.2.3 Helicopter Body Model

Since the X-Pro consists of several, individual moving parts affecting its movement, the
vehicle is considered composed of five components: The four rotors, each producing a lift
on the helicopter and the helicopter base.

Moments: Moments are calculated based on the angular velocity of the X-Pro, and on
the external influences of rotors and motors. Equation (12.6) describes the torque
relation between the motors, rotor momentum, rotor forces and the angular accel-
eration, ω̇, of the X-Pro.

1~̇ω1 = 1Itot
−1


4∑

j=1

[
1~nrotor,j + 1 ~P2,j × 1 ~frotor,j

]
− 1~ω1 ×

(
1Itot

1~ω1

)
. . .

− 1
(

C2 Ĩ2

)
1 ~̇Ω2,tot − 1~ω1 ×

(
1
(

C2 Ĩ2

)
1~Ω2,tot

)
 ,

(12.6)
with 1P2,j is a vector describing the rotor position relative to the base. 1Itot being
the total helicopter inertia, and C2 Ĩ2 is the reactive inertia of each motor/gear/rotor
assembly.

The angular acceleration is expressed in the X-Pro’s own coordinate system.

Attitude: Calculates the orientation of the X-Pro, based on its angular velocity relative
to the universal frame is done according to [Craig, 2005].

Ṙ = S(~Ω)R (12.7)

Based on these equations, the attitude of the X-Pro is derived to be:

0
1Ṙ = S

(
0~ω1

)
0
1R (12.8)

Forces: By summing the external forces acting on the X-Pro the linear acceleration in
CM can be calculated:

1~̇v1 =

4∑
j=1

[
1 ~frotor,j

]
mtot

+ 1
0R

0~g ⇔ 0~̇v1 = 0
1R

4∑
j=1

[
1 ~frotor,j

]
mtot

+ 0~g (12.9)
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The linear acceleration is expressed in the coordinates of the X-Pro’s own frame {1}
in the left side of (12.9), which coincides with what would be measured, if linear
accelerometers were to be mounted in the CM of the X-Pro. The linear accelration
seen from the universal frame is stated on the right side of (12.9).

Position: The position of the X-Pro relative to the universal frame, based on the attitude
and the linear velocity can be calculate as follows. The linear velocity is expressed
in coordinates of the X-Pro’s own frame. Because of this, the position, 0P1, of the
X-Pro can be expressed as:

0Ṗ1 = 0~v1 (12.10)

12.3 Piecewise Affine Hybrid Systems Formulation

This section constitutes the main part of this paper. The first part, (12.3.1) will sum up
previous theory on PAHS needed to proceed. After this the main algorithm will be pre-
sented in section 12.3.2. The following sections are devoted to specifics of this algorithm
in the context of the quad rotor helicopter at hand.

12.3.1 Theories of PAHS

A Piecewise-Affine Hybrid System consists of a discrete automaton with a continuous-
time affine system on a polyhedral set at each mode, and a switching mechanism between
both discrete and continuous dynamics[Henzinger, 1996b].

The PAHS can through hybrid system formalism be characterized by the tuple H
presented in (12.11), [Habets et al., 2006, p.939].

H = (Q,E, f, U, {(Xq,Aq) | q ∈ Q}, {(Gq(e),Rq(e)) | (q, e) ∈ dom(f)}) (12.11)

where Q is the set of discrete locations, E the set of discrete events and f the discrete
transition functions f :⊂ Q × E → Q. These three elements constitute the discrete
automaton whereas the continuous affine systems are composed of Aq = (Aq, Bq, a)
defined on the polytope state set Xq. The input to the affine systems are in the set U ,
also defined on a polytope. The previously mentioned hybrid interactions between the
automaton and the affine systems are described via the guard sets Gq(e) and the affine
reset maps Rq(e) : Gq(e) → Xf(q,e).

Given a discrete location q ∈ Q, the continuous affine systems are defined by

ẋq(t) = Aqxq(t) + Bqu(t) + aq, (12.12)

where xq ∈ Xq and u ∈ U . With (12.11) and (12.12) defined the evolution of the PAHS
can be described. Whenever the systems state xq leaves the polytope set Xq an event
e ∈ E will occur corresponding to the guard set Gq(e), provoking a transition f(q, e)
eventually leading to a new discrete location. With this evolution in mind the control
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problem evaluates to driving a state trajectory to a specific target facet Fj ⊂ Xq of the
polytope Pd.

Proposition 4, [Habets and van Schuppen, 2004, p. 24], deals with the calculation of
control signals to open or blocked facets. In the proposition the open facet is F1, n1 is the
unit normal vector pointing out of the polytope of the facet i, for a precise description of
open and blocked facets see [Habets and van Schuppen, 2004].

Proposition 4. Let (A,B, a) be an affine system defined on a polyhedron X . Let V1 be
the set of vertices of a facet F1 of X . The facet F1 is open (i.e. all trajectories of the close
loop systems leaves X only through F1) if the following two conditions are satisfied

(1) ∀j ∈ V1 :

(a) nT
1 (Avj + Buj + a) > 0

(b) ∀i ∈ Wj \ {1} : nT
i (Avj + Buj + a) ≤ 0

(2) ∀j ∈ {1, ...,M} \ V1 :

(a) ∀i ∈ Wj : nT
i (Avj + Buj + a) ≤ 0

(b)
∑

i∈Wj

nT
i (Avj + Buj + a) < 0

Condition (1) of Proposition 4 is utilized when calculating control signals to all the ver-
tices contained in facet F1, whilst condition (2) of Proposition 4 is used when calculating
control signals for all vertices not contained in F1. The affine control law u = Fx + g is
derived by means of (14) in [Habets and van Schuppen, 2004, p. 30] which is vT

1 1
...

...
vT

N+1 1


 FT

gT

 =

 uT

...
uT

N+1

 (12.13)

It is evident from (12.13) that a unique solution can be found for F and g, if the system is
defined on a simplexthereby leading to a unique solution for F and g.

If the system was defined on a convex polytope with more than d + 1 vertices, the
vertex matrix would be m × n, thereby not leading to a unique solution. However, by
applying the More-Penrose pseudo inverse to the vertex matrix a least squares solution to
the problem can be found. This is interesting from an engineering point of view as energy
efficient and actuator wearing often is of importance.

12.3.2 Combinatoric Controllability

The algorithm proposed in [Habets and van Schuppen, 2004] states that even though the
control is made on a polytope, the control law can only be formed by triangulating that
polytope and doing local control on each simplex. The paper [Habets et al., 2006] works
altogether on simplices. Here however, it is desirable to consider any convex polytope.
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This is done on the basis of the ideas presented in the aforementioned papers. One general
problem is, that it might be impossible to find a control law, which will work for the entire
polytope, but unlike [Habets and van Schuppen, 2004], where the polytope is divided
into a simplicial complex, the algorithm presented herein aims at doing a more optimal
division of the polytope.

A short motivating example will be described in the following.

Example 15. Consider the simple second order motor model given by:[
θ̇
ω̇

]
=

[
0 1
0 0

] [
θ
ω

]
+

[
0
1

]
u (12.14)

and let it be defined on a set of unit cubes as shown in figure 12.2(a). It is desirable to
move the system towards the origin, i.e. v3, which means blocking facet F1 and F4. When
calculating the needed input for blocking F4 from v1 it is found that u1 = ∅. This can
also intuitively be understood as a system with inertia would require an infinite input to
change its state flow instantaneous. The idea now is to first look at the vertex farthest

ω

θ

v1v2

v3 v4

n4

n1

P1 P2
n2

n3

(a) The original system.

ω

θ

v1v2

v3 v4

n4

n1

n5

Bad vertex

n2

n3

P1,main

P2

P1,fragment

(b) After bad vertex removal.

Figure 12.2: The example system. The vertex v3 is at the origo, and the control objective
is to lead the system towards the origo, thus the two facets with normal vectors n1 and
n4 is desired to keep blocked. With the division in (a) this is not possible. However, by
removing v1 the remaining structure fulfills the requirement as seen in (b).

from the control goal in order to keep the main part of the polytope closet to the control
goal, which in this case is v1, and then cut away this vertex. By this the cube is split into
two polytopes, a main polytope containing the original vertex set without the removed
one, and a fragment polytope which contains the removed vertex along with the vertices
in the newly formed facet. Closing the facet is now performed again using the new main
polytope, and in this case it is now seen, that it is possible to block the newly formed facet,
F5, as shown in Figure 12.2(b).

To generalize the ideas presented in the example the system at hand should first be
split up into a number of convex polytopes, the number of polytopes is dependent on how
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accurately the PAHS should resemble the underlying original system. Each polytope can
now be treated locally, ie. separately from the entire system, thus leading to a number of
small separately solvable problems. For each polytope the facets and normal vectors to
these are now established. The facets which are desired to have blocked are now found
on the basis of the overall control goal and with that the required input polytope can be
calculated according to Proposition 4. Now, as in the example, vertices, for which the
input polytope is empty, are identified as bad vertices and the polytope can subsequently
for each bad vertex be divided into two, one being the convex hull of the bad vertex and its
adjacent vertices, which in the following will be called the fragment of the polytope and
the main polytope which is the convex hull of the remaining vertices of the polytope. This
procedure is called trimming. When all bad vertices have been removed it is possible to
find a control law for the main polytope. Since it was not possible to find a control law to
the original objective for the fragments of the polytope an alternative control law is found,
which will bring the the system into a neighboring polytope, from which the system can
reach the goal. The following algorithm states the Combinatoric Controllabiltiy method
in a compact form.

Algorithm 5.

1. State space division into polytopes

2. Identify facets and normal vectors

3. Define facets to block

4. Form control space U for each vertex

5. Bad vertex identification and polytope trimming.

(a) Identify bad vertices, if none, break.
(b) Remove one bad vertex, results in fragment and new main structure.
(c) Form new common facet.
(d) Revise facets to block in both fragment and main structure.
(e) Go to (a).

6. Control law generation on main and fragment structures.

(a) Choose control signal from set of points in conv(U).
(b) Find control law u = Fx + g on each polytope.

7. Move to next polytope if exist go to (2), else all control laws are found, break.

The outcome of the above stated method when run on all polytopes are the control
laws for all structures in all polytopes. Left is to connect the polytopes through guard sets
and reset maps to comprise the full PAHS system.
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12.3.3 Delimitation of Control Objective

The system at hand is described as a 24-dimensional system, however, since it is desirable
to present a tangible example in this paper, it is desirable to reduce the number of states
considerably. This is easiest observed by the following general results: The number of
cubes needed to split a d-dimensional space in n sections on each axis gives a total of
nd cubes, which for the problem at hand with only one division at each axis would yield
224 ≈ 17 · 106 cubes. Thus it becomes obvious, that the number of states needs to be
reduced before proceeding with applying the methodology.

The system has integral states, and these can be removed without any concern of loss
of dynamic characteristics. This gives a system of 20 states, and further the rotor speed
controllers can be removed, which results in a dimension of 16. If all these states are
included the number of cubes, with the aforementioned division, is 216 = 65536. Albeit
this number is feasible for computation, it is still considered too large in this context,
hence the system will be divided into smaller parts.

The dependencies in the linear model of the X-Pro, can be viewed as the following:
Ωr 7→ 1ω1 7→ 0

1q 7→ 0v1 7→ 0P1. These dependencies can further be divided into
two, namely Ωr 7→ 1ω1 7→ 0

1q and 0v1 7→ 0P1. This division is only valid if there is
an overlying supervisor which chooses the correct attitude control and then updates the
position controller based on the attitude control, in order to keep the X-Pro within the
control objective. With this in mind, the system is now reduced to a 10 dimensional
system. Finally, the dynamics of the motor-gear-rotor system is considered being more
than a decade faster than the dynamics of the X-Pro body. Since 1ω1 uses the rotor speed
in its calculations, the rotor speed is chosen as input to the attitude model. With this, the
total system dimension is reduced to 6.

Axis Division

Following a reduction in the number of states the axis division is to be considered. The
target point, i.e. the origin quite naturally formes the first point of division. From the
initial requirements set for the helicopter its angular speeds should never exceed π rad

s ,
which quite naturally transforms into the boundaries of the ω1, ω2 and ω3 axes. One
additional division is made on these axes at half the velocity as well, i.e. π

2
rad
s . The

q1 and q2 axes, which in hover forms the two horizontal axes are likewise limited by
the requirements to have a maximum inclination of 15 degrees, which gives 0.24. As
to have a better performance near to the hover configuration an additional division at
0.03, corresponding to 1.5 degrees is introduced. Finally the q3 state, which is the yaw
orientation is divided into two pieces, likewise at 0.24, however, since the heading of
the helicopter is not very important in hover control further subdivision is not performed.
This leads to a total of 2048 6-cubes, which is a more practical number.
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12.3.4 Facets to Block

In order to guide the system towards the control goal certain facets of the polytopes are
blocked. From the initial example it should be clear, that due to system constraints, it is
not guaranteed that a given facet can be blocked.

The general idea of assigning which facets to be blocked or opened is shown in Fig-
ure 12.3(a), that is to guide the system toward the control goal by blocking facets facing
away from the control goal and keeping facets facing towards the goal open. A practical
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(a) The basic idea.

(1,1)

(1,2)

(1,3)

(1,4)

(4,1)

(4,2)

(4,3)

(4,4)(2,4)

(2,3)

(2,2)

(2,1)

(3,4)

(3,3)

(3,2)

(3,1)

q1~

q2~
×

×

× × ×

×
×

×× × ×

×
×

×

×
×

×
×

×
×

× ×

× ×

×
×

×
×

××

××

US

US

US

US

USUS

USUS

(b) Implementations wise.

Figure 12.3: (a)The main idea. The circles denote a set that the trajectory can not get
out of ones inside. US denotes the Unsafe Set. (b) The practical implementation, facets
whose normal vector is pointing away from equlibrium point are blocked. The crosses
denotes blocked and circles open facets.

example of this is shown in Figure 12.3(b), where open facets are denoted by circles and
blocked facets by crosses. Facets to be blocked are found by looking at the dot product of
the vector going from the control goal to the polytopes barycenter and the normal vector
to the facet. If this product is positive then the facet should be blocked.

12.3.5 Constructing the Control Space Polytope

Evaluating Proposition 4 for one vertex vj towards one facet will provide one half-space,
and evaluating all n facet that have vertex vj in it, with blocked and open facets respec-
tively, will provide n half-spaces in the control space. It is important to notice that the
initial control space polytope Uj is already a polytope, due to physical limitations in the
motors. In a simple 2-dimensional case the control polytope could be looking as depicted
in Figure 12.4. When forming the control space polytopes there is the possibility, that
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u1

u2

max

max

min
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control actuation
limitations

Figure 12.4: From the left: The initial bounded polytope U in the control space. Extra
constraints add more halfspaces to the description of U , which limits the volume of the
resulting polytope.

the resulting polytope becomes empty, thus no valid control input fulfills the requirement.
In this case the vertex needs to be considered separately, which will be discussed in the
following.

12.3.6 Bad Vertex Identification and Polytope Trimming

In Example 15 the idea of a bad vertex is introduced, which in short is a vertex that had
no possible control signals that fulfilled the control goal. Considering the Uj polytope,
then when conv{Uj} is empty there is also no control solution. There are two reasons
that can cause the conv{Uj} to be empty. One being if the constraints in relation to the
control problem, called Hc, then Hc1∩Hc2...∩HcN = ∅. In this case the vertex is stated
as a proper bad vertex since this problem is related to that facet that is wanted blocked.
The other possibility is when the constraints related to limitations of the actuators, called
Hs have the characteristics of Hs ∩ Hc = ∅ when Hc1 ∩ Hc2... ∩ HcN 6= ∅. Vertices
belonging to the last type is an indication of an unfeasible state space partition, and a
repartition might render it feasible.

Given that some of the vertices during the control space construction turned out to be
bad vertices, then a trimming of the polytope is needed in order to find a feasible control
law. However, the main structure should always span Rd. If not, then it means that
there is no feasible control law. Evaluating the U polytope for all vertices with respect
to feasibility will provide a set of bad vertex candidates. The chosen method of handling
one bad vertex at a time give rise to the a notion of vertex classification which will decide
which of the bad vertices should be handled first. This classification is done as following:

Algorithm 6.

1. Identify the vertex nearest the control goal and classify this as zero
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2. All class one vertices are found by following all edges from the class zero vertex
3. From all these class one vertices one can arrive a the set of class two vertices by

following uncovered edges.
4. The classification continues and is finished when the class set contains only one

vertex, this will be in class d, when the cube is in Rd.

Now, the trimming is performed for the bad vertex with the highest classification first,
thus working from the outside and in towards the control goal. Take as an example the
polytope given by the vertex set Vm in Figure 12.5. Assume that vertex v8 is the proper
bad vertex with the highest classification, then a trim should be performed. Thus the
new main structure is Vm = Vm \ {v8}, and the fragment polytope is given by Vf1 =
{v8, v7, v6, v4}. It is clear that by this procedure a new common facet between the main
structure and the fragment is formed. Since a new facet has been formed this also needs to

x

y

z

v2

v5

v3

v7

v1

v4
x

z

v2

v5

v3

v7

v4

v1

v6

x

z

v2

v5

v3

v7

v4

v1

v6

yy

v8

Figure 12.5: The resulting main structure after two vertices are trimmed.

have control requirements associated with it. Due to the classification method proposed
in Proposition 6 the main structure will always be the closest to the control goal, thus any
new facet formed seen from the main structure should be blocked, and the complementary
facet seen from the fragment is kept open. The remaining facets of the fragment keeps its
original properties from before the splitting. The only facets that need special attention
are the facets in the fragment that can not be blocked, the solution is to open what can not
be blocked, still making a control that is the best possible, and let further control be up to
neighboring polytopes. Recall the unsafe area, which was the area outside the allowable
state space. A fragmentation of a cube that lies up against an unsafe area will itself be
defined as a unsafe area if the facet to this area can not be blocked. In this manner the
unsafe area is automatically modified to a feasible solution, as is the case for the individual
polytopes. This procedure is stated more compact in Algorithm 7.

Algorithm 7.
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1. Feasibility study - find all bad vertex candidates. If no bad vertex is found the
polytope is fully trimmed , break.

2. Choose bad vertex with highest classification.
3. Trim main with respect to chosen bad vertex.

(a) Find supporting half-space that fulfils trimming properties.
(b) Add common facet to both main structure and fragment.
(c) Newly formed facet is wanted blocked seen from the main structure.
(d) Facets that can not be blocked in the fragment structure is opened.

4. Repeat the procedure, go to (1).

12.4 Example

To give a clear and comprehendable example a subpart of the system is considered. Hence
a three dimensional cube is considered in order to present a working control law, thereby
maintaining the Combinatoric Controllability method sequence.

The considered state space system is constituted by the three angular velocity states
(ωx, ωy, ωz). The system is barycentric linearized, i.e. in

(
3π
4 , 3π

4 , 3π
4

)
and has the fol-

lowing state space representation:

˙24ωx

ωy

ωz

35 =

24 0 −2.056 −2.056
2.056 0 2.056

0 0 0

35 24ωx

ωy

ωz

35+

240.015 0.013 0.015 −0.042
0.013 0.015 −0.042 0.015
0.004 −0.004 0.004 −0.004

35
264u1

u2
u3
u4

375+

24−4.844
4.844

0

35
(12.15)

The affine system is defined on the 3-cube shown in Figure 12.6, with the vertices and
normals as defined adjacent to it. The control objective is to drive the trajectory towards
the origin of the state space, hence the open facets are (F1,F2,F3) and the blocked facets
(F4,F5,F6). Due to space constraints only the calculation of the input polytope for v8 will
be shown in detail. As v8 is the only vertex contained in the blocked set the inequalities
are derived according to Proposition (4)(2). From a practical perspective it will prove
sufficient to calculate for Proposition (4)(2a) with the harder < instead of ≤. This as-
sessment is made from a performance point of view, with the tradeoff in the sense that
the trajectory is not allowed to evolve directly on the boundary of the facets (F4,F5,F6).
As the goal of the control is to direct the trajectory towards the facets this assessment is
considered acceptable. The input polytope looks like the following for v8:

∀i ∈ {4, 5, 6} : nT
i

240.015 0.013 0.015 −0.042
0.013 0.015 −0.042 0.015
0.004 −0.004 0.004 −0.004

35
2664

u8F

u8L

u8B

u8R

3775 <

− nT
i

0@24 0 −2.056 −2.056
2.056 0 2.056

0 0 0

35 24π
π
π

35 +

24−4.844
4.844

0

351A
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ω2

v8

Vertex Value Normal Value
v1 (π

2 , π
2 , π

2 )T n1 (0, 0,−1)T

v2 (π, π
2 , π

2 )T n2 (−1, 0, 0)T

v3 (π
2 , π, π

2 )T n3 (0,−1, 0)T

v4 (π, π, π
2 )T n4 (0, 0, 1)T

v5 (π
2 , π

2 , π)T n5 (0, 1, 0)T

v6 (π, π
2 , π)T n6 (1, 0, 0)T

v7 (π
2 , π, π)T

v8 (π, π, π)T

Figure 12.6: The polytope (3-cube) which the linear system is defined on along with the
vertices and normal vectors to the 3-cube. The facets enumeration of the polytope relate
directly to the subscript of the normal vectors.

With the equation stated above the U8 control polytope is defined. Within this poly-
tope, control signals for the four motors must be chosen. The smallest control signal set
still residing in U8 is [−435 435 435 0]. With the control signals for vertices v1, . . . , v7

calculated in the same way, the following can be found:

π
2

π
2

π
2 1

π π
2

π
2 1

π
2 π π

2 1
π π π

2 1
π
2

π
2 π 1

π π
2 π 1

π
2 π π 1
π π π 1




f1

f2

f3

g

 =



−277 277 277 0
−859 859 859 0
−1 0 0 0
−356 356 0 −356
−356 356 0 −356
−1 0 0 0

−1105 1105 0 −1105
−435 435 435 0


(12.16)

Taking the pseudo inverse of the vertex matrix provides the affine control law u = Fx+g:

u = Fω + g =


13.875 −64.230 −64.230
−13.875 64.230 64.230
161.907 −111.552 −111.552
175.782 −175.782 −175.782


ωx

ωy

ωz

 +


−153.825
153.575
340.637
187.062

 , (12.17)

which in the following will be verified by simulation on the 3-cube.

12.4.1 Simulation of control law on 3-cube

The results of the simulation of the closed loop system stated in 12.18.

ẋ = (A + BF )x + (Bg + a) (12.18)

153



Section 12.5: Discussion

are shown in Figure 12.7, which is constituted by three two dimensional subplots cor-
responding to the ωxωy , ωxωz and ωyωz axes. The system is started in the vertices
v4,v6,v7,v8 and the trajectories are shown. For all the plots applies that the trajectories
must leave either the left or bottom facet corresponding to the facets in the open set F1,
F2 and F3.

As can be seen from the graphs all trajectories are driven correctly towards the facets
except two, which are contained in subfigures 12.7(a) and 12.7(c). The trajectories that
arise from points (π

2 , π) and (π, π) in Figure 12.7(a) and 12.7(c) respectively, slightly exits
the cube before they enter again converging towards the correct facets. It turns out that
these points constitute v7 and that the control law fails to block facet F5.
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(a) ωx and ωy axes.
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Figure 12.7: Verification of the control law applied to 3-cube system.

12.5 Discussion

The objective of this paper was to show how the theories presented in [Habets and van
Schuppen, 2004] and [Habets et al., 2006] apply to a practical setup. The system at
hand is a highly non-linear helicopter, which needs to be represented by several piecewise
linear approximations to resemble its original dynamics. A task which is most intuitively
done by regarding the linearized systems as being defined on n-cubes aligned with the
state-space axes. This method however poses a number of challenges for which sufficient
algorithms for solving has been presented. This includes algorithms useful for splitting
the polytope in question into smaller polytopes in order to find a subpolytope for which
the desirable control is possible along with methods for doing the division into smaller
polytopes in a feasible way. Most noticeable of these is the concept of the Combinatoric
Controllability method, which manipulates the original cube into a polytope for which the
desired control is possible.
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Chapter 13

Simplicial moves

Since the number of cells in a given complex easily becomes rather high, this last
chapter will seek to introduce a few techniques capable of handling this issue.

13.1 Introduction

As it has become apparent through the preceeding chapters, then one can easily end
up with many neighbouring simplices expressing approximately similar behaviour. This
chapter will seek to give a breaf introduction into techniques capable of simplifying the
simplicial complex by reducing the number of cells in it through merging similar cells to
one another.

13.2 Simplicial Moves

Simplicial moves have been discussed extensively in the litterature [Lickorish, 1999b;
Ludwig and Reitzner, 2006; Mijatović, 2003], and the references therein. There are only
a finite number of moves available, however, rather strong results have been shown using
them.

What has been considered so far is systems defined on polyhedral sets. In chapter
7 and 8 a division of the state space into a simplicial complex was considered, and in
chapter 9 a division into a polyhedral complex was considered, in which each polyhedron
can be regarded as a finite number of simplices with similar dynamic merged together. It
is this merging, which simplicial moves tries to formalize.

Definition 39 (Bistellar move [Lickorish, 1999b]). Suppose that A is an r-simplex in an
abstract simplicial complex K and that lk(A,K) = δB for some (n−r)-simplex B 6∈ K.
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Section 13.3: Simplicial Moves for Control Combinatorial Vector Fields

The bistellar move κ(A,B) consists of changing K by removing A ? δB and inserting
δA ? B.

With A ? B meaning the join of A and B.
For n = 2, there are three types of bistellar moves, which are depicted in Fig. 13.1.

Intuitively they can be thought of as splitting a simplex into n + 1 simplices, changing a
common facet between two simplices and merging n + 1 simplices into one, from left to
right respectively.

Figure 13.1: The three possible moves in two dimensions.

Having this it is clear that it is possible to manipulate a given simplicial complex to
some extend. And it was shown by J. Alexander and M. H. A. Newman, that if you have
two triangulations, A and B of an n-polyhedron, then it is possible to transform A to B
using a finite amount of bistellar moves. To indicate this relation A ∼ B means, that A is
equivalent to B by bistellar moves.

However, this theorem only holds true for the geomety. For control combinatorial
vector fields the system dynamics also needs to be taken into account.

13.3 Simplicial Moves for Control Combinatorial Vector
Fields

Recalling, that a control combinatorial vector field is caracterized by the ability to either
block the system from exiting through certain facets of the simplices, or guaranteeing,
that the system leaves the simplex in finite time by guaranteeing that there are no fixed
points in its interior or to block all facets, which equals guaranteeing a stable fixed point
in its interior, see section 5.2.2.

In order for a simplicial move to be valid for a CCVF it is required, that:

Definition 40. Let σ1 and σ2 be two subcomplexes. Then σ1 ≈ σ2 iff.
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Chapter 13: Simplicial moves

1. σ1 ∼ σ2

2. Φ ◦ . . . ◦ Φ︸ ︷︷ ︸
i

∂σ1 = Φ ◦ . . . ◦ Φ︸ ︷︷ ︸
j

∂σ2, i, j ∈ N+ and where ”=” is to be evaluated

facetwise.

This is a quite restrictive definition, however, if fulfilled, then it also means, that σ1

and σ2 are truly equivalent.

13.4 Conclusion

This final chapter has shown how it is possible to define eqivalences between different
partitions of the state space. Although the definition might seem restrictive, then it is
necessesary to guarantee a true equivalence between the different partitions of the systems
dynamics.
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