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Abstract— This paper considers the solution of
large-scale Lyapunov matrix equations of the form
AX+XAT = −bbT . The Arnoldi method is a simple
but sometimes ineffective approach to deal with such
equations. One of its major drawbacks is excessive
memory consumption caused by slow convergence.
To overcome this disadvantage, we propose two-pass
Krylov subspace methods, which only compute the
solution of the compressed equation in the first pass.
The second pass computes the product of the Krylov
subspace basis with a low-rank approximation of
this solution. For symmetric A, we employ the
Lanczos method; for nonsymmetric A, we extend
a recently developed restarted Arnoldi method for
the approximation of matrix functions. Preliminary
numerical experiments reveal that the resulting al-
gorithms require significantly less memory at the
expense of extra matrix-vector products.

I. INTRODUCTION

In this paper, we investigate numerical methods
for approximating the solution X ∈ R

n×n to a
Lyapunov equation of the form

AX + XAT = −bbT , (1)

where A ∈ R
n×n is supposed to be stable (i.e.,

its eigenvalues lie in the open left half plane) and
b ∈ R

n. The solution X exists, is unique and
symmetric positive semidefinite.

A variety of applications in systems and control
theory lead to such equations. For example, the
computationally most expensive step in balanced
truncation model reduction [2] consists of solving
two Lyapunov equations. Also, the Newton method
for solving continuous-time algebraic Riccati equa-
tions [21], arising in optimal and robust control,
requires the solution of a sequence of Lyapunov
equations. In many applications, it is more natural
and general to consider a right-hand side in (1) that
has rank larger than 1. However, to avoid technical
complications, we restrict ourselves to rank 1. In
principle, this poses no limitation as any Lyapunov
equation with right-hand side of rank k can be
written as the sum of k independent equations of
the form (1).
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There exists a variety of numerical methods to
address (1), roughly classified as dense and sparse
methods in the following.

Dense methods. The most naive approach is
to write (1) as a linear system of n2 equations
and apply Gaussian elimination with partial piv-
oting. The requires O(n6) floating point opera-
tions (flops) and O(n4) memory; too expensive
for any application of practical relevance. Direct
solvers, based on the Schur decomposition of A,
bring these costs down to O(n3) flops and O(n2)
memory. The Bartels-Stewart method [3], [20] is
such a direct method. However, for a Lyapunov
equation of the form (1) a variant called Ham-
marling’s method [15], [24] is more suitable, as
it takes the low rank structure of the right-hand
side into account and directly produces a Cholesky
factorization of X . As n increases, these methods
exceed the capacities of a serial computing envi-
ronment. Unfortunately, the parallelization of the
Bartels-Stewart method [12], [13] is far from being
straightforward, particularly because of the need
for parallelizing the initial Schur decomposition.
The matrix sign function iteration [4] offers a
conceptually simpler alternative by requiring only
matrix multiplication and inversion.

Sparse methods. As n increases further, say
O(105) and larger, dense methods become unsuit-
able. Iterative methods, taking sparsity or other
structure in A into account, must be used. Sev-
eral of these methods are based on projection.
Given a search space, the Lyapunov equation is
projected onto this space, yielding a much smaller
compressed equation which can be solved by any
of the dense methods. An approximation to X is
obtained by projecting the solution of the com-
pressed equation back to the original space R

n.
These methods mainly differ in the way the search
space is built. The alternating-direction implicit
(ADI) [14], [26], [29], [37] are based on repeated
matrix-vector multiplications with (A−σjI)−1 for
a suitably chosen set of shifts σ1, . . . , σm. This
usually yields quick convergence, particularly for
symmetric A, but also requires that the solution of
the corresponding linear systems can be performed



exactly, e.g., by sparse direct methods [6]. On the
other hand, Krylov subspace methods [17], [18],
[19], [32] converge significantly slower but only
require the multiplication with A and henceforth
no solution of linear systems.

The purpose of this paper is to remedy some of
the disadvantages caused by the slow convergence
of Krylov subspace methods. In particular, slow
convergences yields large search space dimensions,
which in turn leads to excessive memory require-
ments for storing a basis of the search space. The
solution proposed in this paper is to store only
a fraction of this basis during the generation of
the search space. In a second pass of the Krylov
subspace method the basis is multiplied on-the-
fly with a low-rank approximation to the solution
of the compressed equation. This concept can be
realized in a rather direct way for symmetric A;
the Lanczos process produces the basis by storing
only 2 vectors at a time [11]. For nonsymmetric
matrices, choosing a suitable low-memory Krylov
subspace method is much less trivial. For example,
there is no experience with using a nonsymmetric
Lanczos method in this context. Instead, we will
extend a restarted method for matrix functions de-
veloped in [9], requiring the storage of only a fixed
number of vectors at a time, largely independent
of the rate of convergence.

The rest of this paper is organized as follows.
In Section II, properties of the basic Arnoldi algo-
rithm for solving Lyapunov equations are recalled.
A two-pass Lanczos method for symmetric A is
proposed and analyzed in Section III, while a two-
pass restarted Arnoldi method for nonsymmetric A
is sketched in Section IV.

II. THE BASIC ARNOLDI METHOD

The Arnoldi method for solving (1) was in-
troduced by Saad [32] and extended to right-
hand sides of larger rank by Jaimoukha and Kase-
nally [18]. To describe its basic idea, let the
columns of Uk ∈ R

n×l span an orthonormal basis
for the Krylov subspace

Kk(A, b) = span(b, Ab, A2b, . . . , Ak−1b).

Consider the compressed Lyapunov equation

HkY + Y HT
k = −(UT

k b)(UT
k b)T (2)

and assume the matrix Hk = UT
k AUk, sometimes

called the compression of A, to be stable. Note
that the stability of A is not enough to guarantee
this to be true. A well-known sufficient (but not
necessary) condition for the stability of Hk is the
negative definiteness of (AT +A)/2, the symmetric

part of A. An approximate solution to (1) is then
obtained by setting

Xk = UkY UT
k . (3)

As (hopefully) k � n, the standard dense methods
listed above can be applied to solve (2). Specifi-
cally, if Hammarling’s method is used, we directly
obtain the Cholesky factorization Y = LLT and
only the n × l matrix UkL needs to be stored to
represent Xk.

In [17], [18], other ways of obtaining an ap-
proximate solution to (1) from a Krylov subspace
have been considered, meeting, e.g., a minimum
residual criterion. However, as observed in [32],
the Galerkin formulation (3) has the advantage of
admitting the integral representation

Xk =

∞∫

0

eAktbbT eAT
k t dt, (4)

with Ak = UkHkUT
k = (UkUT

k )A(UkUT
k ). Since

eAktB happens to be the standard Krylov subspace
approximation to eAtB, we can facilitate existing
theoretical results on matrix exponential approxi-
mation. For example, error bounds on the matrix
exponential [8], [10], [16], [22], [34] can be turned
into bounds on ‖X −Xk‖2. Alternatively, in [33]
a direct approach for estimating the convergence
is proposed.

The convergence of Xk towards X is often
painfully slow, especially if A has eigenvalues very
close to the imaginary axis. Unfortunately, this is
typically the case, e.g., if A is the discretization
of a compact self-adjoint operator on a Hilbert
space. The following examples illustrates the con-
vergence.

Example 1: Let A be the standard central finite
difference discretization of the 2D Laplace oper-
ator on the unit square with n = 30 × 30 =
900 and choose b ∈ R

900 randomly. Then A
is symmetric negative definite with λmin(A) ≈
−7670 and λmax(A) ≈ −19. Figure 1 displays
the convergence of the Arnoldi method.

In particular, Figure 1 reveals that the observed
convergence of Krylov subspace methods is much
too slow to capture the rapid decay of the singular
values of X [1], [30]. This implies that k, the rank
of the obtained approximation Xk, is much larger
than needed for actually approximating X . In other
words, the memory requirements of the Arnoldi
method are unnecessarily high.

A. Implementation details

Before attempting to reduce the memory re-
quirements of the Arnoldi method, it is important
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Fig. 1. Error ‖X − Xk‖2 in kth step of Arnoldi method vs.
kth singular value of X

Algorithm 1 Arnoldi method for solving Lya-
punov equations

Input: A ∈ R
n×n, b ∈ R

n, an integer k.
Output: Matrix Vk ∈ R

n×k such that Xk = VkV T
k

approximates the solution of (1).

u1 ← b/‖b‖2, U1 ← u1, Ĥ0 ← [ ]
for j ← 1, 2, . . . , k do

w← Auj

hj ← UT
j w, w← w − Ujhj (O)

hj+1,j ← ‖w‖2, uj+1 ← w/hj+1,j (N)

Ĥj ←
h

Ĥj−1

0

hj

hj+1,j

i

Uj+1 ← [Uj , uj+1]
end for
Partition Ĥk =

h
Hk

hk+1,keT
k

i
.

Apply Hammarling’s method to compute L such that
Y = LLT solves the compressed Lyapunov equation
HkY + Y HT

k = −‖b‖22e1e
T
1 .

Set Vk = UkL.

to explain some of its implementation details. Al-
gorithm 1 contains the pseudocode for computing
the matrix Xk defined in (3). Some remarks are in
order:

1) In exact arithmetic, the columns of the ma-
trix Uk form an orthogonal basis. To main-
tain orthogonality in finite-precision arith-
metic, it is necessary to reorthogonalize a
newly produced column uj+1 against all
previously produced vectors u1, . . . , uj . In
practice, this can be performed by repeating
step (O) in Algorithm 1 once, see [35, Sec.
5.1] for more details.

2) Note that the matrix Hk is in upper Hes-
senberg form. This can be exploited in the
first step of Hammarling’s method, when
reducing Hk to Schur form.

3) The quality of the obtained approximation

Xk can be estimated using the residual

Rk = AXk + XkAT + bbT . (5)

In [18], it was shown that the Arnoldi de-
composition AUk = UkHk +hk+1,kuk+1e

T
k

implies

‖Rk‖2 = hk+1,k‖eT
k Y ‖2,

‖Rk‖F =
√

2hk+1,k‖eT
k Y ‖2.

(6)

Thus the norm of the residual can be com-
puted at almost no extra cost.

4) If some hj+1,j happens to be zero then
step (N) in Algorithm 1 becomes ill-defined.
This turns out to be a rare and fortunate
event, since AUj = UjHj holds in this case
and hence the corresponding Xj solves (1)
exactly.

III. SYMMETRIC A

For a symmetric matrix A, the Arnoldi process
for producing an orthogonal basis of the Krylov
subspace Kk(A, b) simplifies considerably. In par-
ticular, the Hessenberg matrix Hk = UT

k AUk is
symmetric and hence a tridiagonal matrix

Hk =




α1 β2

β2 α2
. . .

. . .
. . . βk

βk αk




. (7)

This shows that in step (O) of Algorithm 1 the
vector w needs to be orthogonalized only against
uj−1 and uj , at least in exact arithmetic. The
Arnoldi method performed with such a short re-
currence is usually called Lanczos method. This
method provides the potential to discard older
vectors during the computation of Uk. However,
in order to benefit from this potential, two issues
need to be addressed.

First, Uk is needed to define Vk in the last step
of Algorithm 1. Even worse, Vk is also n × k
and thus requires the same amount of storage as
Uk. Second, in finite-precision arithmetic w cannot
assumed to be already orthogonal to u1, . . . , uj−2.
Moreover, the reorthogonalization explained in
Remark 1) above cannot be performed if older
vectors of Uk are discarded. It is not clear how
the corresponding loss of orthogonality affects the
performance of Algorithm 1. In the following, we
fix the first issue algorithmically and the second
issue by Paige’s analysis of the Lanczos process.



A. A two-pass Lanczos method

The concept of two-pass Lanczos methods for
eigenvector computation [5] can be extended to the
Lyapunov equation as follows.

In the first pass, the compressed Lyapunov equa-
tion is determined. Since the compressed equation
also has a right-hand side of rank 1 it can be
expected that the singular values of its solution
Y decay rapidly, just as the singular values of X .
To benefit from this effect, we compute a singular
value decomposition (SVD) of the Cholesky factor
L ∈ R

k×k:

L =
[

Q1 Q2

] [
Σ1 0
0 Σ2

] [
Z1 Z2

]T
,

where Σ1 ∈ R
l×l and ‖Σ2‖2 ≤ ε for some small

user-specified tolerance ε. This allows us to replace
L by

L̃ = Q1Σ1Z
T
1 ∈ R

k×l (8)

without sacrificing the accuracy of Vk = UkL:

‖VkV T
k − UkL̃L̃T UT

k ‖2 = ‖LLT − L̃L̃T ‖2

= ‖Q2Σ
2
2Q

T
2 ‖2 ≤ ε2.

If we have l � k, it requires significantly less
memory to store Ṽk = UkL̃ ∈ R

n×l in place of
Vk ∈ R

n×k.
In the second pass, the matrix-matrix product

UkL̃ is computed on-the-fly, during the recompu-
tation of the columns of Uk.

Algorithm 2 provides the pseudo-code of the
proposed two-pass Lanczos method. Again, some
comments on its implementation are in order:

1) In the first pass, only the three vectors
uj , uj+1, w as well as all coefficients of Hk

need to be stored during the process. In the
second pass, the coefficients of Hk can be
dismissed after each loop.

2) The tridiagonal structure of the matrix Hk

can be exploited to speed up the solution of
the compressed solution. By a careful inspec-
tion of Hammarling’s method for this case it
is possible to reduce the cost from O(k3)
to almost O(k2). However, it turns out that
the ADI method is even more effective and
requires only O(k log k) flops, see [25] for
more details.

Example 2: The Spiral Inductor PEEC Model
from the Oberwolfach model reduction benchmark
collection [23] gives rise to a Lyapunov equa-
tion (1) with symmetric A and n = 1434. Algo-
rithm 2 with ε = 10−8 was applied. No difference
in the convergence of the Arnoldi method with full

Algorithm 2 Two-pass Lanczos method for solv-
ing Lyapunov equations

Input: A ∈ R
n×n symmetric negative definite,

b ∈ R
n, an integer k, and a tolerance ε.

Output: Matrix eVk ∈ R
n×l such that eXk = eVk

eV T
k

approximates the solution of (1).
for pass← 1, 2 do

u1 ← b/‖b‖2
w ← Au1

for j ← 1, 2, . . . , k do
αj ← uT

j w, w ← w − αjuj

γj+1 ← ‖w‖2, uj+1 ← w/γj+1

if pass = 2 then
eVk ← eVk + uje

T
j

eL
end if
w ← Auj+1

w ← w − γj+1uj

end for
if pass = 1 then

Compute L such that Y = LLT solves the
compressed Lyapunov equation HkY +Y Hk =
−‖b‖22e1e

T
1 . with Hk as in (7).

Compute low-rank approximation L̃ ∈ R
l×l̃

using (8) such that ‖LLT − eLeLT ‖2 ≤ ε2.
Initialize V ← 0.

end if
end for

reorthogonalization and the Lanczos method with
no reorthogonalization was observed. However,
Figure 2 reveals a significant difference in the
memory consumption. While the number of vectors
stored by the two-pass Lanczos method saturates at
a value of 23, the memory required by the Arnoldi
method grows linearly with n.

0 50 100 150 200
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Fig. 2. Memory requirements of two-pass Lanczos method
(solid line) vs. Arnoldi method (dashed line) for Example 2.

B. Loss of orthogonality

As an eigenvalue of Hk converges towards an
eigenvalue of A during the Lanczos process, it
is well known that the Krylov subspace basis Uk



quickly loses its orthogonality in finite-precision
arithmetic [28]. However, it has been observed
and analyzed in [7], [36] that eigenvalue-based
bounds for the Krylov subspace approximation of
matrix functions are not affected by this loss of
orthogonality. From the integral representation (4)
we can expect that a similar result for the solution
of Lyapunov equations. In fact, such a result is
proved in [25] using Paige’s theory [27] on the
finite-precision properties of the Lanczos process;
eigenvalue-based convergence bounds on ‖X −
Xk‖2 are only slightly affected by the loss of
orthogonality. Also, the expressions (6) remain
valid upper bounds on the norm of the residual.

The Strakoš matrix demonstrates that the invari-
ance of the convergence bounds does not imply
that the actually observed convergence rate is not
affected. Let

A = Qdiag

(
0.1 +

i − 1

199
· 99.9 · 0.8200−i

)200

i=1

QT ,

(9)
where Q is a random orthogonal matrix, and let
b be a random vector. Figure 3 reveals that loss
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Fig. 3. Convergence of ‖X −Xk‖2 for the Lanczos method
without reorthogonalization (solid line) and the Arnoldi method
with full reorthogonalization (dashed line) applied to (9).

of orthogonality indeed spoils convergence. Nev-
ertheless, (linear) convergence itself is maintained;
only the observed superlinear convergence of the
Arnoldi method is destroyed.

IV. NONSYMMETRIC A

For a nonsymmetric matrix A, Eiermann and
Ernst [9] proposed restarted Arnoldi methods to
approximate f(A)B for certain functions f , in-
cluding the exponential function. The basic idea
is to restart the Arnoldi method every k iterations
with the last column of the Krylov subspace basis.

After pk iterations, this leads to a Krylov decom-
position

A[U (1), . . . , U (p)] = AHkp + u
(p)
k+1hpk+1,pkeT

pk,

where each of U (1), . . . , U (p) ∈ R
n×k contains an

orthogonal basis. However, the matrices are U (j)

not mutually orthogonal. Note that Hkp is upper
Hessenberg and at the same block lower triangular,
see also 4. This structure can be exploited to solve

Fig. 4. Structure of Hkp, the compression of A for the
restarted Arnoldi method.

the compressed Lyapunov equation

HkpY + Y HT
kp = −‖b‖2

2e1e
T
1 ,

using only O(pk3) (instead of O(p3k3)) flops by
combining block substitution with Hammarling’s
method.

The implementation of the restarted Arnoldi
method requires the storage of at most k vec-
tors. To achieve reduced storage for Lyapunov
equations, a two-pass approach analogous to Al-
gorithm 2 can be used. A critical aspect of the
restarted Arnoldi method is the choice of k. If k is
chosen too small, convergence is severely affected.

Example 3: The following mildly nonsymmetric
example is taken from LYAPACK [31]. Let A be
the standard finite difference discretization (n =
10000) of

4u(x, y) − 10x
∂u(x, y)

∂x
− 20y

∂u(x, y)

∂y

on Ω = [0, 1] × [0, 1], and let b be the vector of
all ones. The following table contains the required
number of Arnoldi iterations to attain a residual
of norm ≤ 10−5, compared to the restart length
k:

k kp
∞ 300

100 400
50 450
20 540
10 > 1000



V. CONCLUSIONS

Modifications that reduce the memory require-
ments of Krylov subspace methods for solving
matrix equations have been investigated. While the
use of the Lanczos method for the symmetric case
is already well understood (a more detailed analy-
sis will appear in a forthcoming publication [25]),
we have only sketched a possible approach for the
nonsymmetric case.
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[13] R. Granat and B. Kågström. Parallel solvers for Sylvester-
type matrix equations with applications in condition es-
timation. part II: The SCASY software library, 2007.
Preprint.

[14] S. Gugercin, D. C. Sorensen, and A. C. Antoulas. A mod-
ified low-rank Smith method for large-scale Lyapunov
equations. Numer. Algorithms, 32(1):27–55, 2003.

[15] S. Hammarling. Numerical solution of the stable, nonneg-
ative definite Lyapunov equation. IMA J. Numer. Anal.,
2(3):303–323, 1982.

[16] M. Hochbruck and C. Lubich. On Krylov subspace
approximations to the matrix exponential operator. SIAM
J. Numer. Anal., 34(5):1911–1925, 1997.

[17] D. Y. Hu and L. Reichel. Krylov-subspace methods for
the Sylvester equation. Linear Algebra Appl., 172:283–
313, 1992.

[18] I. M. Jaimoukha and E. M. Kasenally. Krylov subspace
methods for solving large Lyapunov equations. SIAM J.
Numer. Anal., 31:227–251, 1994.

[19] K. Jbilou and A. J. Riquet. Projection methods for
large Lyapunov matrix equations. Linear Algebra Appl.,
415:344–358, 2006.
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