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Abstract— This paper describes a genetic algorithm (GA) 
applied to combinational optimization problems in which the 
objective functions include uncertain constant parameters. In 
the present method, noises whose probabilistic distribution is 
assumed based on the problem environments are added to the 
parameters during the evaluations process. It is assumed that 
this allows us to make approximate evaluation of the expected 
values of the objective function under uncertainties. It is shown 
that the present method results in the robust solutions, which 
have higher expectation values than the ones obtained by the 
conventional GA, to the traveling salesman and knapsack 
problems with uncertainties. 

I. INTRODUCTION 
N the evolutional optimizations, which have been shown to 
be very effective for wide range of linear and non-linear 

optimization problems, uncertainties have to be often taken 
into consideration. In the design of industrial products, for 
example, it is important to evaluate degree of uncertainties in 
their performance, which result from time dependent 
changes in material properties, production errors, variations 
in material characteristics and so on. Moreover, there are 
various uncertainties, to which attentions are paid in 
optimization problems, for instance, relevant to noises 
introduced in measurement systems [1] and human-health 
risks [2]. 
 According to [3], uncertainties are treated in the following 
ways in the evolutionary optimizations; (a) perturbations are 
added to the fitness values to consider noises in sensory 
measurements and system randomness, (b) perturbations are 
introduced in optimization variables to search for robust 
solutions which are insensitive to parameter changes, (c) 
uncertain terms are introduced in the objective function to 
consider unexpected errors due to approximation of objective 
functions for reduction of computational costs and (d) the 
objective function itself is changed to consider 
time-dependent, dynamical systems. This paper focuses on 
the robust optimization under uncertain environments, 
corresponding to the class (b). 

To obtain robust optimal solutions which are insensitive to 
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environmental changes, sensitivity of individuals has been 
evaluated using the Monte Carlo method [4-6], whose 
computational accuracy and efficiency have been improved 
using the Latin hypercube sampling [7]. It would be, however, 
ineffective to apply these explicit averaging approaches to 
optimization problems in which fitness evaluation carried out, 
for example, by computational mechanics and 
electromagnetism is expensive. Even if fitness evaluation is 
not very expensive, the total computational cost becomes 
inacceptable when the number of function evaluation is large, 
as experienced in high dimensional optimization problems. 
To overcome this difficulty, implicit averaging method for 
robust optimization has been introduced, in which 
perturbation noises are added to optimization variables to 
obtain their expected values assuming the population size is 
sufficiently large [8]. This method has been applied to 
optimization problems in which the fitness is evaluated with 
the aid of computational electromagnetism with 
improvement in elite selection [9]. 

In this paper, we will discuss the implicit sampling 
approach for combinational optimization problem containing 
probabilistic constants. An example of this problem can be 
found in investment activities; portfolio managements are 
performed to maximize the expected return and minimize the 
return risk. In this example, the prices of assets and amounts 
of purchase correspond to the probabilistic constants and 
optimization variables. Other examples can also be found 
optimization of transportation paths where transport costs 
depend on the traffic conditions, and scheduling problem in 
production systems in which probabilistic failures in 
producing machines are considered. In these problems, the 
expected values of the objective functions should be 
considered in contrast to usual optimizations. Those expected 
values would easily be evaluated in the evolutional 
optimization processes when the objective functions are 
linear and the probabilistic variables are independent. If it is 
not the case, however, it would be too expensive to evaluate 
them in optimization processes because the multiple 
integrations must be performed numerically.  
 In this paper, to treat the combinational optimization 
problems with uncertainty, an evolutional method based on 
the genetic algorithm (GA) will be introduced. In this method, 
noises are introduced to constants included in the objective 
function to express their stochastic nature. The present 
method differs from the robust optimizations [8, 9] in which 

 
A Genetic Algorithm for  

Combinational Optimization Problems with Uncertainties 
Kenta Hoshino and Hajime Igarashi, Member, IEEE 

I



  

noises are introduced not in the constants but in optimization 
variables, as will be mentioned in the next section. Although 
the probabilistic variables will be assumed to be independent 
in this paper, problems with dependent variables can also be 
treated with ease. 
 This paper will be organized as follows: the next section 
will describe the basic principle of GA for uncertain systems 
and formulation and algorithm of the present method, and the 
third section will provide numerical results for simple 
mathematical examples, traveling salesman and knapsack 
problems which contain uncertainties. 

II. FORMULATION AND ALGORITHM 

A. Genetic Algorithm for Uncertain Systems 
Before introduction of the present method, we begin with 

the conventional GA for uncertain systems because they are 
based on a common assumption; the expected value F~  of an 
objective function f including probabilistic variables over the 
population at a generation can approximately be computed 
from  

,1~ ∑=
n

i
ifn

F                                  (1) 

in the GA processes, where n denotes the number of total 
number of fitness evaluations at that generation. Namely, it is 
assumed that F~  can be obtained, like the Monte Carlo 
simulations, by stochastically changing the probabilistic 
variables, which obey the prescribed distribution function, in 
the fitness evaluation of each individual. In contrast to the 
standard GA whose fitness is determined from the value of f, 
this kind of GA searches for the optimal solution on the basis 
of F~ . 
 As an example of the GA for uncertain systems, let us 
consider here the robust GA [8, 9] which searches for the 
optimal or quasi-optimal solution whose performance is 
insensitive to stochastic changes in the design parameters. In 
this method, the probabilistic variables correspond to the 
design parameter x which is expressed in the form of genes in 
the GA optimization. The expected value F~ of f over the 
population belonging to a generation is obtained from 
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where δ  is stochastic perturbation to x, p and q are the 
probabilistic distribution functions of x and δ , defined as 
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and F(x) denotes the expected value of f(x). In the GA process, 
the individuals evolves to maximize (minimize) F~ . Figure 1 
shows the profiles of a one-dimensional objective function f 
and corresponding F. It can be seen that f with a broader peak 
has the higher peak in F in comparison with f with a narrow 
peak. This suggests that the robust GA tends to converge to a 
broad peak whose height is relatively insensitive to 
perturbations in x. 

B. Present method 
The present method searches for the optimal solution to 
combinational problems with the objective function which 
contains probabilistic constants. In this paper, we especially 
focus on an objective function of the form 
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where xi and ci , mi ,...,2,1= , are the optimization variables, 
and coefficients which are assumed to be dependent 
probabilistic variables obeying given probabilistic 
distributions. The expected value of f(x) is now given by 
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If f is a linear function, then (5) reduces to 
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Fig. 1 Example of profiles of f and F



  

 
which can easily evaluated for each x, otherwise its 
evaluation based on the numerical integration in 
m-dimensional space would be computationally expensive for 
GA and other optimization methods. In the present method, 
(5) is evaluated based on (1) where noises are introduced to cj 
in the GA processes. Hence, the individuals are expected to 
converge to one of the peaks of F(x). 
 In the present method, the elite selection method presented 
in [9] is employed to avoid accidental convergence to a 
solution with non-best value of F. 
 
(i) At the first generation, t=0, the best individual is found 
with respect to the value ),( δcx +f  and reserve it as an elite 

ex . 
(ii) At generation t+1, the candidate xt+1 for new elite is found 
with respect to ),( δcx +f . 
(iii) Compare ),( δcx +ef  with ),( 1 cx +tf . If ),( 1 cx +tf  
is better than ),( δcx +ef , then ex  is replaced by 1+tx . 
(iv) Go to the next generation and return to (ii). 

III. OPTIMIZATION RESULTS 

A. A Simple Example 
To test the accuracy of the present method, the 
one-dimensional mathematical function 

( ) ( ) ( ) ( )xfcxcfcxf 21 1, −+=                        (7) 

is considered, where c obeys the normal distribution 

)04.0,6.0(),( 2 =σµN . The functions f1, f2 are the Gauss 
functions given by 
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where 0.21 =x , 8.02 =x , 3.021 =σ=σ . The expected 

value F of f can be evaluated to be 

( ) ( ) ( ).4.06.0 21 xfxfxF +=                        (9) 

The profile of F(x) is shown in Fig.2. For comparison, the 
present method and simple GA (SGA) are applied to (7) and 
(9), respectively. The GA parameters are summarized as 
follows: number of individuals in population Npop=100, 
number of generations Ng=200, crossover probability 
Pc=0.15, mutation probability Pm=0.05, generation gap g=0.8. 
The trial numbers for each of the present method and SGA 
are 100. 

The results are summarized in TABLE I, from which it can 
be seen that the mean values of the objective functions are 
almost same. Hence we can conclude that the present method 
gives sufficiently accurate solutions to this simple problem. 
Figure 3 shows the time evolution in the fitness of the elite 
solutions during the present method and SGA. In the former 
case, there are fluctuations in the elite fitness, which are due 
to the introduced noises. 

 
 

Fig.2 Profile of F defined in (9). 
 

TABLE I Optimal solutions to one-dimensional problem 
methods Fopt 2

Fσ  
SGA 2.000 1.156×10-11 

present 1.999 5.011×10-5 
Fopt denotes the optimized value of (9) for SGA and posterior 
expected value of (7) obtained by Monte Carlo method for the 
present method, respectively, averaged over 100 trials, and Fσ  is 
the standard deviation of F. 

 

B. Traveling Salesman Problem with Uncertainty 
Let us consider the traveling salesman problem in which 

∑==
m

j
jj xcT

T
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is maximized, where cj denotes the cost attributed to path j 
which connects two different cities, and xj is the optimization 
variable which takes one of the two states (1, 0) 
corresponding to connection and disconnection, respectively. 
As usual, all the cities must be visited only once. The cost cj is 
assumed to be a probabilistic variable to which noise 

(b) narrow peak 
Fig. 1 continued 
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|| jc∆ξ  is added, where the value of ),0( 2
jj cNc =∆  is 

determined at the beginning of the present optimization, and 
ξ  is a random variable taking 1 or 0 which changes during 
the optimization. In real situations, this probability in cj 
would be attributed to traffic conditions changing in a 
probabilistic way. In the traveling salesman problem solved 
by SGA, one searches for the optimal solution x which 
maximizes f in (10) without considering the uncertainty in cj. 
When cj changes probabilistically, there possibly exists 
another individual x′  whose expected value of )(x′f  is 
possibly larger than that of f(x). The aim of the present 
method applied to this problem is to find such a solution. 
 Figure 4 shows the distribution of ten cities between 
which45 possible connections present. The GA parameters 
are as follows: Npop=200, Ng=100, Pc=0.15, Pm=0.05, g=0.7. 

The number of trials for each of the present method and 
SGA is 100. TABLE II summarizes the resultant values of f,  

 
 
TABLE II Results for raveling salesman problem with (10) 

methods fopt ×10-1 Fopt ×10-1 
SGA 1.528 1.316 

present 1.506 1.308 
The symbols fopt and Fopt represent the optimized value of f defined 
by (10) and its posterior expected value. 

 

 
 

defined by (10) and its expected value of F computed by the 
Monte Carlo method after the optimization. It can be seen 
from TABLE II that both values of f and F obtained by the 
present method are smaller than those obtained by SGA. It is 
concluded from this result that the present method has no 
superiority over the conventional GA as long as (10) is 
considered. 
In practical traffic problems, extremely high transport costs 
which could be caused by traffic accidents and natural 
disasters should be avoided. To take this risk into account, 
(10) is modified to 
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ε
≤= othersiwe,
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where ε  and Ts  represent penalty and threshold, which are 
set to 0.01, 0.12, respectively. The results for this modified 
problem is summarized in TABLE III, where the present 
 
 

TABLE III Results for raveling salesman problem with (11) 
methods fopt ×10-1 Fopt ×10-1 

SGA 1.533 1.061 
present 1.528 1.116 

 

 
 
 method now yields better result in comparison with SGA 
with respect to F. Figure 5 shows the best solution of each 
method. Figure 6 shows the histograms of these solutions 
which are again obtained by the posterior Mote Carlo 
simulation, where the abscissa and ordinate represent the 
value of f and frequency. Figure 6 suggests that the solution 
obtained by SGA, shown in Fig. 5 (a), has no negative effects 
from the penalty term in (11) in contrast to that obtained by 
SGA. 
 

C. Knapsack Problem  with Uncertainty 
We finally consider the knapsack problem, whose parameters 
are summarized in TABLE IV. In this problem, the total 

(a) SGA 

(b) present method 
Fig. 3 Time evolution of elite fitness

Fig. 4 Cities for traveling salesman problem 
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price in the knapsack 
 

∑=
i

ii npP                                 (12) 

is made as close to Pcenter as possible under the constraint that 
the total weight is less than wmax, where pi and ni denote price 
and number of article i. Moreover, penalties are given if P is 
too far from Pcenter. Consequently, the objective function f is 
defined as 
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The parameters in (13) and (14) are as follows: wmax=150, 
Pcenter=1500, Psmall=1250, Plarge=1750, b=2 Pcenter. The profile 
of f given in (13) is shown in Fig. 7. In addition, the 
maximum number of articles in the knapsack is set to 15. The 
prices pi, assumed to be probabilistic variables here, are 

added by noises obeying the normal distribution ),0( 2σN , 

ip15.0=σ . The GA parameters are as follows: Npop=200, 
Ng=200, Pc=0.20, Pm=0.02, g=0.8. 

The performance of the optimized solutions is summarized 
in TABLE V, which shows the mean values over 100 trials. 
While the optimal values of f are the same for both methods, 
the expected value Fopt for the present method is better than 
that for SGA. Examples of the solution (A, B, C, D) are: (7, 7, 
3, 9), (1, 7, 14, 3) for SGA, and (14, 2, 11, 6), (14,6,6,7) for 
the present method. 

 
 

TABLE IV Setting of knapsack problem 
 A B C D 

price ip  10 50 60 100 
weight iw  1 5 6 10 

 
TABLE V Results for knapsack problem with (13) 
methods fopt Fopt  

SGA 1500 1297 
present 1500 1336 

 

IV. CONCLUSIONS 
This paper has described an evolutional optimization 

based on GA applied to the problems with respect to the 
objective functions including probabilistic constants. In this 

method, noises have been introduced to the constants during 
the GA processes. 

The present method is applied to the one-dimensional 
mathematical problem, and its result is in good agreement 
with that obtained by SGA in which the exact expected value 
of the probabilistic constant is set in the objective function. 
The present method is also applied to the traveling salesman 
and knapsack problems containing the probabilistic 
constants in their objective functions. It has been shown that 
the expected values of the objective functions, computed by 
the Monte Carlo simulation after the optimization, obtained 
by the present method are better than those obtained by SGA 
when the objective functions include the penalty 
terms.

 

(a) SGA 

(b) present method 
Fig.5 Results of traveling salesman problem 
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Fig. 7 Profile of f for knapsack problem defined by (13)

(b) present method 
Fig.6 Histograms for traveling salesman problem
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